Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects
"> Figure 1
<p>Schematic diagram of the proposed metal–insulator–metal (MIM) sensor structure coupled with several silver nanorod defects in a T-shape cavity.</p> "> Figure 2
<p>Transmittance spectrum of the proposed plasmonic MIM waveguide (<b>a</b>) without defects and (<b>b</b>) with silver nanorod defects. Transmittance spectra of the proposed MIM sensor (<b>c</b>) without and (<b>d</b>) with the silver nanorod defects in the T-shape cavity filled with different refractive index (RI) (<span class="html-italic">n</span> = 1.00, 1.10, 1.20, 1.30, 1.40 and 1.50) in the active region of the sensor. The structural parameters of the proposed MIM waveguide, <span class="html-italic">w</span>, <span class="html-italic">w</span><sub>1</sub>, <span class="html-italic">w</span><sub>2</sub>, <span class="html-italic">d</span><sub>1</sub>, <span class="html-italic">d<sub>2</sub></span>, <span class="html-italic">r</span><sub>1</sub>, <span class="html-italic">r</span><sub>2</sub>, are set to be 50 nm, 50 nm, 30 nm, 150 nm, 330 nm, 20 nm and 10 nm, respectively.</p> "> Figure 3
<p>Resonant wavelengths versus the refractive index (RI) with and without silver nanorod defects in T-shape cavity.</p> "> Figure 4
<p>Electric field intensity (|<b><span class="html-italic">E</span></b>| = (E<span class="html-italic"><sub>x</sub></span><sup>2</sup> + E<span class="html-italic"><sub>y</sub></span><sup>2</sup>)<sup>1/2</sup>) for the cases (<b>a</b>) without defects (at <span class="html-italic">λ</span><sub>res</sub> = 620 nm, 1985 nm and 1210 nm) and (<b>b</b>) with defects (at <span class="html-italic">λ</span><sub>res</sub> = 940 nm, 3330 nm and 1550 nm), respectively.</p> "> Figure 5
<p>(<b>a</b>) Transmittance spectrum of the proposed MIM plasmonic waveguide with different ambient temperature in the wavelength range of 700–6000 nm. Transmittance spectrum of the proposed MIM plasmonic waveguide with different ambient temperature (<b>b</b>) in the wavelength range of 888–928 nm for mode 3, (<b>c</b>) in the wavelength range of 1254–1312 nm for mode 2, and (<b>d</b>) in the wavelength range of 4478–4688 nm for mode 1, respectively. The other parameters are set as the same as used in <a href="#nanomaterials-09-01433-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>Transmittance spectra for different radius of the silver nanorods with <span class="html-italic">r</span><sub>1</sub> = (0, 8, 10, 12, 14, 16, 18, 20, 22, 23, 24, 25) nm, respectively. The other parameters are set as the same as used in <a href="#nanomaterials-09-01433-f002" class="html-fig">Figure 2</a>.</p> "> Figure 7
<p>Transmittance spectra as a function of the (<b>a</b>) RI (<span class="html-italic">n</span> = 1.0 and 1.2) and (<b>b</b>) ambient temperature (<span class="html-italic">T</span> = 0 °C and 20 °C) for different d<sub>2</sub> (i.e., 430 nm, 530 nm and 630 nm) of the MIM waveguides. The other parameters are kept the same as used in <a href="#nanomaterials-09-01433-f002" class="html-fig">Figure 2</a>.</p> ">
Abstract
:1. Introduction
2. Simulation Method and Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, W.; Chau, Y.F.C.; Jheng, S.C. Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 2013, 20, 064503. [Google Scholar] [CrossRef]
- Chen, W.T.; Wu, P.C.; Chen, C.J.; Chung, H.Y.; Chau, Y.F.; Kuan, C.H.; Tsai, D.P. Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks. Opt. Express 2010, 18, 19665–19671. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Jen, H.C.; Chen, C.L.; Hwang, D.F.; Chang, R.; Hwang, J.S.; Chiang, H.P. SERS Study of Tetrodotoxin (TTX) by Using Silver Nanoparticle Arrays. Plasmonics 2009, 4, 187–192. [Google Scholar] [CrossRef]
- Yan, S.B.; Luo, L.; Xue, C.Y.; Zhang, Z.D. A Refractive Index Sensor Based on a Metal-Insulator-Metal Waveguide-Coupled Ring Resonator. Sensors 2015, 15, 29183–29191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitrakis, E.P.; Kamalakis, T.; Sphicopoulos, T. Slow light in insulator–metal–insulator plasmonic waveguides. J. Opt. Soc. Am. B 2011, 28, 2159–2164. [Google Scholar] [CrossRef]
- Tong, L.M.; Wei, H.; Zhang, S.P.; Xu, H.X. Recent Advances in Plasmonic Sensors. Sensors 2014, 14, 7959–7973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Tian, X.R.; Pan, D.; Chen, L.; Jia, Z.L.; Xu, H.G. Directionally-Controlled Periodic Collimated Beams of Surface Plasmon Polaritons on Metal Film in Ag Nanowire/Al2O3/Ag Film Composite Structure. Nano Lett. 2015, 15, 560–564. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, P.; Liu, X.; Di, Y.; Han, S.; Cui, X.; He, L. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 2018, 101, 273–278. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Song, C.; Hao, P.; Chi, M.; Yu, M.; Wu, Y. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt. Express 2015, 23, A413–A418. [Google Scholar] [CrossRef]
- Chen, M.W.; Chau, Y.F.; Tsai, D.P. Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics 2008, 3, 157–164. [Google Scholar] [CrossRef]
- He, Z.; Li, H.; Zhan, S.; Li, B. Oscillator Model Analysis for Slow Light in Bright-Dark-Dark Waveguide Systems. IEEE Photonic. Technol. Lett. 2015, 27, 2371–2374. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.W.; Shu, C.G.; He, H.F. The sensing characteristics of plasmonic waveguide with a single defect. Opt. Commun. 2014, 323, 44–48. [Google Scholar] [CrossRef]
- Chen, C.H.; Liao, K.S. 1xN plasmonic power splitters based on metal-insulator-metal waveguides. Opt. Express 2013, 21, 4036–4043. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, R.; Cui, L.N.; Yu, L.; Wang, L.L.; Xiao, J.H. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 2014, 320, 6–11. [Google Scholar] [CrossRef]
- Neutens, P.; Lagae, L.; Borghs, G.; Dorpe, P.V. Plasmon filters and resonators in metal-insulator-metal waveguides. Opt. Express 2012, 20, 3408–3423. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.M.; Chau, Y.F. Radome slope compensation using multiple-model kalman filters. J. Guidance Control Dynam. 1995, 18, 637–640. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Zhang, J.; Huang, J.; Wu, W.; Chen, D.; Xiao, G. Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure. Opt. Lett. 2016, 41, 1233–1236. [Google Scholar] [CrossRef]
- Tao, J.; Huang, X.G.; Lin, X.; Zhang, Q.; Jin, X. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt. Express 2009, 17, 13989–13994. [Google Scholar] [CrossRef]
- Lin, X.; Huang, X. Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J. Opt. Soc. Am. B 2009, 26, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Huang, X.G.; Lin, X.; Chen, J.; Zhang, Q.; Jin, X. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters. J. Opt. Soc. Am. B 2010, 27, 323–327. [Google Scholar] [CrossRef]
- Yan, X.; Lin, B.; Cheng, T.; Li, S. Analysis of High Sensitivity Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance of Refractive Indexes of Liquids. Sensors 2018, 18, 2922. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lou, J. Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators. Molecules 2018, 23, 2700. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, P.; Zhao, Z.Y.; He, L.; Cui, X.N. Study on Fano resonance regulating mechanism of Si contained metal–dielectric–metal waveguide coupled rectangular cavity. Phys. Lett. A 2017, 381, 3472–3476. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Xu, W.; Zhao, W.; He, C. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities. Sensors 2016, 16, 706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ng, G.I.; Hu, T.; Qiu, H.; Guo, X.; Wang, W.; Rouifed, M.S.; Liu, C.; Sia, J.; Zhou, J.; et al. Mid-Infrared Sensor Based on a Suspended Micro racetrack Resonator with Lateral Subwavelength-Grating Metamaterial Cladding. IEEE Photonics J. 2018, 10, 6801608. [Google Scholar]
- Ogawa, S.; Kimata, M. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials. Materials 2017, 10, 493. [Google Scholar] [CrossRef]
- Hasan, D.; Lee, C. Hybrid Metamaterial Absorber Platform for Sensing of CO2 Gas at Mid-IR. Adv. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Luo, J.; Lin, Y.S. High-efficiency of infrared absorption by using composited metamaterial nanotubes. Appl. Phys. Lett. 2019, 114, 051601. [Google Scholar] [CrossRef]
- Xu, R.; Lin, Y.S. Characterizations of reconfigurable infrared metamaterial absorbers. Opt. Lett. 2018, 43, 4783–4786. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Wu, B.; Wang, X.S.; Pan, Z.H.; Liu, Z.J.; Zhang, P.Q.; Shen, X.; Nie, Q.H.; Dai, S.X.; Wang, R.P. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017, 11, 5. [Google Scholar] [CrossRef]
- Xiao, T.H.; Zhao, Z.; Zhou, W.; Takenaka, M.; Tsang, H.K.; Cheng, Z.; Goda, K. High-Q germanium optical nanocavity. Photonics Res. 2018, 6, 925. [Google Scholar] [CrossRef]
- Ustun, K.; Turhan-Sayan, G. Wideband long wave infrared metamaterial absorbers based on silicon nitride. J. Appl. Phys. 2016, 120, 203101. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Han, Y.; Liu, Y.; Gao, J. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl. Opt. 2018, 57, 5268–5272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Li, S.; Gao, X. Highly sensitive plasmonics temperature sensor based on photonic crystal fiber with a liquid core. Opt. Commun. 2018, 427, 622–627. [Google Scholar] [CrossRef]
- Sun, Y.S.; Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Highly birefringent index-guiding photonic crystal fiber with squeezed differently sized air-holes in cladding. Jpn. J. Appl. Phys. 2008, 47, 3755–3759. [Google Scholar] [CrossRef]
- Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding. Jpn. J. Appl. Phys. 2007, 46, L1048–L1051. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.; Shu, C.; Ye, H. The sensing characteristics of plasmonic waveguide with a ring resonator. Opt. Express 2014, 22, 7669–7677. [Google Scholar] [CrossRef]
- COMSOL Multiphysics Reference Manual. Available online: http://www.comsol.com/ (accessed on 3 October 2018).
- Shen, L.; Yang, T.J.; Chau, Y.F. Effect of internal period on the optical dispersion of indefinite-medium materials. Phys. Rev. B 2008, 77, 205124. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, Y.; Yu, Z.; Wu, D.; Ma, R.; Zhang, Y.; Ye, H. Numerical analysis of a near infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt. Express 2016, 24, 9975–9983. [Google Scholar] [CrossRef]
- Chau, Y.F.C.; Chao, C.T.C.; Chiang, H.P.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H. Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 2018, 20, 190. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Gai, H.F.; Wang, J.; Tian, Q. Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 2007, 46, 2229–2233. [Google Scholar] [CrossRef] [PubMed]
- Chau, Y.F.; Yang, T.J.; Lee, W.D. Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits. Appl. Opt. 2004, 43, 6656–6663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dionne, J.; Sweatlock, L.; Atwater, H.; Polman, A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 2006, 73, 035407. [Google Scholar] [CrossRef] [Green Version]
- Boltasseva, A.; Bozhevolnyi, S.I.; Nikolajsen, T.; Leosson, K. Compact Bragg gratings for long-range surface Plasmon palaritons. J. Lighwave Technol. 2006, 24, 912–918. [Google Scholar] [CrossRef]
- Chau, Y.F.; Jheng, C.Y.; Joe, S.F.; Wang, S.F.; Yang, W.; Jheng, S.C.; Sun, Y.S.; Wei, J.H. Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 2013, 15, 1424. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Zhao, W.; Xu, W.; He, C. A Novel Plasmonic Sensor Based on Metal–Insulator-Metal Waveguide with Side-Coupled Hexagonal Cavity. IEEE Photonics J. 2015, 7. [Google Scholar] [CrossRef]
- Wang, T.; Wen, X.; Yin, C.; Wang, H. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 2009, 17, 24096–24101. [Google Scholar] [CrossRef]
- Al-Mahmod, M.J.; Hyder, R.; Islam, M.Z. Numerical Studies on a Plasmonic Temperature Nanosensor Based on a Metal-Insulator-Metal Ring Resonator Structure for Optical Integrated Circuit Applications. Photonics Nanostruct. Fundam. Appl. 2017, 25, 52–57. [Google Scholar] [CrossRef]
- Kong, Y.; Qiu, P.; Wei, Q.; Quan, W.; Wang, S.Y.; Qian, W.Y. Refractive index and temperature nanosensor with plasmonic waveguide system. Opt. Commun. 2016, 371, 132–137. [Google Scholar] [CrossRef]
- Shevchenko, Y.Y.; Albert, J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt. Lett. 2007, 32, 211–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homes, C.; Daly, K.R.; Sparrow, I.J.G.; Gates, J.C.; D’Alessandro, G.; Smith, P.G.R. Excitation of Surface Plasmons Using Tilted Planar-Waveguide Bragg Gratings. IEEE Photonics 2011, 3, 777–788. [Google Scholar] [CrossRef]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Anward, U.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H.; Kumara, N.T.R.N.; Chiang, H.P. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 2019, 15, 102567. [Google Scholar] [CrossRef]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Irdis, M.N.S.M.; Wang, Y.C.; Masri, Z.; Chiang, H.P.; Lim, C.M. Strong and tunable plasmonic field coupling and enhancement generating from the protruded metal nanorods and dielectric cores. Results Phys. 2019, 13, 102290. [Google Scholar] [CrossRef]
- Afridi, A.; Kocabaş, Ş.E. Beam steering and impedance matching of plasmonic horn nanoantennas. Opt. Express 2016, 24, 25647–25652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, Y.T.; Huang, C.B.; Huang, J.S. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction. Opt. Express 2012, 20, 20342–20355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J. Electromagn. Waves 2010, 24, 1005–1014. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, J.; Zuo, D.L.; Wang, X.B. Perfect narrow band absorber for sensing applications. Opt. Express 2016, 24, 9288–9294. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Z.; Yu, H.; Yang, L.; Gou, P.G.; Cao, J.; Zou, Y.; Qian, J.; Shi, T.; Ren, Q.; et al. Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 2016, 24, 25742–25751. [Google Scholar] [CrossRef]
- Kumara, N.; Chau, Y.F.C.; Huang, J.W.; Huang, H.J.; Lin, C.T.; Chiang, H.P. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J. Opt. 2016, 18, 115003. [Google Scholar] [CrossRef]
- Chau, Y.F.C.; Chou Chao, C.T.; Lim, C.M.; Huang, H.J.; Chiang, H.P. Depolying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 2018, 3, 7508–7516. [Google Scholar] [CrossRef] [PubMed]
- Chou Chau, Y.F.; Wang, C.K.; Shen, L.; Lim, C.M.; Chiang, H.P.; Chou Chao, C.T.; Huang, H.J.; Lin, C.T.; Kumara, N.T.R.N.; Voo, N.Y. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 2017, 7, 16817. [Google Scholar] [CrossRef] [PubMed]
- Ben Salah, H.; Hocini, A.; Temmar, M.N.; Khedrouche, D. Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chin. J. Phys. 2019, 61, 86–97. [Google Scholar] [CrossRef]
r1 (nm) | Mode 1 | Mode 2 | Mode 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
λres (nm) | S (nm/RIU) | λres (nm) | S (nm/RIU) | λres (nm) | S (nm/RIU) | ||||
n = 1.0 | n = 1.1 | n = 1.0 | n = 1.1 | n = 1.0 | n = 1.1 | ||||
0 | 2153 | 2367 | 2140.0 | 780 | 854 | 740.0 | 548 | 593 | 450 |
5.0 | 2197 | 2416 | 2190.0 | 787 | 862 | 750.0 | 551 | 597 | 460 |
8.0 | 2270 | 2496 | 2260.0 | 798 | 874 | 760.0 | 557 | 604 | 470 |
10.0 | 2343 | 2576 | 2330.0 | 810 | 887 | 770.0 | 563 | 611 | 480 |
12.0 | 2440 | 2683 | 2430.0 | 822 | 900 | 780.0 | 573 | 622 | 490 |
14.0 | 2569 | 2825 | 2560.0 | 838 | 919 | 810.0 | 586 | 637 | 510 |
16.0 | 2741 | 3015 | 2740.0 | 860 | 942 | 820.0 | 606 | 660 | 540 |
18.0 | 2978 | 3275 | 2970.0 | 890 | 976 | 860.0 | 634 | 691 | 570 |
20.0 | 3330 | 3663 | 3330.0 | 940 | 1031 | 910.0 | 674 | 736 | 620 |
22.0 | 3931 | 4325 | 3940.0 | 1046 | 1148 | 1020.0 | 730 | 798 | 680 |
23.0 | 4465 | 4914 | 4490.0 | 1160 | 1273 | 1130.0 | 775 | 847 | 720 |
24.0 | 5502 | 6056 | 5540.0 | 1404 | 1542 | 1380.0 | 923 | 1010 | 870 |
25.0 | 2528 | 2778 | 2500.0 | 1760 | 1933 | 1730.0 |
d2 (nm) | Mode 1 | Mode 2 | Mode 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
λres (nm) | S (nm/RIU) | λres (nm) | S (nm/RIU) | λres (nm) | S (nm/RIU) | ||||
n = 1.0 | n = 1.1 | n = 1.0 | n = 1.1 | n = 1.0 | n = 1.1 | ||||
430 | 6778 | 7463 | 6850 | 1470 | 1616 | 1460 | 998 | 1095 | 970 |
530 | 7484 | 8246 | 7620 | 1513 | 1663 | 1500 | 1079 | 1184 | 1050 |
630 | 8146 | 8974 | 8280 | 1563 | 1717 | 1540 | 1154 | 1267 | 1130 |
d2 (nm) | Mode 1 | Mode 2 | Mode 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
λres (nm) | S (nm/°C) | λres (nm) | S (nm/°C) | λres (nm) | S (nm/°C) | ||||
T = 0 °C | T = 20 °C | T = 0 °C | T = 20 °C | T = 0 °C | T = 20 °C | ||||
430 | 9262 | 9317 | 2.75 | 2006 | 1995 | 0.55 | 1354 | 1347 | 0.35 |
530 | 10,300 | 10,239 | 3.05 | 2066 | 2050 | 0.80 | 1467 | 1459 | 0.40 |
630 | 11,214 | 11,148 | 3.30 | 2133 | 2121 | 0.60 | 1570 | 1562 | 0.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou Chau, Y.-F.; Chou Chao, C.-T.; Huang, H.J.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.-P. Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects. Nanomaterials 2019, 9, 1433. https://doi.org/10.3390/nano9101433
Chou Chau Y-F, Chou Chao C-T, Huang HJ, Kumara NTRN, Lim CM, Chiang H-P. Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects. Nanomaterials. 2019; 9(10):1433. https://doi.org/10.3390/nano9101433
Chicago/Turabian StyleChou Chau, Yuan-Fong, Chung-Ting Chou Chao, Hung Ji Huang, N. T. R. N. Kumara, Chee Ming Lim, and Hai-Pang Chiang. 2019. "Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects" Nanomaterials 9, no. 10: 1433. https://doi.org/10.3390/nano9101433
APA StyleChou Chau, Y. -F., Chou Chao, C. -T., Huang, H. J., Kumara, N. T. R. N., Lim, C. M., & Chiang, H. -P. (2019). Ultra-High Refractive Index Sensing Structure Based on a Metal-Insulator-Metal Waveguide-Coupled T-Shape Cavity with Metal Nanorod Defects. Nanomaterials, 9(10), 1433. https://doi.org/10.3390/nano9101433