Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films
<p>Scheme of the symmetric supercapacitors (<b>a</b>) using an acetate membrane soaked in 1.0 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution, and (<b>b</b>) with a Meltonix separation polymer and electrolyte formed by PVP- ionic liquid or PVP- LiClO<sub>4</sub>. (1) Glass, (2) ITO, (3) ZnMn<sub>2</sub>O<sub>4</sub>, (4) acetate membrane soaked with 1.0 M Na<sub>2</sub>SO<sub>4</sub>, (5) separation polymer (frame), (6) non-aqueous electrolyte (PVP-ionic liquid or PVP-LiClO<sub>4</sub>).</p> "> Figure 2
<p>(<b>a</b>) Optical transmittance spectra of the ZnMn<sub>2</sub>O<sub>4</sub>/ITO/glass electrodes at different deposition times; (<b>b</b>) XRD pattern of the as-deposited electrode of ZnMn<sub>2</sub>O<sub>4</sub> on ITO corresponding to deposition time of 15 min, (<b>c</b>) XRD standard diffraction pattern of ZnMn<sub>2</sub>O<sub>4</sub> PDF 01-071-2499, (<b>d</b>) 5 min.</p> "> Figure 3
<p>As-deposited ZnMn<sub>2</sub>O<sub>4</sub> electrode: (<b>a</b>) SEM, (<b>b</b>) Mn, (<b>c</b>) Zn EDS images of the electrode surface; (<b>d</b>) HAADF; (<b>e</b>) Zn and (<b>f</b>) Mn EDS images of the electrode cross-section; (<b>g</b>) HRTEM image of the cross-section; (<b>h</b>) magnification of the marked zone; (<b>i</b>) FFTs of the film cross-section.</p> "> Figure 4
<p>XPS spectra of (<b>a</b>) Zn2p, (<b>b</b>) O1s, (<b>c</b>) Mn2p, (<b>d</b>) Zn3p-Mn3s of the as-deposited ZnMn<sub>2</sub>O<sub>4</sub> electrode.</p> "> Figure 5
<p>(<b>a</b>) Cyclic voltammetry curves of ZnMn<sub>2</sub>O<sub>4</sub> electrode measured at different scan rates: 5, 50, 100, and 200 mV s<sup>−1</sup>; (<b>b</b>) specific capacitance calculated as a function of scan rate; (<b>c</b>) GCD curves at current densities of 0.5, 1.0, 2.0, 3.0, and 4.0 A g<sup>−1</sup>; (<b>d</b>) specific capacitance calculated as a function of current density; (<b>e</b>) Nyquist plot for ZnMn<sub>2</sub>O<sub>4</sub> thin film (black: before; red: after cycling), inset: zoom of the high-frequency region (black: before; red: after CV cycles); (<b>f</b>) GCD for different number of cycles, (<b>g</b>) GCD capacitance retention; all the electrochemical analysis was carried out in 1.0 M Na<sub>2</sub>SO<sub>4</sub> electrolyte; (<b>h</b>) specific capacitance vs. v<sup>1/2</sup>; (<b>i</b>) b parameter vs. the potential, inset: log i vs. log v, v scan rate (mV s<sup>−1</sup>).</p> "> Figure 6
<p>ZnMn<sub>2</sub>O<sub>4</sub> electrode after 300 CV cycles: (<b>a</b>) SEM; (<b>b</b>) Mn and (<b>c</b>) Zn EDS images of the electrode surface; (<b>d</b>) HAADF; (<b>e</b>) Mn and (<b>f</b>) Zn EDS images of the electrode cross-section; (<b>g</b>) HRTEM image of the cross-section, (<b>h</b>) magnification of the marked zone; (<b>i</b>) FFTs of the film cross-section.</p> "> Figure 7
<p>XPS spectra of (<b>a</b>) Zn2p, (<b>b</b>) O1s, (<b>c</b>) Mn2p, (<b>d</b>) Zn3p-Mn3s of the ZnMn<sub>2</sub>O<sub>4</sub> electrode after 3000 CV cycles.</p> "> Figure 8
<p>(<b>a</b>) Cyclic voltammetry curves with ±1.2 V potential window at scan rates from 25 to 200 mV s<sup>−1</sup>; (<b>b</b>) GCD at different current densities of 0.5 A g<sup>−1</sup>, 1.0 A g<sup>−1</sup>, and 2.0 A g<sup>−1</sup>; (<b>c</b>) GCD at cycle 2, 1000, 2000, and 3000; (<b>d</b>) capacitance retention and Coulombic efficiency (GCD cycles) for the SSC 1.0 M Na<sub>2</sub>SO<sub>4</sub>.</p> "> Figure 9
<p>SCC with PVP-Ionic liquid: (<b>a</b>) CV cycles with a ±1.2 V potential window at scan rates from 25 to 200 mV s<sup>−1</sup>; (<b>b</b>) GCD at current densities of 0.5 A g<sup>−1</sup>, 1.0 A g<sup>−1</sup>, 2.0 A g<sup>−1</sup>; (<b>c</b>) GCD cycles 2, 1000, 2000, and 3000; (<b>d</b>) capacitance retention and Coulombic efficiency (GCD cycles).</p> "> Figure 10
<p>SCC with PVP-ionic liquid as electrolyte after 300 CV cycles: (<b>a</b>) SEM; (<b>b</b>) Zn and (<b>c</b>) Mn EDS images of the surface of the electrode; (<b>d</b>) Zn and (<b>f</b>) Mn EDS images; (<b>e</b>) HAADF images of the electrode cross-section; (<b>g</b>) HRTEM image of the cross-section; (<b>h</b>) magnification of the marked zone; (<b>i</b>) FFT of the film cross-section.</p> "> Figure 11
<p>XPS of electrode of SCC PVP-Ionic Liquid: (<b>a</b>) Zn2p, (<b>b</b>) ZnLMM, (<b>c</b>) M3s Zn3p, (<b>d</b>) Mn2p. Electrodes: (1) as-deposited, (2) after 300 CV cycles finishing under reducing conditions, (3) after 300 cycles of CV finishing under oxidizing condition.</p> "> Figure 12
<p>Scheme of the transformation from ZnMnO<sub>4</sub> to Zn<sub>1-x</sub>Mn<sub>3-x</sub>O<sub>4</sub>.</p> "> Figure 13
<p>SCC with PVP-LiClO<sub>4</sub>: (<b>a</b>) CV cycles with a ±1.2 V potential window at scan rates from 25 to 200 mV s<sup>−1</sup>; (<b>b</b>) GCD at current densities of 0.5 A g<sup>−1</sup>, 1.0 A g<sup>−1</sup>, 2.0 A g<sup>−1</sup>; (<b>c</b>) GCD cycles 2, 1000, 2000, and 3000; (<b>d</b>) capacitance retention and Coulombic efficiency (GCD cycles).</p> "> Figure 14
<p>SCC with PVP-LiClO<sub>4</sub> as electrolyte after 300 CV cycles: (<b>a</b>) SEM; (<b>b</b>) Zn and (<b>c</b>) Mn EDS images of the surface of the electrode; (<b>d</b>) Zn and (<b>f</b>) Mn EDS images; (<b>e</b>) HAADF images of the electrode cross-section; (<b>g</b>) HRTEM image of the cross-section; (<b>h</b>) magnification of the marked zone; (<b>i</b>) FFT of the film cross-section.</p> "> Figure 15
<p>XPS of electrode of SCC PVP-LiClO<sub>4</sub>: (<b>a</b>) Zn2p, (<b>b</b>) ZnLMM, (<b>c</b>) M3s Zn3p, (<b>d</b>) Mn2p. Electrodes: (1) as-deposited, (2) after 300 CV cycles finishing under reducing conditions.</p> "> Figure 16
<p>Ragone plot, points corresponding to (1) 0.5 A g<sup>−1</sup>, (2) 1.0 A g<sup>−1</sup>, (3) 2.0 A g<sup>−1</sup>, and values obtained by other authors [<a href="#B70-nanomaterials-13-03017" class="html-bibr">70</a>,<a href="#B71-nanomaterials-13-03017" class="html-bibr">71</a>,<a href="#B72-nanomaterials-13-03017" class="html-bibr">72</a>,<a href="#B73-nanomaterials-13-03017" class="html-bibr">73</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnMn2O4 Electrodes
2.2. Supercapacitor Assembly
2.3. Characterization Methods
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the ZnMn2O4 Thin-Film Electrodes Obtained
3.1.1. Chemical and Morphological Characterization
3.1.2. Electrochemical Characterization
3.2. Characterization of the ZnMn2O4 Thin-Film Electrodes after Cycling Process
Chemical and Morphological Characterization
3.3. Symmetrical Supercapacitor
3.3.1. 1.0 M Na2SO4 as Electrolyte
3.3.2. PVP-Ionic Liquid and PVP-LiClO4 as Electrolytes
PVP-Ionic Liquid Electrolyte
PVP-LiClO4 Electrolyte
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef] [PubMed]
- Abdollahifar, M.; Huang, S.S.; Lin, Y.H.; Li, Y.C.; Shih, B.Y.; Sheu, H.S.; Liao, Y.F.; Wu, N.I. High-performance carbon-coated ZnMn2O4 nanocrystallite supercapacitors with tailored microstructures enabled by a novel solution combustion method. J. Power Sources 2018, 378, 90–97. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhu, J.; Wang, Y.; Li, S.; Jin, P.; Chen, Y. Facile synthesis of manganese oxide nanostructures with different crystallographic phase and morphology for supercapacitors. J. Alloys Compd. 2020, 830, 154524. [Google Scholar] [CrossRef]
- Chen, S.; Xing, W.; Duan, J.; Hu, X.; Qiao, S.Z. Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A 2013, 1, 2941–2954. [Google Scholar] [CrossRef]
- Ma, R.; Wang, M.; Dam, D.T.; Yoon, Y.J.; Chen, Y.; Lee, J.M. Polyaniline-coated hollow Fe2O3 nanoellipsoids as an anode material for high-performance lithium-ion batteries. ChemElectroChem 2015, 2, 503–507. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, Y.; Yao, L.; Liu, G.; Zhou, Z.; Lee, J.M.; Wang, J.; Liu, Q. Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route. J. Power Sources 2016, 303, 49–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, L.; Liu, Z.; Jiang, L.; Lan, T.; Zhang, C.; Liu, K.; He, S. High Rate Performance Supercapacitors Based on N, O Co-Doped Hierarchical Porous Carbon Foams Synthesized via Chemical Blowing and Dual Templates. Molecules 2023, 28, 6994. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, W.; Zhang, Q.; Kong, Q.; Chen, G.; Zhang, C.; Han, J.; Jiang, S.; He, S. One stone for four birds: A “chemical blowing” strategy to synthesis wood-derived carbon monoliths for high-mass loading capacitive energy storage in low temperature. J. Colloid Interface Sci. 2024, 653, 1526–1538. [Google Scholar] [CrossRef]
- Dhandapani, E.; Thangarasu, S.; Ramesh, S.; Ramesh, K.; Vasudevan, R.; Duraisamy, N. Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor—A review. J. Energy Storage 2022, 52, 104937. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal oxide-based supercapacitors: Progress and prospective. Nanoscale Adv. 2019, 1, 4644–4658. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Zhou, G.; Yin, L.C.; Ren, W.; Li, F.; Cheng, H.M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R.S.; Wen, Z.; Liu, Q. Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-Type MnO2 nanosheets for Asymmetric Supercapacitors. Sci. Rep. 2014, 4, 3879. [Google Scholar] [CrossRef]
- Lee, H.Y.; Goodenough, J.B. Supercapacitor Behavior with KCl Electrolyte. J. Solid State Chem. 1999, 14, 220–223. [Google Scholar] [CrossRef]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Ilton, E.S.; Post, E.; Heaney, P.J.; Ling, F.T.; Kerisit, S.N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475–485. [Google Scholar] [CrossRef]
- Ghost, S.K. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef]
- Sun, P.; Yi, H.; Peng, T.; Jing, Y.; Wang, R.; Wang, H.; Wang, X. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J. Power Sources 2017, 341, 27–35. [Google Scholar] [CrossRef]
- Weng, Y.T.; Pan, H.A.; Lee, R.C.; Huang, T.Y.; Chu, Y.; Lee, J.F.; Sheu, H.S. Spatially confined MnO2 nanostructure enabling consecutive reversible charge transfer from Mn(IV) to Mn(II) in a mixed pseudocapacitor-battery electrode. Adv. Energy Mater. 2015, 5, 1500772. [Google Scholar] [CrossRef]
- Knight, C.J.; Soosairaj, T.; Manthiram, A. Chemical Extraction of Zn from ZnMn2O4-based spinels. J. Mater. Chem. A 2015, 3, 21077. [Google Scholar] [CrossRef]
- Kang, L.; Huang, C.; Zhang, J.; Zhang, M.; Zhang, N.; He, Y.; Luo, C.; Wang, C.; Zhou, X.; Wu, X. A new strategy for synthesis of hierarchical MnO2-Mn3O4 nanocomposite via reduction-induced exfoliation of MnO2 nanowires and its application in high-performance asymmetric supercapacitor. Compos. Part B Eng. 2019, 177, 107501. [Google Scholar] [CrossRef]
- Rubel, O.; Tran, T.N.T.; Gourley, S. Electrochemical Stability of ZnMn2O4: Understanding Zn-Ion Rechargeable Battery Capacity and Degradation. J. Phys. Chem. C 2022, 126, 10957–10967. [Google Scholar] [CrossRef]
- Deng, W.; Xu, Y.; Zhang, X.; Li, C.; Liu, Y.; Xiang, K.; Chen, H. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries. J. Alloys Compd. 2022, 903, 163824. [Google Scholar] [CrossRef]
- Nádherný, L.; Maryško, M.; Sedmidubský, D.; Martin, C. Structural and magnetic properties of ZnxMn3-xO4 spinels. J. Magn. Magn. Mater. 2016, 413, 89–96. [Google Scholar] [CrossRef]
- Dang, W.; Wang, F.; Ding, Y.; Feng, C.; Guo, Z. Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. J. Alloys Compd. 2017, 690, 72–79. [Google Scholar] [CrossRef]
- Ivanova, I.V.; Zaitseva, N.A.; Samigullina, R.F.; Krasnenko, T.I. Solid-state synthesis of ZnMn2O4 spinel: Sequence of phase transformations, thermal stability, localization and charge state of manganese ions in the intermediate and final reaction products. Solid State Sci. 2023, 136, 107110. [Google Scholar] [CrossRef]
- Driessens, F.C.M.; Rieck, G.D. Phase equilibria in the system Zn-Mn-O in air. J. Inorg. Nucl. Chem. 1966, 28, 1593–1600. [Google Scholar] [CrossRef]
- Peiteado, M.; Sturm, S.; Caballero, A.C.; Makovec, D. Mn3-xZnxO4 spinel phases in the Zn-Mn-O system. Acta Mater. 2008, 56, 4028–4035. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, G.; Sarapulova, A.; Trouillet, V.; Fu, Q.; Geckle, U.; Ehrenberg, H.; Dsoke, S. Elucidating the energy storage mechanism of ZnMn2O4 as promising anode for Li-ion batteries. J. Mater. Chem. A 2018, 6, 19381. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, S.; Cao, H.; Pang, G.; Lin, J.; Hou, L.; Yuan, F. Ultrafast spray pyrolysis fabrication of a nanophase ZnMn2O4 anode towards high-performance Li-ion batteries. RSC Adv. 2015, 15, 13667–13673. [Google Scholar] [CrossRef]
- Saranya, P.E.; Selladurai, S. Efficient electrochemical performance of ZnMn2O4 nanoparticles with rGO nanosheets for electrodes in supercapacitor applications. J. Mater. Sci. Mater. Electron. 2018, 29, 3326–3339. [Google Scholar] [CrossRef]
- Rodríguez, J.; Navarrete, E.; Dalchiele, E.A.; Sánchez, L.; Ramos-Barrado, J.R.; Martín, F. Polyvinylpyrrolidonee-LiClO4 solid polymer electrolyte and its application in transparent thin film supercapacitors. J. Power Sources 2013, 237, 270–276. [Google Scholar] [CrossRef]
- Astorga, E.N.; Rodríguez, J.; Dalchiele, E.A.; Schrebler, R.; Leyton, P.; Ramos-Barrado, J.R.; Martín, F. A transparent solid-state ion gel for supercapacitor device applications. J. Solid State Electrochem. 2017, 21, 1431–1444. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Mohamed, M.B.; Ahmed, S.I. Modifying the structure and optical characteristics of 1ZnMn2O4 by alloying with CdS to form heterostructure nanocomposite. Appl. Phys. A 2021, 127, 883. [Google Scholar] [CrossRef]
- Heiba, Z.K.; Ghannam, M.M.; Sanad, M.M.S.; Albassam, A.A.; Mohamed, M.B. Structural, optical, and dielectric properties of nano-ZnMn2−xVxO4. J. Mater. Sci. Mater. Electron. 2020, 31, 8946–8962. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, H.J.; Qiu, H.L.; Zhu, K.; Zhang, L.J.; Wei, Y.J.; Du, F.; Chen, G.; Zhang, D. Synthesis of graphene-wrapped ZnMn2O4 hollow microspheres as high performance anode materials for lithium ion batteries. RSC Adv. 2015, 5, 99107–99114. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Z.; Tang, W.; Yang, Z.; Zhang, W.; Li, S.; Wang, K.; Sun, Y.; Xia, Q.; Guo, B. A facile synthetic protocol to construct 1D Zn-Mn-Oxide nanostructures with tunable compositions for high-performance lithium storage. J. Alloys Compd. 2017, 720, 376–382. [Google Scholar] [CrossRef]
- Aouini, S.; Bardaoui, A.; Ferraria, A.M.; Santos, D.M.F.; Chtourou, R. ZnMn2O4 Nanopyramids Fabrication by Hydrothermal Route: Effect of Reaction Time on the Structural, Morphological, and Electrochemical Properties. Energies 2022, 15, 9352. [Google Scholar] [CrossRef]
- Minelli, A.; Dolcet, P.; Diodati, S.; Gardonio, S.; Innocenti, C.; Badocco, D.; Gialanella, S.; Pastore, P.; Pandolfo, L.; Caneschi, A.; et al. Pursuing the stabilisation of crystalline nanostructured magnetic manganites through a green low temperature hydrothermal synthesis. J. Mater. Chem. C 2017, 5, 3359–3371. [Google Scholar] [CrossRef]
- Fujiwara, M.; Matsushita, T.; Ikeda, S. Evaluation of Mn3s X-ray photoelectron spectroscopy for characterization of manganese complexes. J. Electron. Spectrosc. Relat. Phenom. 1995, 74, 201–206. [Google Scholar] [CrossRef]
- Lei, K.; Han, X.; Hu, Y.; Liu, X.; Cong, L.; Cheng, F. Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chem. Commun. 2015, 51, 11599. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Belanger, D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Beyreuther, E.; Grafström, S.; Eng, L.M.; Thiele, C.; Dörr, K. XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen. Phys. Rev. B 2006, 73, 155425. [Google Scholar] [CrossRef]
- Boukmouche, N.; Azzouz, N.; Bouchama, L.; Daltin, A.L.; Chopart, J.P.; Bouznit, Y. Supercapacitance of MnO2 films Prepared by Pneumatic Spray Method. Mater. Sci. Semicond. Process. 2014, 27, 233–239. [Google Scholar] [CrossRef]
- Guo, N.; Wei, X.; Deng, X.L.; Xu, X.J. Synthesis and Property of Spinel Porous ZnMn2O4 microspheres. Appl. Surf. Sci. 2015, 356, 1127–1134. [Google Scholar] [CrossRef]
- Tanggarnjanavalukul, C.; Phattharasupakun, N.; Wutthiprom, J.; Kidkhunthod, P.; Sawangphruk, M. Charge storage mechanisms of birnessite-type MnO2 nanosheets in Na2SO4 electrolytes with different pH values: In situ electrochemical X-ray absorption spectroscopy investigation. Electrochim. Acta 2018, 273, 17–25. [Google Scholar] [CrossRef]
- Dubal, D.; Dhawale, D.; Salunkhe, R.; Pawar, S.; Lokhande, C. A Novel Chemical Synthesis and Characterization of Mn3O4 Thin Films for Supercapacitor Application. Appl. Surf. Sci. 2010, 256, 4411–4416. [Google Scholar] [CrossRef]
- Sankar, K.V.; Kalpana, D.; Selvan, R.K. Electrochemical Properties of Microwave-Assisted Reflux-Synthesized Mn3O4 Nanoparticles in Different Electrolytes for Supercapacitor Applications. J. Appl. Electrochem. 2012, 42, 463–470. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, Y.; Wang, Y.; Yang, L.; Zhu, L.; Cao, R.; Sha, Z. Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: Experimental research from hydrothermal crystallization process to electrochemical performances. RSC Adv. 2017, 7, 40286. [Google Scholar] [CrossRef]
- Shan, X.; Abeykoon, A.M. Framwork Doping of Ni Enhances Pseudocapacite Na-ion storage of Ni(MnO2) layered Birnessite. Chem. Mater. 2019, 31, 8774–8786. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Z.; Qin, H.; Zeng, X.; Meng, J. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc battery. J. Powers Sources 2019, 425, 162–169. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef]
- Dong, R.; Ye, Q.; Kuang, L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G.; Wen, Y.; Wang, F. Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition-Metal Ions. ACS Appl. Mater. Interfaces 2013, 5, 9508–9516. [Google Scholar] [CrossRef] [PubMed]
- Sankar, K.V.; Surendran, S.; Pandi, K.; Allin, A.M.; Nithya, V.D.; Lee, Y.S.; Kafai Selvan, R. Studies on the electrochemical intercalation/de-intercalation mechanism of NiMn2O4 for high stable pseudocapacitor electrodes. RSC Adv. 2015, 5, 27649–27656. [Google Scholar] [CrossRef]
- Chavan, U.J. Electrochemical behavior of spray deposited mixed nickel mangase oxide thin films for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2017, 28, 4958–4964. [Google Scholar] [CrossRef]
- Singh, A.; Chandra, A. Significant Performance Enhancement in Asymmetric Supercapacitors based on Metal Oxides, Carbon nanotubes and Neutral Aqueous Electrolyte. Sci. Rep. 2015, 5, 15551. [Google Scholar] [CrossRef]
- Wen, X.; Luo, J.; Xiang, K.; Zhou, W.; Zhang, C.; Chen, H.J. High-performance monoclinic WO3 nanospheres with the novel NH4+ diffusion behaviors for aqueous ammonium-ion batteries. Chem. Eng. 2023, 458, 141381. [Google Scholar] [CrossRef]
- Marveh, F.; Scott, W.D. Method Comparison for Deconvoluting Capacitive and Pseudo-Capacitive Contributions to Electrochemical Capacitor Electrode Behavior. J. Electrochem. Soc. 2018, 165, A664–A673. [Google Scholar] [CrossRef]
- Basant, A.A.; Asma, M.A.O.; Ahmed, S.G.K.; Nageh, K. Untapped, Potential of Polymorph MoS2: Tuned Cationic Intercalation for High-Performance Symmetric Supercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 33955–33965. [Google Scholar] [CrossRef]
- Sathiya, M.; Prakash, A.S.; Ramesha, K.; Tarascon, J.M.; Shukla, A.K. V2O5, Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage. J. Am. Chem. Soc. 2011, 133, 16291–16299. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Iamprasertkun, P.; Tanggarnjanavalukul, C.; Krittayavathananon, A.; Khuntilo, J.; Chanlek, N.; Kidkhunthod, P.; Sawangphruk, M. Insight into charge storage mechanisms of layered MnO2 nanosheets for supercapacitor electrodes: In situ electrochemical X-ray absorption spectroscopy. Electrochim. Acta 2017, 249, 26–32. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 cathode in Zn(CF3SO3) electrolyte for rechargeable aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef] [PubMed]
- Di Castro, V.; Polzonetti, G. XPS Study of Mn oxidation. J. Electron Spectros. Relat. Phenom. 1989, 48, 117–123. [Google Scholar] [CrossRef]
- Ardizzone, S.; Bianchi, C.L.; Tirelli, D. Mn3O4 and γ-MnOOH powders, preparation, phase composition and XPS characterisation. Colloids Surf. A Physicochem. Eng. Asp. 1998, 134, 305–312. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin. Chem. Lett. 2022, 33, 1236–1244. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc.: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Liu, H.; Wang, J.G.; You, Z.; Wei, C.; Kang, F.; Wei, B. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98. [Google Scholar] [CrossRef]
- Sahoo, A.; Sharma, Y. Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Mater. Chem. Phys. 2015, 149–150, 721–727. [Google Scholar] [CrossRef]
- Bhagwan, J.; Kumar, N.; Yadav, K.L.; Sharma, Y. Probing the electrical properties and energy storage performance of electrospun ZnMn2O4 nanofibers. Solid State Ion. 2018, 321, 75–82. [Google Scholar] [CrossRef]
- Bera, A.; Halder, L.; Si, S.K.; De, A.; Ojha, S.; Bera, S.; Maity, P.; Mondal, A.; Khatua, B.B. Fabrication of a flexible quasi-solid-state asymmetric supercapacitor device based on a spherical honeycomb like ZnMn2O4@Ni(OH)2 hybrid core-shell electrode material with superior electrochemical performances. Results Chem. 2022, 4, 100404. [Google Scholar] [CrossRef]
- Gooma, A.M.; Ling, L.T.; Rajan, J.; Mashitah, M.Y.; Kwok, F.C. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater. Res. Bull. 2014, 60, 5–9. [Google Scholar] [CrossRef]
- Senthilkumar, N.; Venkatachalam, V.; Kandiban, M.; Vigneshwaran, P.; Jayavel, R.; Potheher, I.V. Studies on Electrochemical Properties of Hetarolite (ZnMn2O4) Nanostructure for Supercapacitor Application. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 106, 121–126. [Google Scholar] [CrossRef]
- Aruchamy, K.; Nagaraj, R.; Manohara, H.M.; Nidhi, M.R.; Mondal, D.; Ghosh, D.; Nataraj, K. One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor. Mater. Sci. Eng. B 2020, 252, 114481. [Google Scholar] [CrossRef]
- Wei, X.Q.; Wang, Y.L.; Guo, N.; Deng, X.; Xu, X.J. Effect of growing temperature on structure and electrochemical performance of ZnMn2O4 nanospheres. Ionics 2017, 23, 2443–2448. [Google Scholar] [CrossRef]
- Mani, M.P.; Venkatachalam, V.; Thamizharasan, K.; Jothibas, M. Evaluation of Cubic-Like Advanced ZnMn2O4 Electrode for High-Performance Supercapacitor Applications. J. Electron. Mater. 2021, 50, 4381–4387. [Google Scholar] [CrossRef]
- Sannasi, V.; Subbian, K. A facile synthesis of ZnMn2O4/Mn2O3 composite nanostructures for supercapacitor applications. Ceram. Int. 2021, 47, 12300–12309. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinado-Pérez, J.J.; López-Escalante, M.C.; Martín, F. Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films. Nanomaterials 2023, 13, 3017. https://doi.org/10.3390/nano13233017
Peinado-Pérez JJ, López-Escalante MC, Martín F. Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films. Nanomaterials. 2023; 13(23):3017. https://doi.org/10.3390/nano13233017
Chicago/Turabian StylePeinado-Pérez, Juan José, Maria Cruz López-Escalante, and Francisco Martín. 2023. "Effect of the Nature of the Electrolyte on the Behavior of Supercapacitors Based on Transparent ZnMn2O4 Thin Films" Nanomaterials 13, no. 23: 3017. https://doi.org/10.3390/nano13233017