Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein
<p>Overview of porphylipoprotein (PLP); (<b>a</b>) porphyrin-based ultrasmall nanostructure that mimics lipoproteins, which are complexes of lipids and proteins. It has a core–shell structure where the outer part is composed of hydrophilic functional groups and hydrophilic molecules, whereas the inner part is composed of hydrophobic functional groups and hydrophobic molecules [<a href="#B7-nanomaterials-14-01862" class="html-bibr">7</a>,<a href="#B10-nanomaterials-14-01862" class="html-bibr">10</a>,<a href="#B11-nanomaterials-14-01862" class="html-bibr">11</a>]. Fluorescence images of RGK1 (<b>b</b>) and RGM1 (<b>c</b>) observed by super-resolution microscopy. The images show that the endoplasmic reticulum (ER) fluorescence (pseudo-colored cyan), mitochondrial fluorescence (pseudo-colored orange), and PLP fluorescence (pseudo-colored red) merged. Enlarged images of the areas enclosed in white dashed lines are shown below each, in which a single cell is outlined with a white solid line [<a href="#B13-nanomaterials-14-01862" class="html-bibr">13</a>].</p> "> Figure 2
<p>Fluorescence time-lapse images of phagosomes in (<b>a</b>) RGK1 and (<b>b</b>) RGM1 cells under 1 min light irradiation, and a schematic diagram of the behavior of phagosomes under oxidative stress induced by PDT. In (<b>a</b>), the blue, white, and yellow arrows indicate the phagosome, lysosome, and phagolysosome destroyed by PDT, respectively [<a href="#B15-nanomaterials-14-01862" class="html-bibr">15</a>].</p> "> Figure 3
<p>(<b>a</b>) Fluorescence images of actin filaments in RGK1 observed by super-resolution confocal microscopy immediately after 1 min of light irradiation and (<b>b</b>) 5 min later. (<b>c</b>) Fluorescence images of actin filaments in RGM1 observed by super-resolution confocal microscopy immediately after 1 min of light irradiation and (<b>d</b>) 5 min later. (<b>e</b>) Enlarged view of the area enclosed by the dashed line in (<b>a</b>), and a schematic diagram of one cell enclosed by a solid line. (<b>f</b>) Enlarged view of the area enclosed by the dashed line in (<b>b</b>), and a schematic diagram of one cell enclosed by a solid line. All fluorescence images are pseudo-colored in magenta. (<b>a</b>–<b>d</b>) were measured with a constant exposure time (300 ms) to compare the light intensity dependence of the processes, and the contrast in (<b>e</b>,<b>f</b>) was adjusted to highlight the state of the actin filaments. (<b>g</b>) Fluorescence intensity of actin filaments in the entire image immediately after light irradiation is set to 1, and the fluorescence intensity over time is shown.</p> "> Figure 4
<p>Fluorescence images of actin filaments in (<b>a</b>) RGK1 and (<b>b</b>) RGM1 cells observed by super-resolution confocal microscopy immediately after 1 min light irradiation and 5 min later. All fluorescence images are pseudo-colored in magenta, and the contrast is adjusted to highlight the state of the actin filaments. (<b>c</b>) Schematic diagram of (<b>a</b>). (<b>d</b>) Schematic diagram of (<b>b</b>).</p> "> Figure 5
<p>Phase contrast images, topography images, and elastic modulus maps of RGK1 and RGM1 cells with added PLP. (<b>a</b>,<b>c</b>) immediately after 1 min light irradiation. (<b>b</b>,<b>d</b>) after 1 min light irradiation and following 4 min standing in an incubator at 37 °C with 5% CO<sub>2</sub> concentration. Force curves were measured at 64 × 64 points in an area of 100 μm × 100 μm. The topo images were obtained by mapping the height when a force of 200 pN was measured.</p> "> Figure 6
<p>The average elastic moduli of RGK1 and RGM1 cells immediately after 1 min light irradiation and after 4 min incubation following the irradiation. “Before/B” refers to before light irradiation, and “After/A” refers to after light irradiation. *** <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>Schematic diagram of the mechanism by which RGK1 and RGM1 produce stress fibers. RhoA, Ras homolog family member A; RhoA*, activated RhoA; mDia, mammalian diaphanous-related formin; ROCK, RhoA–Rho-associated protein kinase; MLC, myosin light chain; and pMLC, phospho-myosin light chain. The thickness of the arrows in the processes for RGM1 and RGK1 represents the degree of involvement of each process in the mechanism.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sang, N.; Qi, Y.; Nishimura, S.; Miyako, E. Biomimetic Functional Nanocomplexes for Photothermal Cancer Chemoimmunotheranostics. Small Sci. 2024, 4, 2400324. [Google Scholar] [CrossRef]
- Tanita, K.; Koseki, Y.; Kumar, S.; Taemaitree, F.; Mizutani, A.; Nakatsuji, H.; Suzuki, R.; Dao, A.T.N.; Fujishima, F.; Tada, H.; et al. Carrier-Free Nano-Prodrugs for Minimally Invasive Cancer Therapy. Nanoscale 2024, 16, 15256–15264. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Yukawa, H.; Sato, K.; Tozawa, M.; Tokunaga, M.; Kameyama, T.; Torimoto, T.; Baba, Y. Multifunctional Magnetic CuS/Gd2O3 Nanoparticles for Fluorescence/Magnetic Resonance Bimodal Imaging-Guided Photothermal-Intensified Chemodynamic Synergetic Therapy of Targeted Tumors. ACS Appl. Mater. Interfaces 2022, 14, 34365–34376. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Nie, J.; Xu, L.; Liang, C.; Peng, Y.; Liu, G.; Wang, T.; Mei, L.; Huang, L.; Zeng, X. pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 18462–18473. [Google Scholar] [CrossRef]
- Doi, M.; Tanaka, H.; Ohoto, T.; Miura, N.; Sakurai, Y.; Hatakeyama, H.; Akita, H. Reactivation of Anticancer Immunity by Resetting Interorgan Crosstalk in Immune-Suppressive Cells with a Nanoparticulated Anti-Inflammatory Drug. Small 2023, 19, 2205131. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Huang, Z.; Zuo, T.; Lu, Q.; Wu, G.; Shen, Q. Reducing Interstitial Fluid Pressure and Inhibiting Pulmonary Metastasis of Breast Cancer by Gelatin Modified Cationic Lipid Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 29457–29468. [Google Scholar] [CrossRef]
- He, C.; Duan, X.; Guo, N.; Chan, C.; Poon, C.; Weichselbaum, R.R.; Lin, W. Core-Shell Nanoscale Coordination Polymers Combine Chemotherapy and Photodynamic Therapy to Potentiate Checkpoint Blockade Cancer Immunotherapy. Nat. Commun. 2016, 7, 12499. [Google Scholar] [CrossRef]
- Nichols, J.W.; Bae, Y.H. EPR: Evidence and Fallacy. J. Control. Release 2014, 190, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F. To Exploit the Tumor Microenvironment: Since the EPR Effect Fails in the Clinic, What Is the Future of Nanomedicine? J. Control. Release 2016, 244, 108–121. [Google Scholar] [CrossRef]
- Lovell, J.F.; Jin, C.S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J.L.; Chan, W.C.W.; Cao, W.; Wang, L.V.; Zheng, G. Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nat. Mater. 2011, 10, 324–332. [Google Scholar] [CrossRef]
- Cui, L.; Lin, Q.; Jin, C.S.; Jiang, W.; Huang, H.; Ding, L.; Muhanna, N.; Irish, J.C.; Wang, F.; Chen, J.; et al. A PEGylation-Free Biomimetic Porphyrin Nanoplatform for Personalized Cancer Theranostics. ACS Nano 2015, 9, 4484–4495. [Google Scholar] [CrossRef]
- Lou, J.; Aragaki, M.; Bernards, N.; Kinoshita, T.; Mo, J.; Motooka, Y.; Ishiwata, T.; Gregor, A.; Chee, T.; Chen, Z.; et al. Repeated Porphyrin Lipoprotein-Based Photodynamic Therapy Controls Distant Disease in Mouse Mesothelioma via the Abscopal Effect. Nanophotonics 2021, 10, 3279–3294. [Google Scholar] [CrossRef]
- Taninaka, A.; Kurokawa, H.; Kamiyanagi, M.; Ochiai, T.; Arashida, Y.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Polphylipoprotein-Induced Autophagy Mechanism with High Performance in Photodynamic Therapy. Commun. Biol. 2023, 6, 1212. [Google Scholar] [CrossRef]
- Kamiyanagi, M.; Taninaka, A.; Ugajin, S.; Nagoshi, Y.; Kurokawa, H.; Ochiai, T.; Arashida, Y.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Cell-Level Analysis Visualizing Photodynamic Therapy with Porphylipoprotein and Talaporphyrin Sodium. Int. J. Mol. Sci. 2022, 23, 13140. [Google Scholar] [CrossRef]
- Kurokawa, H.; Ito, H.; Matsui, H. Porphylipoprotein Accumulation and Porphylipoprotein Photodynamic Therapy Effects Involving Cancer Cell-Specific Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 7306. [Google Scholar] [CrossRef]
- Jiang, M.; Esteve-Rudd, J.; Lopes, V.S.; Diemer, T.; Lillo, C.; Rump, A.; Williams, D.S. Microtubule Motors Transport Phagosomes in the RPE, and Lack of KLC1 Leads to AMD-like Pathogenesis. J. Cell Biol. 2015, 210, 595–611. [Google Scholar] [CrossRef]
- Blocker, A.; Severin, F.F.; Habermann, A.; Hyman, A.A.; Griffiths, G.; Burkhardt, J.K. Microtubule-Associated Protein-Dependent Binding of Phagosomes to Microtubules (∗). J. Biol. Chem. 1996, 271, 3803–3811. [Google Scholar] [CrossRef]
- Blocker, A.; Griffiths, G.; Olivo, J.-C.; Hyman, A.A.; Severin, F.F. A Role for Microtubule Dynamics in Phagosome Movement. J. Cell Sci. 1998, 111, 303–312. [Google Scholar] [CrossRef]
- Fu, M.; Holzbaur, E.L.F. JIP1 Regulates the Directionality of APP Axonal Transport by Coordinating Kinesin and Dynein Motors. J. Cell Biol. 2013, 202, 495–508. [Google Scholar] [CrossRef]
- Horiuchi, D.; Collins, C.A.; Bhat, P.; Barkus, R.V.; DiAntonio, A.; Saxton, W.M. Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases. Curr. Biol. 2007, 17, 1313–1317. [Google Scholar] [CrossRef]
- Kant, S.; Standen, C.L.; Morel, C.; Jung, D.Y.; Kim, J.K.; Swat, W.; Flavell, R.A.; Davis, R.J. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress. Cell Rep. 2017, 20, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Nihalani, D.; Wong, H.N.; Holzman, L.B. Recruitment of JNK to JIP1 and JNK-Dependent JIP1 Phosphorylation Regulates JNK Module Dynamics and Activation*. J. Biol. Chem. 2003, 278, 28694–28702. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. JNCI J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef]
- Oleinick, N.L.; Morris, R.L.; Belichenko, I. The Role of Apoptosis in Response to Photodynamic Therapy: What, Where, Why, and How. Photochem. Photobiol. Sci. 2002, 1, 1–21. [Google Scholar] [CrossRef]
- Saito, A.; Nagao, T.; Minamitani, H.; Iino, T.; Yamamoto, T.; Aizawa, K. Vascular Shut down Effect on the Microcirculation in Photodynamic Therapy Using Zinc Coproporphyrin. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136), Chicago, IL, USA, 30 October–2 November 1997; Volume 5, pp. 2294–2295. [Google Scholar]
- Suzuki, T.; Tanaka, M.; Sasaki, M.; Ichikawa, H.; Nishie, H.; Kataoka, H. Vascular Shutdown by Photodynamic Therapy Using Talaporfin Sodium. Cancers 2020, 12, 2369. [Google Scholar] [CrossRef] [PubMed]
- Cavin, S.; Riedel, T.; Rosskopfova, P.; Gonzalez, M.; Baldini, G.; Zellweger, M.; Wagnières, G.; Dyson, P.J.; Ris, H.-B.; Krueger, T.; et al. Vascular-Targeted Low Dose Photodynamic Therapy Stabilizes Tumor Vessels by Modulating Pericyte Contractility. Lasers Surg. Med. 2019, 51, 550–561. [Google Scholar] [CrossRef]
- Karwicka, M.; Pucelik, B.; Gonet, M.; Elas, M.; Dąbrowski, J.M. Effects of Photodynamic Therapy with Redaporfin on Tumor Oxygenation and Blood Flow in a Lung Cancer Mouse Model. Sci. Rep. 2019, 9, 12655. [Google Scholar] [CrossRef]
- Taninaka, A.; Ugajin, S.; Kurokawa, H.; Nagoshi, Y.; Kamiyanagi, M.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Direct Analysis of the Actin-Filament Formation Effect in Photodynamic Therapy. RSC Adv. 2022, 12, 5878–5889. [Google Scholar] [CrossRef]
- Shimokawa, O.; Matsui, H.; Nagano, Y.; Kaneko, T.; Shibahara, T.; Nakahara, A.; Hyodo, I.; Yanaka, A.; Majima, H.J.; Nakamura, Y.; et al. Neoplastic Transformation and Induction of H+,K+-Adenosine Triphosphatase by N-Methyl-N′-Nitro-N-Nitrosoguanidine in the Gastric Epithelial RGM-1 Cell Line. Vitr. Cell. Dev. Biol. Anim. 2008, 44, 26–30. [Google Scholar] [CrossRef]
- Kurokawa, H.; Taninaka, A.; Shigekawa, H.; Matsui, H. Dabigatran Etexilate Induces Cytotoxicity in Rat Gastric Epithelial Cell Line via Mitochondrial Reactive Oxygen Species Production. Cells 2021, 10, 2508. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Sahai, E. Mechanisms of Cancer Cell Invasion. Curr. Opin. Genet. Dev. 2005, 15, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Parri, M.; Chiarugi, P. Rac and Rho GTPases in Cancer Cell Motility Control. Cell Commun. Signal. 2010, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Moreno, V.; Marshall, C.J. The Plasticity of Cytoskeletal Dynamics Underlying Neoplastic Cell Migration. Curr. Opin. Cell Biol. 2010, 22, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, N.A.; Burnette, D.T.; Forscher, P. Myosin II Functions in Actin-Bundle Turnover in Neuronal Growth Cones. Nat. Cell Biol. 2006, 8, 216–226. [Google Scholar] [CrossRef]
- Mattila, P.K.; Lappalainen, P. Filopodia: Molecular Architecture and Cellular Functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 446–454. [Google Scholar] [CrossRef]
- Sharman, W.M.; Allen, C.M.; van Lier, J.E. Role of Activated Oxygen Species in Photodynamic Therapy. In Methods in Enzymology; Singlet Oxygen, UV-A, and Ozone; Academic Press: Cambridge, MA, USA, 2000; Volume 319, pp. 376–400. [Google Scholar]
- Pass, H.I. Photodynamic Therapy in Oncology: Mechanisms and Clinical Use. JNCI J. Natl. Cancer Inst. 1993, 85, 443–456. [Google Scholar] [CrossRef]
- Foote, C.S. Definition of type i and type ii photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659. [Google Scholar] [CrossRef]
- Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The Role of Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy. Chem. Soc. Rev. 2010, 40, 340–362. [Google Scholar] [CrossRef]
- Kajimoto, H.; Hashimoto, K.; Bonnet, S.N.; Haromy, A.; Harry, G.; Moudgil, R.; Nakanishi, T.; Rebeyka, I.; Thébaud, B.; Michelakis, E.D.; et al. Oxygen Activates the Rho/Rho-Kinase Pathway and Induces RhoB and ROCK-1 Expression in Human and Rabbit Ductus Arteriosus by Increasing Mitochondria-Derived Reactive Oxygen Species. Circulation 2007, 115, 1777–1788. [Google Scholar] [CrossRef]
- Wirth, A. Rho Kinase and Hypertension. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2010, 1802, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Ridley, A.J.; Lutz, S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front. Pharmacol. 2015, 6, 276. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taninaka, A.; Kurokawa, H.; Kamiyanagi, M.; Takeuchi, O.; Matsui, H.; Shigekawa, H. Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein. Nanomaterials 2024, 14, 1862. https://doi.org/10.3390/nano14231862
Taninaka A, Kurokawa H, Kamiyanagi M, Takeuchi O, Matsui H, Shigekawa H. Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein. Nanomaterials. 2024; 14(23):1862. https://doi.org/10.3390/nano14231862
Chicago/Turabian StyleTaninaka, Atsushi, Hiromi Kurokawa, Mayuka Kamiyanagi, Osamu Takeuchi, Hirofumi Matsui, and Hidemi Shigekawa. 2024. "Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein" Nanomaterials 14, no. 23: 1862. https://doi.org/10.3390/nano14231862
APA StyleTaninaka, A., Kurokawa, H., Kamiyanagi, M., Takeuchi, O., Matsui, H., & Shigekawa, H. (2024). Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein. Nanomaterials, 14(23), 1862. https://doi.org/10.3390/nano14231862