Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin
<p>FTIR spectra of iron oxide nanoparticles without bioactive corona (IONP@) and samples obtained by green synthesis using aqueous extracts from Uncaria tomentosa (IONP@UT), Clinopodium vulgare (IONP@CV), and Ganoderma lingzhi (IONP@GL).</p> "> Figure 1 Cont.
<p>FTIR spectra of iron oxide nanoparticles without bioactive corona (IONP@) and samples obtained by green synthesis using aqueous extracts from Uncaria tomentosa (IONP@UT), Clinopodium vulgare (IONP@CV), and Ganoderma lingzhi (IONP@GL).</p> "> Figure 2
<p>SEM and EDX analysis of iron oxide nanoparticles without Bioactive corona (<b>A</b>) and samples obtained by green synthesis using aqueous extracts from <span class="html-italic">Uncaria tomentosa</span> (<b>B</b>), <span class="html-italic">Clinopodium vulgare</span> (<b>C</b>), and <span class="html-italic">Ganoderma lingzhi</span> (<b>D</b>).</p> "> Figure 3
<p>DLS distribution curves of nanoparticles of differen batches.</p> "> Figure 4
<p>Fluorescence spectra of an HSA solution (0.3 mg/mL) before and after titration with naked nanoparticles IONP@ at 15, 25, and 37 °C. Excitation wavelength: 286 ± 1 nm.</p> "> Figure 5
<p>Fluorescence spectra of HSA solution (0.3 mg/mL) before and after titration with IONP@UT (<b>A</b>), IONP@CV (<b>B</b>), and IONP@GL (<b>C</b>) at 15, 25, and 37 °C. Excitation wavelength: 286 ± 1 nm.</p> "> Figure 6
<p>Stern–Volmer plot for the binding of IONP@ (<b>A</b>), IONP@UT (<b>B</b>), IONP@CV (<b>C</b>) and IONP@GL (<b>D</b>) nanoparticles with HSA at 15, 25, and 37 °C, (HSA) = 0.3 mg/mL.</p> "> Figure 7
<p>Double logarithmic plots of the interaction between HSA and IONP@ (<b>A</b>), IONP@UT (<b>B</b>), IONP@CV (<b>C</b>), and IONP@GL (<b>D</b>) nanoparticles at 15, 25, and 37 °C.</p> "> Figure 8
<p>Absorbance spectra of HSA and IONP@UT (<b>A</b>), IONP@CV-HSA (<b>B</b>), and IONP@GL-HSA (<b>C</b>) complexes. HSA concentration was 2.3 mg/mL, and the IONPs concentration for the IONPs-HSA complex was 10.5 μg/mL.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extracts
2.2. Green Synthesis of Iron Oxide Nanoparticles
2.3. Characterisation of Iron Oxide Nanoparticles
2.4. Fluorescence Spectroscopy
2.5. UV-Vis Absorption Spectroscopy
3. Results and Discussion
3.1. Characterisation of Iron Oxide Nanoparticles
3.1.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.2. Morphological Structure
3.1.3. Particle Size Distribution and Zeta Potential
3.2. Fluorescent Spectroscopy
3.2.1. Binding of IONPs to Human Serum Albumin
3.2.2. Correction of the Inner Filter Effect
3.2.3. Fluorescence Quenching Method
3.2.4. Determining the Type of IONPs-HSA Interaction
3.3. UV-Vis Analysis of the Interaction Between HSA and IONPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lima, T.; Bernfur, K.; Vilanova, M.; Cedervall, T. Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles. Sci. Rep. 2020, 10, 1129. [Google Scholar] [CrossRef]
- Anand, K.; Rajamanikandan, R.; Selva Sharma, A.; Ilanchelian, M.; Khan, F.I.; Tiloke, C.; Katari, N.K.; Boomi, P.; Balakumar, C.; Saravanan, M.; et al. Human serum albumin interaction, in silico and anticancer evaluation of Pine-Gold nanoparticles. Process Biochem. 2020, 89, 98–109. [Google Scholar] [CrossRef]
- Gagner, J.E.; Lopez, M.D.; Dordick, J.S.; Siegel, R.W. Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 2011, 32, 7241–7252. [Google Scholar] [CrossRef] [PubMed]
- Falahati, M.; Attar, F.; Sharifi, M.; Haertlé, T.; Berret, J.-F.; Khan, R.H.; Saboury, A.A. A health concern regarding the protein corona, aggregation and disaggregation. Biochim. Biophys. Acta (BBA) Gen. Subj. 2019, 1863, 971–991. [Google Scholar] [CrossRef]
- Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971–3010. [Google Scholar] [CrossRef]
- Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Mintri, S.; Menon, A.V.; Lee, H.Y.; Choi, H.S.; Kim, J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015, 7, 18848–18862. [Google Scholar] [CrossRef] [PubMed]
- Paluszkiewicz, P.; Martuszewski, A.; Zaręba, N.; Wala, K.; Banasik, M.; Kepinska, M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int. J. Mol. Sci. 2021, 23, 131. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Xu, X.; Bertrand, N.; Pridgen, E.; Swami, A.; Farokhzad, O.C. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 2012, 64, 1363–1384. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 4. [Google Scholar] [CrossRef]
- Gao, H.; He, Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin. Drug Deliv. 2014, 11, 409–420. [Google Scholar] [CrossRef]
- Lynch, I.; Dawson, K. Protein-nanoparticle interactions. Nanotoday 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Chakraborty, S.; Joshi, P.; Shanker, V.; Ansari, Z.A.; Singh, S.P.; Chakrabarti, P. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir ACS J. Surf. Colloids 2011, 27, 7722–7731. [Google Scholar] [CrossRef]
- Pan, H.; Qin, M.; Meng, W.; Cao, Y.; Wang, W. How Do Proteins Unfold upon Adsorption on Nanoparticle Surfaces? Langmuir 2012, 28, 12779–12787. [Google Scholar] [CrossRef]
- Gray, J.J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004, 14, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, I.; Fubini, B.; Ghibaudi, E.M.; Turci, F. Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv. Drug Deliv. Rev. 2011, 63, 1186–1209. [Google Scholar] [CrossRef]
- Shang, W.; Nuffer, J.H.; Muñiz-Papandrea, V.A.; Colón, W.; Siegel, R.W.; Dordick, J.S. Cytochrome c on Silica Nanoparticles: Influence of Nanoparticle Size on Protein Structure, Stability, and Activity. Small 2009, 5, 470–476. [Google Scholar] [CrossRef]
- Lundqvist, M.; Sethson, I.; Jonsson, B.H. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles’ curvature and the protein stability. Langmuir ACS J. Surf. Colloids 2004, 20, 10639–10647. [Google Scholar] [CrossRef]
- Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. USA 2011, 108, 16968–16973. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.-C.; Coppens, M.-O. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores. Phys. Chem. Chem. Phys. 2011, 13, 6689–6698. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.; Mwenifumbo, S.; Mager, M.; Kuna, J.J.; Stellacci, F.; Yarovsky, I.; Stevens, M. Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: Controlling and exploring the surface features. J. Am. Chem. Soc. 2011, 133, 1438–1450. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, F.; Park, Y.S.; Wang, J.; Shin, M.C.; Chung, H.S.; Yang, V.C. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 2010, 31, 9086–9091. [Google Scholar] [CrossRef]
- Yi, C.; Liu, D.; Fong, C.C.; Zhang, J.; Yang, M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 2010, 4, 6439–6448. [Google Scholar] [CrossRef]
- Deng, Z.J.; Liang, M.; Monteiro, M.; Toth, I.; Minchin, R.F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 2011, 6, 39–44. [Google Scholar] [CrossRef]
- Calzolai, L.; Franchini, F.; Gilliland, D.; Rossi, F. Protein–nanoparticle interaction: Identification of the ubiquitin–gold nanoparticle interaction site. Nano Lett. 2010, 10, 3101–3105. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.K.; Guchhait, N. Spectroscopic probing of location and dynamics of an environment-sensitive intramolecular charge transfer probe within liposome membranes. J. Colloid Interface Sci. 2011, 363, 529–539. [Google Scholar] [CrossRef]
- Kaufman, E.D.; Belyea, J.; Johnson, M.C.; Nicholson, Z.M.; Ricks, J.L.; Pavak, K.; Shah, P.K.; Bayless, M.; Pettersson, T.; Feldoto, Z.; et al. Probing Protein Adsorption onto Mercaptoundecanoic Acid Stabilized Gold Nanoparticles and Surfaces by Quartz Crystal Microbalance and Potential Measurements. Langmuir 2007, 23, 6053–6062. [Google Scholar] [CrossRef]
- Shen, X.C.; Liou, X.Y.; Ye, L.P.; Liang, H.; Wang, Z.Y. Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots. J. Colloid Interface Sci. 2007, 311, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Lindman, S.; Lynch, I.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007, 7, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Bihari, S.; Bannard-Smith, J.; Bellomo, R. Albumin as a drug: Its biological effects beyond volume expansion. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2020, 22, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Sangrà, M.; Estelrich, J.; Sabaté, R.; Espargaró, A.; Busquets, M.A. Evidence of protein adsorption in pegylated liposomes: Influence of liposomal decoration. Nanomaterials 2017, 7, 37. [Google Scholar] [CrossRef]
- Maity, D.; Agrawal, D.C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 2007, 308, 46–55. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Zavaleta, K.; Chacon-Laiza, Y.; Asmat-Campos, D.; Raquel-Checca, N. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules 2022, 27, 1367. [Google Scholar] [CrossRef]
- Kiwumulo, H.F.; Muwonge, H.; Ibingira, C.; Lubwama, M.; Kirabira, J.B.; Ssekitoleko, R.T. Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: A potential protocol for use in low and middle income countries. BMC Res. Notes 2022, 15, 149. [Google Scholar] [CrossRef]
- Elizondo-Villarreal, N.; Verástegui-Domínguez, L.; Rodríguez-Batista, R.; Gándara-Martínez, E.; Alcorta-García, A.; Martínez-Delgado, D.; Rodríguez-Castellanos, E.A.; Vázquez-Rodríguez, F.; Gómez-Rodríguez, C. Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings. Materials 2022, 15, 8328. [Google Scholar] [CrossRef]
- Mohamed, A.; Atta, R.R.; Kotp, A.A.; Abo El-Ela, F.I.; Abd El-Raheem, H.; Farghali, A.; Alkhalifah, D.H.M.; Hozzein, W.N.; Mahmoud, R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2+ and Ni2+) from aqueous solutions with Antimicrobial Investigation. Sci. Rep. 2023, 13, 7227. [Google Scholar] [CrossRef]
- Zúñiga-Miranda, J.; Guerra, J.; Mueller, A.; Mayorga-Ramos, A.; Carrera-Pacheco, S.E.; Barba-Ostria, C.; Heredia-Moya, J.; Guamán, L.P. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. Nanomaterials 2023, 13, 2919. [Google Scholar] [CrossRef] [PubMed]
- Ndou, N.; Rakgotho, T.; Nkuna, M.; Doumbia, I.Z.; Mulaudzi, T.; Ajayi, R.F. Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress. Plants 2023, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, O.; Atta, M.B.; Mahmoud, E. Biosynthesis of iron oxide nanoparticles using plant extracts and evaluation of their antibacterial activity. AMB Express 2024, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Nahari, M.H.; Al Ali, A.; Asiri, A.; Mahnashi, M.H.; Shaikh, I.A.; Shettar, A.K.; Hoskeri, J. Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of Vitex leucoxylon and Its Biomedical Applications. Nanomaterials 2022, 12, 2404. [Google Scholar] [CrossRef] [PubMed]
- Synytsya, A.; Bleha, R.; Skrynnikova, A.; Babayeva, T.; Čopíková, J.; Kvasnička, F.; Jablonsky, I.; Klouček, P. Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps. J. Fungi 2023, 10, 23. [Google Scholar] [CrossRef]
- Boureghda, Y.; Satha, H.; Bendebane, F. Chitin–glucan complex from Pleurotus ostreatus mushroom: Physicochemical characterization and comparison of extraction methods. Waste Biomass Valorization 2021, 12, 6139–6153. [Google Scholar] [CrossRef]
- Yammine, A.; Gao, J.; Kwan, A.H. Tryptophan Fluorescence Quenching Assays for Measuring Protein-ligand Binding Affinities: Principles and a Practical Guide. Bio-Protocol 2019, 9, e3253. [Google Scholar] [CrossRef]
- Hellmann, N.; Schneider, D. Hands on: Using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol. Biol. 2019, 1958, 379–401. [Google Scholar]
- Sargazi, S.; Fatima, I.; Kiani, M.H.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol. 2022, 206, 115–147. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: New York, NY, USA, 1999; p. 954. [Google Scholar]
- Hu, J.Y.; Liu, Y.; Xiao, X.H. Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 2009, 10, 517–521. [Google Scholar] [CrossRef]
- Cohen, B.E.; Pralle, A.; Yao, X.; Swaminath, G.; Gandhi, C.S.; Jan, Y.N.; Kobilka, B.K.; Isacoff, E.Y.; Jan, L.Y. A fluorescent probe designed for studying protein conformational change. Proc. Natl. Acad. Sci. USA 2005, 102, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Weber, G. Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 1973, 12, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.K.; Guchhait, N. A spectral deciphering of the binding interaction of an intramolecular charge transfer fluorescence probe with a cationic protein: Thermodynamic analysis of the binding phenomenon combined with blind docking study. Photochem. Photobiol. Sci. 2011, 10, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Bogdan, M.; Pirnau, A.; Floare, C.; Bugeac, C. Binding interaction of indomethacin with human serum albumin. J. Pharm. Biomed. Anal. 2008, 47, 981–984. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; W. H. Freeman Publishing: New York, NY, USA, 2002. [Google Scholar]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies. J. Phys. Chem. B 2010, 114, 5625–5631. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Homans, S.W. Dynamics and Thermodynamics of Ligand–Protein Interactions. In Bioactive Conformation I. Topics in Current Chemistry; Peters, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 272. [Google Scholar] [CrossRef]
- Connors, K.A. Binding Constants: The Measurements of Molecular Complex Stability; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Abou-Zied, O.K.; Al-Shihi, O.I. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 2008, 130, 10793–10801. [Google Scholar] [CrossRef]
- Bardhan, M.; Mandal, G.; Ganguly, T. Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. J. Appl. Phys. 2009, 106, 034701. [Google Scholar] [CrossRef]
- Mandal, G.; Bardhan, M.; Ganguly, T. Occurrence of Förster Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles in the Presence of a Biomolecule. J. Phys. Chem. C 2011, 43, 20840–20848. [Google Scholar] [CrossRef]
- Mandal, P.; Ganguly, T. Fluorescence Spectroscopic Characterization of the Interaction of Human Adult Hemoglobin and Two Isatins, 1-Methylisatin and 1-Phenylisatin: A Comparative Study. J. Phys. Chem. B 2009, 113, 14904–14913. [Google Scholar] [CrossRef]
- Sobot, D.; Mura, S.; Yesylevskyy, S.O.; Dalbin, L.; Cayre, F.; Bort, G.; Mougin, J.; Desmaële, D.; Lepêtre-Mouelhi, S.; Pieters, G.; et al. Conjugation of squalene to gemcitabine as a unique approach exploiting endogenous lipoproteins for drug delivery. Nat. Commun. 2017, 8, 15678. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, V.D.; Walekar, L.S.; Gore, A.H.; Anbhule, P.V.; Kolekar, G.B. Spectroscopic analysis on the binding interaction of biologically activepyrimidine derivative with bovine serum albumin. J. Pharm. Anal. 2016, 6, 56–63. [Google Scholar] [CrossRef]
- Wang, B.L.; Kou, S.B.; Lin, Z.Y.; Shi, J.H.; Liu, Y.X. Insights on the interaction mechanism of brigatinib to human α-1-acid glycoprotein: Experimental and computational approaches. Int. J. Biol. Macromol. 2020, 157, 340–349. [Google Scholar] [CrossRef]
- Naik, P.N.; Nandibewoor, S.T.; Chimatadar, S.A. Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV-vis, FT-IR, voltammetric and molecular modeling. J. Pharm. Anal. 2015, 5, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.; Santos, M.; Oliveira, M.; Sant’Anna, C.; Ferreira, R.; Echevarria, A.; Netto-Ferreira, J.C. Synthesis, tyrosinase inhibition and transportation behavior of novel β-enamino thiosemicarbazide derivatives by human serum albumin. J. Mol. Liq. 2018, 254, 280–290. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Xiong, X.; Ge, Y.; Liu, Y. Spectroscopic and molecular docking studies on the interaction dimetridazole with human serum albumin. J. Chil. Chem. Soc. 2013, 58, 1717–1721. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Gof, H.D.; Saqib, M.N.; Chen, M.; Liu, W.; Ma, J.; Zhong, F. Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocoll. 2019, 90, 341–352. [Google Scholar]
- Chaves, O.A.; Soares, M.A.G.; Campos de Oliveira, M.C. Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin. Carbohydr. Res. 2021, 501, 108274. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Baig, M.H.; Jan, A.T.; Ju Lee, E.; Khan, M.V.; Zaman, M.; Farouk, A.E.; Khan, R.H.; Choi, I. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. Int. J. Biol. Macromol. 2017, 10, 1572–1580. [Google Scholar] [CrossRef]
- Beurton, J.; Lavalle, P.; Pallotta, A.; Chaigneau, T.; Clarot, I.; Boudier, A. Design of surface ligands for blood compatible gold nanoparticles: Effect of charge and binding energy. Int. J. Pharm. 2020, 580, 119244. [Google Scholar] [CrossRef]
NPs Type | Particle Size [nm] | PDI | Zeta Potential [mV] |
---|---|---|---|
IONP@ | 374 | 0.216 | 41.30 |
IONP@UT | 250 | 0.208 | −20.67 |
IONP@CV | 533 | 0.611 | −17.29 |
IONP@GL | 332 | 0.239 | −77.89 |
NPs Type | T [°C] | Ksv [M−1] | R2 | Kq [M−1s−1] |
---|---|---|---|---|
15 | 14.00 × 104 | 0.722 | 14.00 × 1012 | |
IONP@ | 25 | 5.70 × 104 | 0.998 | 5.70 × 1012 |
37 | 4.50 × 104 | 0.897 | 4.50 × 1012 | |
15 | 17.70 × 104 | 0.992 | 17.70 × 1012 | |
IONP@UT | 25 | 14.70 × 104 | 0.944 | 14.70 × 1012 |
37 | 11.00 × 104 | 0.970 | 11.00 × 1012 | |
15 | 29.10 × 104 | 0.945 | 29.10 × 1012 | |
IONP@CV | 25 | 14.20 × 104 | 0.962 | 14.20 × 1012 |
37 | 14.20 × 104 | 0.990 | 14.20 × 1012 | |
15 | 10.89 × 105 | 0.971 | 10.89 × 1013 | |
IONP@GL | 25 | 8.98 × 105 | 0.925 | 8.98 × 1013 |
37 | 8.65 × 105 | 0.948 | 8.65 × 1013 |
NPs | T [°C] | Ka [M−1] | R2 | ΔH° [kJmol−1] | ΔS° [Jmol−1] | ΔG° [kJmol−1] |
---|---|---|---|---|---|---|
IONP@ | 15 | 2.74 × 102 | 0.996 | −25.70 | 207.80 | −13.44 |
25 | 5.24 × 102 | 0.987 | 207.80 | −15.51 | ||
37 | 3.50 × 102 | 0.985 | 198.40 | −15.10 | ||
IONP@UT | 15 | 7.75 × 102 | 0.991 | −6.75 | 41.79 | −18.78 |
25 | 8.21 × 102 | 0.976 | 43.09 | −19.59 | ||
37 | 7.41 × 102 | 0.993 | 43.09 | −20.10 | ||
IONP@CV | 15 | 6.94 × 102 | 0.953 | −6.74 | 41.81 | −18.79 |
25 | 8.78 × 102 | 0.931 | 43.71 | −19.78 | ||
37 | 7.63 × 102 | 0.954 | 43.43 | −20.21 | ||
IONP@GL | 15 | 3.10 × 109 | 0.989 | −5.56 | 108.75 | −22.87 |
25 | 2.35 × 109 | 0.929 | 107.12 | −23.47 | ||
37 | 3.00 × 109 | 0.906 | 107.12 | −24.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abarova, S.; Grancharova, T.; Zagorchev, P.; Tenchov, B.; Pilicheva, B. Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin. Nanomaterials 2024, 14, 1861. https://doi.org/10.3390/nano14231861
Abarova S, Grancharova T, Zagorchev P, Tenchov B, Pilicheva B. Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin. Nanomaterials. 2024; 14(23):1861. https://doi.org/10.3390/nano14231861
Chicago/Turabian StyleAbarova, Silviya, Tsenka Grancharova, Plamen Zagorchev, Boris Tenchov, and Bissera Pilicheva. 2024. "Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin" Nanomaterials 14, no. 23: 1861. https://doi.org/10.3390/nano14231861
APA StyleAbarova, S., Grancharova, T., Zagorchev, P., Tenchov, B., & Pilicheva, B. (2024). Novel Spectroscopic Studies of the Interaction of Three Different Types of Iron Oxide Nanoparticles with Albumin. Nanomaterials, 14(23), 1861. https://doi.org/10.3390/nano14231861