Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields
<p>(<b>A</b>) SERS-based sensors: Direct SERS detection using the Raman signal of target molecules and indirect SERS detection using the Raman signal transformation of Raman reporter molecules (e.g., Raman reporter modified aptamer) or the amplified Raman signal of standalone SERS nanotags. (<b>B</b>) Various nanostructures for efficient standalone SERS nanoprobes.</p> "> Figure 2
<p>SERS mechanisms: (<b>A</b>) LSPR-induced EM enhancement. (<b>B</b>) CT resonance mechanism of CM enhancement mechanisms at a metal-molecule or semiconductor-molecule interface. The arrows indicate CT transitions (<span class="html-italic">μ</span><sub>CT</sub>), electronic transitions of a molecule (<span class="html-italic">μ</span><sub>mol</sub>), E<sub>F</sub> (Fermi level), HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), VB (valence band), and CB (conduction band).</p> "> Figure 3
<p>(<b>A</b>–<b>D</b>) Transmission electron microscopy (TEM) images of diverse morphologies of nanoparticles: (<b>A</b>) Au nanosphere (adapted with permission from [<a href="#B68-nanomaterials-14-01839" class="html-bibr">68</a>]; Copyright 2021 American Chemical Society). (<b>B</b>) Au nanotriangles (adapted with permission from [<a href="#B69-nanomaterials-14-01839" class="html-bibr">69</a>]; Copyright 2022 American Chemical Society). (<b>C</b>) Au nanocubes (adapted with permission from [<a href="#B70-nanomaterials-14-01839" class="html-bibr">70</a>]; Copyright 2022 Elsevier). (<b>D</b>) Au nanorods with various aspect ratios. The ratios of Au NRs are 5.9, 6.4, 6.4, 7.5, and 8.5, corresponing to Figures (<b>D</b>-<b>a</b>) through (<b>D</b>-<b>e</b>), respectively. (<b>D</b>-<b>f</b>) UV-vis-NIR spectra of Au NRs shown in (<b>D</b>-<b>a</b>) (black), (<b>D</b>-<b>b</b>) (green), (<b>D</b>-<b>c</b>) (red), (<b>D</b>-<b>d</b>) (blue), and (<b>D</b>-<b>e</b>) (magenta), respectively. The orange curve is the UV-vis-NIR spectrum of Au NRs synthesized with the ratio of 7.3. All scale bars represent 100 nm. (adapted with permission from [<a href="#B63-nanomaterials-14-01839" class="html-bibr">63</a>]; Copyright 2012 American Chemical Society). (<b>E</b>) TEM image of Ag@NO<sub>2</sub> (adapted with permission from [<a href="#B66-nanomaterials-14-01839" class="html-bibr">66</a>]; Copyright 2022 The Royal Society of Chemistry). (<b>F</b>) Au nanostars (adapted with permission from [<a href="#B67-nanomaterials-14-01839" class="html-bibr">67</a>]; Copyright 2012 IOP Publishing).</p> "> Figure 4
<p>(<b>A</b>) Au dimers with nanogaps bridged by metal-organic molecular cages (MOCs) of different sizes (MOC1, MOC2, and MOC3). (<b>A</b>-<b>a</b>) TEM images, (<b>A</b>-<b>b</b>) HRTEM images, and (<b>A</b>-<b>c</b>) simulated electric field distributions around the dimers. <b>1</b>, <b>2</b>, and <b>3</b> corresponds to MOC1, MOC2, and MOC3, respectively. (adapted with permission from REF [<a href="#B76-nanomaterials-14-01839" class="html-bibr">76</a>]; Copyright 2021 American Chemical Society). (<b>B</b>) DNA origami nanofork-based dimeric structures with various NPs (adapted with permission from REF [<a href="#B79-nanomaterials-14-01839" class="html-bibr">79</a>]; Copyright 2023 American Chemical Society). (<b>C</b>) Dimeric structure with a nanocube and a nanosphere (adapted with permission from REF [<a href="#B80-nanomaterials-14-01839" class="html-bibr">80</a>]; Copyright 2021 Wiley-VCH). (<b>D</b>) Au@Ag nanostar dimer (adapted with permission from REF [<a href="#B81-nanomaterials-14-01839" class="html-bibr">81</a>]; Copyright 2021 American Chemical Society). (<b>E</b>) Detection of endotoxin by SERS chip with dimeric SERS nanotags (adapted with permission from REF [<a href="#B83-nanomaterials-14-01839" class="html-bibr">83</a>]; Copyright 2020 American Chemical Society). (<b>F</b>) Raman imaging of cancer cells with Au dimers (adapted with permission from REF [<a href="#B84-nanomaterials-14-01839" class="html-bibr">84</a>]; Copyright 2017 American Chemical Society). (<b>G</b>) Au dimers, trimers, and comparison of their Raman signals (adapted with permission from REF [<a href="#B87-nanomaterials-14-01839" class="html-bibr">87</a>]; Copyright 2017 Royal Society of Chemistry) (<b>H</b>) DNA origami-based tetramer structure (adapted with permission from REF [<a href="#B86-nanomaterials-14-01839" class="html-bibr">86</a>]; Copyright 2014 American Chemical Society).</p> "> Figure 5
<p>(<b>A</b>) TEM images of Au@4-MBN@AgNPs with Ag shell thickness of 2.2, 3.6, 6.4, 8.9, 10.1, and 12.2 nm (adapted under the terms of CC-BY License from REF [<a href="#B91-nanomaterials-14-01839" class="html-bibr">91</a>]; Copyright 2024 The Authors, published in Frontiers). (<b>B</b>) Raman intensity of different shell thicknesses of Au@4-MBN@AgNPs at 2221cm<sup>−1</sup> (adapted under the terms of CC-BY License from REF [<a href="#B91-nanomaterials-14-01839" class="html-bibr">91</a>]; Copyright 2024 The Authors, published in Frontiers). (<b>C</b>) HRTEM images of Au@ATP@Ag nanorods obtained at a sub-threshold 4-ATP concentration CATP = 2.0 × 10<sup>−7</sup> M (adapted with permission from REF [<a href="#B92-nanomaterials-14-01839" class="html-bibr">92</a>]; Copyright 2016 Tsinghua University Press and Springer-Verlag GmbH Germany). (<b>D</b>) SERS spectra of the Au@Ag@ATP7 (left) and Au@ATP@Ag7 (right) samples before and after oxidation of the amino groups with hydrogen peroxide. The asterisk represents four additional peaks observed after oxidation, with three peaks at higher wavenumbers corresponding to nitrobenzene (adapted with permission from REF [<a href="#B92-nanomaterials-14-01839" class="html-bibr">92</a>]; Copyright 2016 Tsinghua University Press and Springer-Verlag GmbH Germany). (<b>E</b>) HRTEM images of Au/SiO<sub>2</sub> core–shell nanoparticles, SHINERS: shell-isolated mode and schematic of a SHINERS experiment on living yeast cells (adapted with permission from REF [<a href="#B93-nanomaterials-14-01839" class="html-bibr">93</a>]; Copyright 2010 Springer nature). (<b>F</b>) Schematic representation of H<sub>2</sub>O<sub>2</sub> triggered degradation of MnO<sub>2</sub> coating, TEM image, and evaluation MnO<sub>2</sub> degradation SERS fingerprinting (adapted with permission from REF [<a href="#B94-nanomaterials-14-01839" class="html-bibr">94</a>]; Copyright 2021 American Chemical Society).</p> "> Figure 6
<p>Synthetic schematic diagram (<b>A</b>) and electric field distribution (<b>B</b>) of SiO<sub>2</sub>@Au-Ag CJS (adapted with permission from REF [<a href="#B97-nanomaterials-14-01839" class="html-bibr">97</a>]; Copyright 2023 American Chemical Society). (<b>C</b>) Schematic diagram of SERS-ELISA platform with CS@SiO<sub>2</sub> core–satellite Au NPs (adapted with permission from REF [<a href="#B100-nanomaterials-14-01839" class="html-bibr">100</a>]; Copyright 2023 Elsevier). UV-vis spectra, TEM images (inset) (<b>D</b>), and SERS spectra (<b>E</b>) of the nanosensor before and after incubation with MMP-2. The characteristic peaks of DTNB (5,5′-dithiobis(2-nitrobenzoic acid)) at 1324 cm<sup>−1</sup> (red dash) and MBN (4-mercaptobenzonitrile) at 1580 cm<sup>−1</sup> (blue range) (adapted with permission from REF [<a href="#B103-nanomaterials-14-01839" class="html-bibr">103</a>]; Copyright 2024 American Chemical Society).</p> "> Figure 7
<p>(<b>A</b>) Calculated near-field EM field distribution of the Au-NNP and a silica-gapped Au-Au core-gap-shell nanoparticle without a bridge (adapted with permission from [<a href="#B104-nanomaterials-14-01839" class="html-bibr">104</a>]; Copyright 2011 Springer Nature). (<b>B</b>) TEM images of Au-NNP structures after Au shell formation on various DNA-modified Au cores (adapted with permission from [<a href="#B105-nanomaterials-14-01839" class="html-bibr">105</a>]; Copyright 2014 American Chemical Society). (<b>C</b>) Calculated near-field EM field distribution of Au-NNPs with different surface morphologies (adapted with permission from [<a href="#B107-nanomaterials-14-01839" class="html-bibr">107</a>]; Copyright 2016 Wiley-VCH). (<b>D</b>) P-GERTs and S-GERTs (adapted with permission from [<a href="#B110-nanomaterials-14-01839" class="html-bibr">110</a>]; Copyright 2019 Springer Nature). (<b>E</b>) Schematic diagram of high-speed cell Raman imaging and bright-field and Raman images of a single H1299 cell with different parts randomly selected (point 1–3). Scale bars are 10 μm (adapted with permission from [<a href="#B110-nanomaterials-14-01839" class="html-bibr">110</a>]; Copyright 2019 Springer Nature). (<b>F</b>) Progression of structural complexity in nanoframes with increasing chemical steps (adapted with permission from [<a href="#B114-nanomaterials-14-01839" class="html-bibr">114</a>]; Copyright 2023 American Chemical Society). (<b>G</b>) Synthetic scheme and TEM images of AuDGNs (adapted with permission from [<a href="#B115-nanomaterials-14-01839" class="html-bibr">115</a>]; Copyright 2016 Wiley-VCH). (<b>H</b>) OXNCs with different gap sizes and those HAADF-STEM images (i–iii). The scale bars indicate 100 nm (adapted with permission from [<a href="#B113-nanomaterials-14-01839" class="html-bibr">113</a>]; Copyright 2024 American Chemical Society). (<b>I</b>) Structures and sizes of hemin, myoglobin, and hemoglobin (adapted with permission from [<a href="#B113-nanomaterials-14-01839" class="html-bibr">113</a>]; Copyright 2024 American Chemical Society). (<b>J</b>) SERS spectra of hemin (green line) mixed with the OXNC with 2.6 nm gaps, myoglobin (blue line) with the OXNC with 5.6 nm gaps, and hemoglobin (orange line) mixed with the OXNC with 5.6 nm gaps (adapted with permission from [<a href="#B113-nanomaterials-14-01839" class="html-bibr">113</a>]; Copyright 2024 American Chemical Society).</p> "> Figure 8
<p>(<b>A</b>) ERA-SERS-LF strip (left) and phototgraphs (right, inset) and the calibration curve (Right) of SiO<sub>2</sub>@Au-based ERA-LF-SERS strips when testing the IAV DNA (adapted with permission from [<a href="#B120-nanomaterials-14-01839" class="html-bibr">120</a>]; Copyright 2023 American Chemical Society). (<b>B</b>) Clinical serum sample tests by Ag@Au NP-based dual-mode LFIA (adapted with permission from [<a href="#B121-nanomaterials-14-01839" class="html-bibr">121</a>]; Copyright 2022 American Chemical Society). (<b>C</b>) Schematic representation of assay. Total RNA is first isolated from samples before target RNA biomarkers are simultaneously amplified using isothermal reverse transcription-recombinase polymerase amplification. During amplification, amplicons are tagged with biotin molecules and target-specific overhang hybridization sequences. The different biomarker-specific amplicons are then labeled with respective SERS nanotags through complementary sequence hybridization and magnetically purified. Finally, the amplicons are detected by SERS concurrently, and quantitative analysis of biomarker level is derived from the spectral peak of each unique SERS nanotag. The Raman signals correspond to characteristic peaks from the five different dyes of the SERS nanotags, respectively. (Adapted with permission from [<a href="#B126-nanomaterials-14-01839" class="html-bibr">126</a>]; Copyright 2016 Wiley-VCH).</p> "> Figure 9
<p>(<b>A</b>) Multiplexed biomarker detection using ER, PR, and HER2 IgGs conjugated SERS nanotags (adapted with permission from [<a href="#B130-nanomaterials-14-01839" class="html-bibr">130</a>]; Copyright 2023 Elsevier). (<b>B</b>) Colors of Au<sub>13</sub>NPs, ASNPs, AS@mSiO<sub>2</sub> NPs, and pAS@AuNCs suspended in nanopure water with SPR peaks at 518, 700, 734, and 806 nm, respectively (adapted with permission from [<a href="#B131-nanomaterials-14-01839" class="html-bibr">131</a>]; Copyright 2023 Wiley-VCH). (<b>C</b>) Schematic illustration application of the multilayered mesoporous Au nanoarchitecture (RGD/DOX-pAS@AuNC) labeled with Raman reporter (MBA) via Au–thiol covalent bond for surface-enhanced Raman scattering (SERS) imaging-guided synergistic therapy toward cancer. (adapted with permission from [<a href="#B131-nanomaterials-14-01839" class="html-bibr">131</a>]; Copyright 2023 Wiley-VCH). (<b>D</b>) Schematic illustration showing that AuDAg<sub>2</sub>S nanoprobes equipped with SERS/NIR-II optical imaging could multidimensional tumor images from living subjects, pathology to the single-cell and further guided NIR-II deeper photothermal therapy (adapted with permission from [<a href="#B132-nanomaterials-14-01839" class="html-bibr">132</a>]; Copyright 2022 Wiley-VCH). (<b>E</b>) Fabrication of Oligonucleotide Modified Bioorthogonal SERS Nanotags (adapted with permission from [<a href="#B133-nanomaterials-14-01839" class="html-bibr">133</a>]; Copyright 2020 American Chemical Society). (<b>F</b>) Bioorthogonal SERS nanotags as a precision theranostic platform for cancer detection and photothermal therapy in mice after intravenous injection (adapted with permission from [<a href="#B133-nanomaterials-14-01839" class="html-bibr">133</a>]; Copyright 2020 American Chemical Society). (<b>G</b>) Photographic image of a BALB/c mouse with blank and <span class="html-italic">S. aureus</span> infected wounds after applying ACPA and SERS images at 2086 cm<sup>−1</sup> of <span class="html-italic">S. aureus</span> (right) and blank (left) infected wounds at different time points (left). Corresponding average SERS intensities of ACPA on wounds. *** <span class="html-italic">p</span> < 0.001 (right) (adapted with permission from [<a href="#B134-nanomaterials-14-01839" class="html-bibr">134</a>]; Copyright 2023 American Chemical Society).</p> "> Figure 10
<p>(<b>A</b>) SERS spectral responses obtained from the reaction of the developed SERS aptasensor with various concentrations of pathogens (adapted with permission from [<a href="#B135-nanomaterials-14-01839" class="html-bibr">135</a>]; Copyright 2020 Elsevier). (<b>B</b>) Photographs of the LFIA strip with histamine (Hist), parvalbumin (Parv), and protein-G (PG) immobilized in the test (T) and control (<b>C</b>) lines, as indicated. SERS intensity mappings acquired at 1616 and 1646 cm<sup>−1</sup>, which are characteristic peaks of αHist-MGITC SERS or αParvRBITC SERS tags, respectively. (<b>C</b>) Average SERS spectra acquired from the different concentrations of histamine. (<b>D</b>) Average SERS spectra acquired from the different concentrations of Parvalbumin ((<a href="#nanomaterials-14-01839-f007" class="html-fig">Figure 7</a>B–D) adapted with permission from [<a href="#B136-nanomaterials-14-01839" class="html-bibr">136</a>]; Copyright 2024 American Chemical Society). (<b>E</b>) Photographs of competitive LFIA (CLFIA) strips at different concentrations of AFB<sub>1</sub>. The black arrow marks the T-line, indicating the visible LOD (i.e., 0.2 ng/mL) as determined by 12 independent users using only the naked eye. (<b>F</b>) Photographs (left) and SEM images (right) of the CLFIA strip membrane at the AFB<sub>1</sub> concentrations of (<b>i</b>) 0 ng/mL, (<b>ii</b>) 0.05 ng/mL, and (<b>iii</b>) 0.2 ng/mL. The blue arrows annotate Au-Ag alloy NPs-incorporated silica spheres captured in the T-line, with their number gradually decreasing as AFB<sub>1</sub> concentration increases. No nanoparticles are observed in (<b>iii</b>). ((<b>E</b>,<b>F</b>) adapted with permission from [<a href="#B139-nanomaterials-14-01839" class="html-bibr">139</a>]; Copyright 2023 American Chemical Society). (<b>G</b>) Scheme of the SERS microarray immunoassay for multiple mycotoxins (adapted with permission from [<a href="#B140-nanomaterials-14-01839" class="html-bibr">140</a>]; Copyright 2024 American Chemical Society).</p> "> Figure 11
<p>(<b>A</b>) Aptamer-based turn-off dual SERS sensor with AuNF-Au@tag@Ag@Au NP core-satellite assembly platform for MC-LR and MC-RR (L: leucine, R: arginine). (<b>B</b>) Optical brightfield image of <span class="html-italic">M. aeruginosa</span> UTEX LB 2385 cells. (<b>C</b>). MC-LR levels produced by <span class="html-italic">M. aeruginosa</span> UTEX LB 2385 (curve a) and <span class="html-italic">C. reinhardti</span> (curve b) over 7 consecutive days, as determined by the aptasensor ((<b>A</b>–<b>C</b>) adapted with permission from [<a href="#B141-nanomaterials-14-01839" class="html-bibr">141</a>]; Copyright 2021 American Chemical Society). (<b>D</b>) Schematic diagram of the optical setup of the SPR-SERS microscope and detecting strategy for Pb<sup>2+</sup> and Hg<sup>2+</sup> using single-particle Raman imaging (adapted with permission from [<a href="#B142-nanomaterials-14-01839" class="html-bibr">142</a>]; Copyright 2023 American Chemical Society). (<b>E</b>) SERS-based AMP immunoassay with magnetic separation (adapted with permission from [<a href="#B143-nanomaterials-14-01839" class="html-bibr">143</a>]; Copyright 2022 Royal Society of Chemistry). (<b>F</b>) Detection of series BPA actual samples using the SERS ICA (ICA: immunochromatographic assay) strips (adapted with permission from [<a href="#B144-nanomaterials-14-01839" class="html-bibr">144</a>]; Copyright 2022 Elsevier). (<b>G</b>) An image of the detected organs of a bivalve <span class="html-italic">Ruditapes philippinarum</span>, Au NS@polystyrene (PS) core@shell structures with Cy7 dyes, and typical SERS spectra measured from the organs of the clams exposed to SERS@PS for 24 h. (adapted with permission from [<a href="#B145-nanomaterials-14-01839" class="html-bibr">145</a>]; Copyright 2022 Royal Society of Chemistry).</p> "> Figure 12
<p>(<b>A</b>) Schematic illustration of the synthesis process of polydopamine@gold (PDA@Au) nanowaxberry and its SERS detection. (I) Deposition of Au seeds onto the surface of the PDA sphere, (II) the iodide ions assisted the growth of Au nanoshell on the PDA sphere, and (III) SERS detection of pesticides, pollutants, and explosives using nanowaxberry as a substrate (adapted with permission from [<a href="#B147-nanomaterials-14-01839" class="html-bibr">147</a>]; Copyright 2018 American Chemical Society). (<b>B</b>) Schematic of the SERS nanosensor for •OH detection and mechanism and detection of H<sub>2</sub>O<sub>2</sub> and •OH generation in water microdroplets (adapted with permission from [<a href="#B148-nanomaterials-14-01839" class="html-bibr">148</a>]; Copyright 2024 American Chemical Society).</p> ">
Abstract
:1. Introduction
2. Basics of SERS Nanoprobes
2.1. SERS Effect and SERS Mechanisms
2.2. Plasmonic Nanoparticles for SERS Nanoprobes
3. Design for Efficient Standalone SERS Nanoprobes
3.1. Shape Controlled Nanoparticles
3.2. Inter-Nanogap Nanoparticles
3.3. Core–Shell Nanostructures
3.4. Core–Satellite Nanostructures
3.5. Intra-Nanogap Nanoparticles
4. Real Application
4.1. Clinical Application
4.1.1. Point-of-Care (POC) Diagnostics
4.1.2. Cancer Detection
4.1.3. Monitoring of Chronic Diseases
4.2. Food Applications
4.3. Environmental Application
4.3.1. Water
4.3.2. Soil
4.3.3. Atmosphere
4.4. Challenges of SERS Nanoprobes for Real Applications
4.4.1. Structural and Signal Stability
4.4.2. Reproducibility and Reliability for Quantification
4.4.3. Artificial Intelligence for Enhanced Data Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1:4-BDT | 1,4-Benzenedithiol |
4-MBN | 4-Mercaptobenzonitrile |
4-NBT | 4-Nitrobenzenethiol |
4-ATP | 1,4-Aminothiophenol |
ACPA | Prussian blue nanostructures |
AFB1 | Aflatoxin |
Ag | Silver |
AI | Artificial intelligence |
Al | Aluminum |
AMP | Amphetamine |
Au | Gold |
AuDGNs | Au dual-gap nanodumbbells |
Au NC | Au nanocluster |
Au-NNP | Au-nanogapped nanoparticle |
AuNRs | Gold nanorods |
Au NSs | Au nanostars |
BPA | Bisphenol A |
CA19-9 | Carbohydrate antigen 19-9 |
CB | Conduction band |
CFU | Colony-forming unit |
CJS | Core-Janus satellite |
CLE | Clenbuterol |
CM | Chemical mechanism |
CT | Charge transfer |
Cu | Copper |
DDA | Discrete dipole approximation |
DNT | 2,4-dinitrotoluene |
DON | Deoxynivalenol |
DOX | Doxorubicin |
DTNBs | 5,5′-dithiobis(2-nitrobenzoic acids) |
E. coli | Escherichia coli |
EF | Enhancement factor |
ELISA | Enzyme-linked immunosorbent assay |
EM | Enhancement Electromagnetic fields |
ER | Estrogen receptor |
ERA | Enzymatic recombinase amplification |
ESBLs | β-lactamases |
FDTD | Finite-difference time-domain |
FEM | Finite-element method |
Ga | Gallium |
GCS | Glasgow Coma Scale |
GERTs | Gap-enhanced Raman tags |
GFAP | Glial fibrillary acidic protein |
HAase | Hyaluronidase |
HER2 | Human epidermal growth factor receptor2 |
Hg | Mercury |
HOMO | Highest occupied molecular orbital |
IAV | Influenza A virus |
ICA | Immunochromatographic assay |
IU | International unit |
ICP-MS | Inductively coupled plasma mass spectroscopy |
Kana | Kanamycin |
LDH | Layered double hydroxides |
LF | Lateral flow |
LFAs | Lateral flow assays |
LFIA | Lateral flow immunoassay |
LSPRs | Localized surface plasmon resonances |
LOD | Low limit of detection |
LUMO | Lowest unoccupied molecular orbital |
MB | Magnetic bead |
MBN | Mercaptobenzonitrile |
MBP | Myelin basic protein |
MCs | Microcystins |
Mg | Magnesium |
MIP | Molecularly imprinted polymer |
ML | Machine learning |
MMP-2 | Metalloproteinase 2 |
MNP | Magnetic nanoparticle |
MOFs | Metal–organic frameworks |
NIR | Near-infrared |
NPs | Au nanoparticles |
NSM | Nanosnowman |
O-GERTs | Orthogonal-GERTs |
•OH | Hydroxyl radicals |
H2O2 | Hydrogen peroxide |
OTA | Ochratoxin A |
OXNCs | Open cross-gap (X-gap) nanocubes |
PAT | Patulin |
Pb | Lead |
PCa | Prostate cancer |
PCR | Polymerase chain reaction |
PDA@AuSERS | Polydopamine@gold |
PEG | Polyethylene glycol |
PEI | Polyethyleneimine |
P-GERTs | Petal-like external nanogaps |
Phth | Phthalhydrazide |
PLFSs | Paper lateral flow strips |
POC | Point-of-care |
POCT | Point-of-care testing |
PR | Progesterone receptor |
PS | Polystyrene |
PTT | Photothermal therapy |
RAC | Ractopamine |
ROS | Reactive oxygen species |
RT-RPA | Reverse transcription-recombinase polymerase amplification |
SARS-CoV-2 IgG | Coronavirus-2 immunoglobulin G |
S. aureus | Staphylococcus aureus |
SEM | Scanning electron microscopy |
SERS | Surface-enhanced Raman scattering |
S-GERTs | Smooth external shell structures |
SHINERS | Shell-isolated nanoparticle-enhanced Raman spectroscopy |
SLN | Sentinel lymph node |
SOPs | Standard operating procedures |
S. sonnei | Shigella sonnei |
TBI | Traumatic brain injury |
TEM | Transmission electron microscopy |
TiN | Titanium nitride |
VB | Valence band |
VOCs | Volatile organic compounds |
ZEN | Zearalenone |
References
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Albrecht, M.G.; Creighton, J.A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Choi, J.; Kim, J.-H.; Oh, J.-W.; Nam, J.-M. Surface-Enhanced Raman Scattering-Based Detection of Hazardous Chemicals in Various Phases and Matrices with Plasmonic Nanostructures. Nanoscale 2019, 11, 20379–20391. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, T.; Yan, S.; Song, Y.; Liu, X.; Wang, J. Recent Development and Applications of Stretchable SERS Substrates. Nanomaterials 2023, 13, 2968. [Google Scholar] [CrossRef]
- Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef]
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Gu, X.; Trujillo, M.J.; Olson, J.E.; Camden, J.P. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. Annu. Rev. Anal. Chem. 2018, 11, 147–169. [Google Scholar] [CrossRef]
- Yang, W.; Lim, D.-K. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. Adv. Mater. 2020, 32, e2002219. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef]
- Kim, J.; Sim, K.; Cha, S.; Oh, J.; Nam, J. Single-Particle Analysis on Plasmonic Nanogap Systems for Quantitative SERS. J. Raman Spectrosc. 2021, 52, 375–385. [Google Scholar] [CrossRef]
- Lee, S.; Dang, H.; Moon, J.-I.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.; et al. SERS-Based Microdevices for Use as in Vitro Diagnostic Biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, X.; Wang, C.; Liu, Q.; Ding, Y.; Xu, S.; Wang, G.; Xiao, R. A Nanogap-Enhanced SERS Nanotag–Based Lateral Flow Assay for Ultrasensitive and Simultaneous Monitoring of SARS-CoV-2 S and NP Antigens. Microchim. Acta 2024, 191, 104. [Google Scholar] [CrossRef] [PubMed]
- Antoine, D.; Mohammadi, M.; Vitt, M.; Dickie, J.M.; Jyoti, S.S.; Tilbury, M.A.; Johnson, P.A.; Wawrousek, K.E.; Wall, J.G. Rapid, Point-of-Care ScFv-SERS Assay for Femtogram. Level Detection of SARS-CoV-2. ACS Sens. 2022, 7, 866–873. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, R.; Li, J.; Sun, Y. Engineering Rational SERS Nanotags for Parallel Detection of Multiple Cancer Circulating Biomarkers. Chemosensors 2023, 11, 110. [Google Scholar] [CrossRef]
- Xie, L.; Gong, K.; Liu, Y.; Zhang, L. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023, 57, 25–43. [Google Scholar] [CrossRef]
- Caldwell, J.; Taladriz-Blanco, P.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. Submicron- and Nanoplastic Detection at Low Micro- to Nanogram Concentrations Using Gold Nanostar-Based Surface-Enhanced Raman Scattering (SERS) Substrates. Environ. Sci. Nano 2024, 11, 1000–1011. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.-I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, Applications, and the Future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Nam, J.-M.; Oh, J.-W.; Lee, H.; Suh, Y.D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Fabelinskiĭ, I.L. The Discovery of Combination Scattering of Light in Russia and India. Phys.-Uspekhi 2003, 46, 1105–1112. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Benefits, Trade-Offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef]
- Xu, H.; Bjerneld, E.J.; Käll, M.; Börjesson, L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, 4357–4360. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Balčytis, A.; Nishijima, Y.; Krishnamoorthy, S.; Kuchmizhak, A.; Stoddart, P.R.; Petruškevičius, R.; Juodkazis, S. From Fundamental toward Applied SERS: Shared Principles and Divergent Approaches. Adv. Opt. Mater. 2018, 6, 1800292. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 2008; ISBN 978-3-527-61816-3. [Google Scholar]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; ISBN 978-0-387-33150-8/978-0-387-37825-1. [Google Scholar]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.-Y. Plasmon-Enhanced Light–Matter Interactions and Applications. NPJ Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Draine, B.T.; Flatau, P.J. Discrete-Dipole Approximation for Scattering Calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499. [Google Scholar] [CrossRef]
- Amirjani, A.; Sadrnezhaad, S.K. Computational Electromagnetics in Plasmonic Nanostructures. J. Mater. Chem. C 2021, 9, 9791–9819. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Y.; Wei, J. Recent Advances in Surface-Enhanced Raman Spectroscopy (SERS): Finite-Difference Time-Domain (FDTD) Method for SERS and Sensing Applications. TrAC Trends Anal. Chem. 2016, 75, 162–173. [Google Scholar] [CrossRef]
- Kulkarni, V.; Prodan, E.; Nordlander, P. Quantum Plasmonics: Optical Properties of a Nanomatryushka. Nano Lett. 2013, 13, 5873–5879. [Google Scholar] [CrossRef]
- Savage, K.J.; Hawkeye, M.M.; Esteban, R.; Borisov, A.G.; Aizpurua, J.; Baumberg, J.J. Revealing the Quantum Regime in Tunnelling Plasmonics. Nature 2012, 491, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Crozier, K.B. Quantum Mechanical Limit to Plasmonic Enhancement as Observed by Surface-Enhanced Raman Scattering. Nat. Commun. 2014, 5, 5228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Esteban, R.; Borisov, A.G.; Baumberg, J.J.; Nordlander, P.; Lezec, H.J.; Aizpurua, J.; Crozier, K.B. Quantum Mechanical Effects in Plasmonic Structures with Subnanometre Gaps. Nat. Commun. 2016, 7, 11495. [Google Scholar] [CrossRef]
- Meng, X.; Qiu, L.; Xi, G.; Wang, X.; Guo, L. Smart Design of High-Performance Surface-Enhanced Raman Scattering Substrates. SmartMat 2021, 2, 466–487. [Google Scholar] [CrossRef]
- Heeg, S.; Mueller, N.S.; Wasserroth, S.; Kusch, P.; Reich, S. Experimental Tests of Surface-Enhanced Raman Scattering: Moving beyond the Electromagnetic Enhancement Theory. J. Raman Spectrosc. 2021, 52, 310–322. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Li, G. A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection. Chemosensors 2023, 11, 427. [Google Scholar] [CrossRef]
- Son, J.; Kim, G.-H.; Lee, Y.; Lee, C.; Cha, S.; Nam, J.-M. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. J. Am. Chem. Soc. 2022, 144, 22337–22351. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Fernanda Cardinal, M.; Kleinman, S.L.; Greeneltch, N.G.; Frontiera, R.R.; Blaber, M.G.; Schatz, G.C.; Van Duyne, R.P. High-Performance SERS Substrates: Advances and Challenges. MRS Bull. 2013, 38, 615–624. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Park, J.; Nam, J. Nonnoble-Metal-Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. Adv. Mater. 2018, 30, 1704528. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.M.; Ortiz, D.; Alcaraz de la Osa, R.; Saiz, J.M.; González, F.; Brown, A.S.; Losurdo, M.; Everitt, H.O.; Moreno, F. UV Plasmonic Behavior of Various Metal Nanoparticles in the Near- and Far-Field Regimes: Geometry and Substrate Effects. J. Phys. Chem. C 2013, 117, 19606–19615. [Google Scholar] [CrossRef]
- Gutiérrez, Y.; Brown, A.S.; Moreno, F.; Losurdo, M. Plasmonics beyond Noble Metals: Exploiting Phase and Compositional Changes for Manipulating Plasmonic Performance. J. Appl. Phys. 2020, 128, 080901. [Google Scholar] [CrossRef]
- Giordano, A.N.; Rao, R. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. Nanomaterials 2023, 13, 2177. [Google Scholar] [CrossRef]
- Zhao, F.; Xue, X.; Fu, W.; Liu, Y.; Ling, Y.; Zhang, Z. TiN Nanorods as Effective Substrate for Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2019, 123, 29353–29359. [Google Scholar] [CrossRef]
- Pisarek, M.; Krawczyk, M.; Hołdyński, M.; Ambroziak, R.; Bieńkowski, K.; Roguska, A.; Krajczewski, J.; Kudelski, A. Hybrid Nanostructures Based on TiO2 Nanotubes with Ag, Au, or Bimetallic Au–Ag Deposits for Surface-Enhanced Raman Scattering (SERS) Applications. J. Phys. Chem. C 2023, 127, 24200–24210. [Google Scholar] [CrossRef]
- Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q. Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent Advances of Au@Ag Core–Shell SERS-based Biosensors. Exploration 2023, 3, 20220072. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, S.; Radjenovic, P.M.; Tian, Z.-Q.; Li, J.-F. Core–Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis. Acc. Chem. Res. 2020, 53, 729–739. [Google Scholar] [CrossRef]
- Li, Z.; Kurouski, D. Plasmon-Driven Chemistry on Mono- and Bimetallic Nanostructures. Acc. Chem. Res. 2021, 54, 2477–2487. [Google Scholar] [CrossRef] [PubMed]
- Barreda, Á.; Vitale, F.; Minovich, A.E.; Ronning, C.; Staude, I. Applications of Hybrid Metal-Dielectric Nanostructures: State of the Art. Adv. Photonics Res. 2022, 3, 2100286. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Auguié, B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS Nano 2024, 18, 9773–9783. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Solarska, R.; Li, M. Additional Important Considerations in Surface-Enhanced Raman Scattering Enhancement Factor Measurements. J. Phys. Chem. C 2023, 127, 2728–2734. [Google Scholar] [CrossRef]
- Bär, J.; de Barros, A.; de Camargo, D.H.S.; Pereira, M.P.; Merces, L.; Shimizu, F.M.; Sigoli, F.A.; Bufon, C.C.B.; Mazali, I.O. Silicon Microchannel-Driven Raman Scattering Enhancement to Improve Gold Nanorod Functions as a SERS Substrate toward Single-Molecule Detection. ACS Appl. Mater. Interfaces 2021, 13, 36482–36491. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Dey, P. Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS. ACS Meas. Sci. Au 2023, 3, 434–443. [Google Scholar] [CrossRef]
- Haes, A.J.; Haynes, C.L.; McFarland, A.D.; Schatz, G.C.; Van Duyne, R.P.; Zou, S. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 2005, 30, 368–375. [Google Scholar] [CrossRef]
- Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C.R.; et al. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6, 2804–2817. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yu, Q.; Zhang, X.; Du, X.; Gong, H.; Jiang, H. Synthesis and Application of Surface Enhanced Raman Scattering (SERS) Tags of Ag@SiO2 Core/Shell Nanoparticles in Protein Detection. J. Mater. Chem. 2012, 22, 7767–7774. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Mei, R.; Yin, Y.; You, J.; Chen, L. Polystyrene Encapsulated SERS Tags as Promising Standard Tools: Simple and Universal in Synthesis; Highly Sensitive and Ultrastable for Bioimaging. Anal. Chem. 2019, 91, 5270–5277. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Nizard, P.; Onidas, D.; Lamouri, A.; Pinson, J.; Mahouche-Chergui, S.; Aubertin, K.; Gazeau, F.; Luo, Y.; Mangeney, C. SERS Tags Derived from Silver Nanoparticles and Aryl Diazonium Salts for Cell Raman Imaging. Nanoscale 2022, 14, 1452–1458. [Google Scholar] [CrossRef]
- Yuan, H.; Khoury, C.G.; Hwang, H.; Wilson, C.M.; Grant, G.A.; Vo-Dinh, T. Gold Nanostars: Surfactant-Free Synthesis, 3D Modelling, and Two-Photon Photoluminescence Imaging. Nanotechnology 2012, 23, 75102. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Li, C.; Cai, W.; Li, Y. One-Pot Synthesis of Ultrasmooth, Precisely Shaped Gold Nanospheres via Surface Self-Polishing Etching and Regrowth. Chem. Mater. 2021, 33, 2593–2603. [Google Scholar] [CrossRef]
- Sun, Z.; Umar, A.; Zeng, J.; Luo, X.; Song, L.; Zhang, Z.; Chen, Z.; Li, J.; Su, F.; Huang, Y. Highly Pure Gold Nanotriangles with Almost 100% Yield for Surface-Enhanced Raman Scattering. ACS Appl. Nano Mater. 2022, 5, 1220–1231. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Li, J. Facile Construction of Silver Nanocubes/Graphene Oxide Composites for Highly Sensitive SERS Detection of Multiple Organic Contaminants by a Portable Raman Spectrometer. J. Environ. Chem. Eng. 2022, 10, 108278. [Google Scholar] [CrossRef]
- Lim, D.-K.; Jeon, K.-S.; Kim, H.M.; Nam, J.-M.; Suh, Y.D. Nanogap-Engineerable Raman-Active Nanodumbbells for Single-Molecule Detection. Nat. Mater. 2010, 9, 60–67. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Wang, L.L.; Ringe, E. Small Morphology Variations Effects on Plasmonic Nanoparticle Dimer Hotspots. J. Mater. Chem. C Mater. 2018, 6, 9607–9614. [Google Scholar] [CrossRef]
- Lee, J.-H.; You, M.-H.; Kim, G.-H.; Nam, J.-M. Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes. Nano Lett. 2014, 14, 6217–6225. [Google Scholar] [CrossRef] [PubMed]
- Wustholz, K.L.; Henry, A.-I.; McMahon, J.M.; Freeman, R.G.; Valley, N.; Piotti, M.E.; Natan, M.J.; Schatz, G.C.; Van Duyne, R.P. Structure–Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2010, 132, 10903–10910. [Google Scholar] [CrossRef] [PubMed]
- Zohar, N.; Chuntonov, L.; Haran, G. The Simplest Plasmonic Molecules: Metal Nanoparticle Dimers and Trimers. J. Photochem. Photobiol. C Photochem. Rev. 2014, 21, 26–39. [Google Scholar] [CrossRef]
- Tian, L.; Wang, C.; Zhao, H.; Sun, F.; Dong, H.; Feng, K.; Wang, P.; He, G.; Li, G. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. J. Am. Chem. Soc. 2021, 143, 8631–8638. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhu, J.; Weng, G.; Li, J.; Zhao, J. Heterodimers of Metal Nanoparticles: Synthesis, Properties, and Biological Applications. Microchim. Acta 2021, 188, 345. [Google Scholar] [CrossRef]
- Barbillon, G.; Ivanov, A.; Sarychev, A.K. Applications of Symmetry Breaking in Plasmonics. Symmetry 2020, 12, 896. [Google Scholar] [CrossRef]
- Kanehira, Y.; Tapio, K.; Wegner, G.; Kogikoski, S., Jr.; Rüstig, S.; Prietzel, C.; Busch, K.; Bald, I. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. ACS Nano 2023, 17, 21227–21239. [Google Scholar] [CrossRef]
- Niu, R.; Song, C.; Gao, F.; Fang, W.; Jiang, X.; Ren, S.; Zhu, D.; Su, S.; Chao, J.; Chen, S.; et al. DNA Origami-Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single-Molecule Surface-Enhanced Raman Scattering. Angew. Chem. Int. Ed. 2021, 60, 11695–11701. [Google Scholar] [CrossRef]
- Tanwar, S.; Kaur, V.; Kaur, G.; Sen, T. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing. J. Phys. Chem. Lett. 2021, 12, 8141–8150. [Google Scholar] [CrossRef]
- Wrzosek, B.; Kitahama, Y.; Ozaki, Y. SERS Blinking on Anisotropic Nanoparticles. J. Phys. Chem. C 2020, 124, 20328–20339. [Google Scholar] [CrossRef]
- Xiang, S.; Ge, C.; Li, S.; Chen, L.; Wang, L.; Xu, Y. In Situ Detection of Endotoxin in Bacteriostatic Process by SERS Chip Integrated Array Microchambers within Bioscaffold Nanostructures and SERS Tags. ACS Appl. Mater. Interfaces 2020, 12, 28985–28992. [Google Scholar] [CrossRef] [PubMed]
- Di, H.; Liu, H.; Li, M.; Li, J.; Liu, D. High-Precision Profiling of Sialic Acid Expression in Cancer Cells and Tissues Using Background-Free Surface-Enhanced Raman Scattering Tags. Anal. Chem. 2017, 89, 5874–5881. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.; Qu, A.; Kuang, H.; Xu, L.; Xu, C. Directing Arrowhead Nanorod Dimers for MicroRNA in Situ Raman Detection in Living Cells. Adv. Funct. Mater. 2020, 30, 2001451. [Google Scholar] [CrossRef]
- Pilo-Pais, M.; Watson, A.; Demers, S.; LaBean, T.H.; Finkelstein, G. Surface-Enhanced Raman Scattering Plasmonic Enhancement Using DNA Origami-Based Complex Metallic Nanostructures. Nano Lett. 2014, 14, 2099–2104. [Google Scholar] [CrossRef] [PubMed]
- Sergiienko, S.; Moor, K.; Gudun, K.; Yelemessova, Z.; Bukasov, R. Nanoparticle–Nanoparticle vs. Nanoparticle–Substrate Hot Spot Contributions to the SERS Signal: Studying Raman Labelled Monomers, Dimers and Trimers. Phys. Chem. Chem. Phys. 2017, 19, 4478–4487. [Google Scholar] [CrossRef]
- Lee, H.; Kim, G.-H.; Lee, J.-H.; Kim, N.H.; Nam, J.-M.; Suh, Y.D. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Nano Lett. 2015, 15, 4628–4636. [Google Scholar] [CrossRef]
- Pazos-Perez, N.; Wagner, C.S.; Romo-Herrera, J.M.; Liz-Marzán, L.M.; García de Abajo, F.J.; Wittemann, A.; Fery, A.; Alvarez-Puebla, R.A. Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surface-Enhanced Raman Scattering (SERS). Angew. Chem. Int. Ed. 2012, 51, 12688–12693. [Google Scholar] [CrossRef]
- Fang, W.; Jia, S.; Chao, J.; Wang, L.; Duan, X.; Liu, H.; Li, Q.; Zuo, X.; Wang, L.; Wang, L.; et al. Quantizing Single-Molecule Surface-Enhanced Raman Scattering with DNA Origami Metamolecules. Sci. Adv. 2019, 5, eaau4506. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, L.; Shen, X.; Shang, S.; Pan, Y.; Dong, G.; Huo, W.; Zhu, D.; Tang, X. Self-Assembled Core-Shell Nanoparticles with Embedded Internal Standards for SERS Quantitative Detection and Identification of Nicotine Released from Snus Products. Front. Chem. 2024, 12, 1348423. [Google Scholar] [CrossRef]
- Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface-Enhanced Raman Scattering inside Au@Ag Core/Shell Nanorods. Nano Res. 2016, 9, 2303–2318. [Google Scholar] [CrossRef]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Sujai, P.T.; Shamjith, S.; Joseph, M.M.; Maiti, K.K. Elucidating Gold-MnO2Core-Shell Nanoenvelope for Real Time SERS-Guided Photothermal Therapy on Pancreatic Cancer Cells. ACS Appl. Bio Mater. 2021, 4, 4962–4972. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Zhu, J.; Weng, G.; Li, J.; Zhao, J. Core-Satellite Nanostructures and Their Biomedical Applications. Microchim. Acta 2022, 189, 470. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Hu, F.; Zhao, Y.; Zhu, J.; Wang, X.; Su, M.; Liu, H. Core-Satellite Nanoassemblies as SPR/SERS Dual-Mode Plasmonic Sensors for Sensitively Detecting Ractopamine in Complex Media. J. Agric. Food Chem. 2023, 71, 20793–20800. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Zhu, J.; Weng, G.; Li, J.; Guo, Y.; Zhao, J. Exclusive Core-Janus Satellite Assembly Based on Au–Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens. 2024, 9, 942–954. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Q.; Ruan, S.; Luo, F.; You, R.; Feng, S.; Zhu, L.; Wu, Y.; Lu, Y. Self-Calibration SERS Sensor with “Core-Satellite” Structure for Detection of Hyaluronidase Activity. Anal. Chim. Acta 2022, 1227, 340302. [Google Scholar] [CrossRef]
- Wu, X.; Yin, L.; Gao, S.; Zhou, R.; Zhang, Y.; Xue, S.; Jayan, H.; El-Seedi, H.R.; Zou, X.; Guo, Z. Core-Satellite Nanoassembly System with Aptamer-Conjugated Au@Ag Nanoparticles for SERS Detection of Patulin in Apples. Food Control 2024, 159, 110293. [Google Scholar] [CrossRef]
- Yu, Q.; Trinh, H.D.; Lee, Y.; Kang, T.; Chen, L.; Yoon, S.; Choo, J. SERS-ELISA Using Silica-Encapsulated Au Core-Satellite Nanotags for Sensitive Detection of SARS-CoV-2. Sens. Actuators B Chem. 2023, 382, 133521. [Google Scholar] [CrossRef]
- Blanco-Formoso, M.; Pazos-Perez, N.; Alvarez-Puebla, R.A. Fabrication and SERS Properties of Complex and Organized Nanoparticle Plasmonic Clusters Stable in Solution. Nanoscale 2020, 12, 14948–14956. [Google Scholar] [CrossRef]
- Yin, L.; You, T.; Arslan, M.; El-Seedi, H.R.; Guo, Z.; Zou, X.; Cai, J. Dual-Layers Raman Reporter-Tagged Au@Ag Combined with Core-Satellite Assemblies for SERS Detection of Zearalenone. Food Chem. 2023, 429, 136834. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, D.; Zhong, H.; Gan, Z.; Zong, S.; Wang, Z.; Cui, Y.; Wang, Y. Ultrasensitive Detection of Matrix Metalloproteinase 2 Activity Using a Ratiometric Surface-Enhanced Raman Scattering Nanosensor with a Core-Satellite Structure. ACS Appl. Mater. Interfaces 2024, 16, 4160–4168. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-K.; Jeon, K.-S.; Hwang, J.-H.; Kim, H.; Kwon, S.; Suh, Y.D.; Nam, J.-M. Highly Uniform and Reproducible Surface-Enhanced Raman Scattering from DNA-Tailorable Nanoparticles with 1-Nm Interior Gap. Nat. Nanotechnol. 2011, 6, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-W.; Lim, D.-K.; Kim, G.-H.; Suh, Y.D.; Nam, J.-M. Thiolated DNA-Based Chemistry and Control in the Structure and Optical Properties of Plasmonic Nanoparticles with Ultrasmall Interior Nanogap. J. Am. Chem. Soc. 2014, 136, 14052–14059. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.Y.; Kim, S.; Oh, J.; Nam, J. Conjugation Strategies of DNA to Gold Nanoparticles. Bull. Korean Chem. Soc. 2022, 43, 1298–1306. [Google Scholar] [CrossRef]
- Lee, J.-H.; Oh, J.-W.; Nam, S.H.; Cha, Y.S.; Kim, G.-H.; Rhim, W.-K.; Kim, N.H.; Kim, J.; Han, S.W.; Suh, Y.D.; et al. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Small 2016, 12, 4726–4734. [Google Scholar] [CrossRef]
- Lin, L.; Zapata, M.; Xiong, M.; Liu, Z.; Wang, S.; Xu, H.; Borisov, A.G.; Gu, H.; Nordlander, P.; Aizpurua, J.; et al. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Lett. 2015, 15, 6419–6428. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Y.; Lin, L.; Gu, H.; Xiao, Z.; Ye, J. Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 3995–4005. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Y.; He, J.; Thackray, B.D.; Ye, J. Ultrabright Gap-Enhanced Raman Tags for High-Speed Bioimaging. Nat. Commun. 2019, 10, 3905. [Google Scholar] [CrossRef]
- Li, J.; He, C.; Qu, H.; Shen, F.; Ye, J. Five-Dimensional Unclonable Anticounterfeiting Orthogonal Raman Labels. J. Mater. Chem. C 2022, 10, 7273–7282. [Google Scholar] [CrossRef]
- Lin, L.; Gu, H.; Ye, J. Plasmonic Multi-Shell Nanomatryoshka Particles as Highly Tunable SERS Tags with Built-In Reporters. Chem. Commun. 2015, 51, 17740–17743. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.-M.; Choi, K.; Park, J.-E.; Nam, J.-M. Open Cross-Gap Gold Nanocubes with Strong, Large-Area, Symmetric Electromagnetic Field Enhancement for On-Particle Molecular-Fingerprint Raman Bioassays. J. Am. Chem. Soc. 2024, 146, 14012–14021. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.; Kim, J.; Lee, S.; Park, W.; Park, S. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity. Acc. Chem. Res 2023, 56, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.; Choi, K.; Nam, J. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. Adv. Mater. 2023, 35, 2208250. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials Meet Surface-Enhanced Raman Scattering Towards Enhanced Clinical Diagnosis: A Review. J. Nanobiotechnol. 2022, 20, 537. [Google Scholar] [CrossRef]
- Chen, Y.; An, Q.; Teng, K.; Liu, C.; Sun, F.; Li, G. Application of SERS in In-Vitro Biomedical Detection. Chem. Asian J. 2023, 18, e202201194. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Xu, C.; Liu, D. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022, 12, 1870–1903. [Google Scholar] [CrossRef]
- Sun, J.; Gao, F.; Song, Y.; Wang, M.; Wang, C.; Ni, Q.; Wang, Y.; Yang, M.; Zhao, P.; Sun, B. Paper Lateral Flow Strips Based on Gold Nanorods for Ultrasensitive Detection of Traumatic Brain Injury Biomarkers. ACS Appl. Nano Mater. 2023, 6, 18729–18738. [Google Scholar] [CrossRef]
- Zhu, C.; Xiong, S.; Wang, C.; Dong, P.; Wu, X. SERS-Based Lateral Flow Immunoassay Combined with Enzymatic Recombinase Amplification for Quantitative, High-Sensitive Detection of Influenza A Virus. ACS Appl. Nano Mater. 2024, 7, 3373–3384. [Google Scholar] [CrossRef]
- Liang, P.; Guo, Q.; Zhao, T.; Wen, C.-Y.; Tian, Z.; Shang, Y.; Xing, J.; Jiang, Y.; Zeng, J. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal. Chem. 2022, 94, 8466–8473. [Google Scholar] [CrossRef]
- Koh, E.H.; Lee, W.C.; Choi, Y.J.; Moon, J.I.; Jang, J.; Park, S.G.; Choo, J.; Kim, D.H.; Jung, H.S. A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. ACS Appl. Mater. Interfaces 2021, 13, 3024–3032. [Google Scholar] [CrossRef]
- Mogera, U.; Guo, H.; Namkoong, M.; Rahman, M.S.; Nguyen, T.; Tian, L. Wearable Plasmonic Paper-Based Microfluidics for Continuous Sweat Analysis. Sci. Adv. 2022, 8, eabn1736. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, Y.; Zhou, Z.; Xiao, J.; Xu, T.; Zhang, X. Epidermal Wearable Optical Sensors for Sweat Monitoring. Commun. Mater. 2024, 5, 77. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Tang, X.; Yao, L.; Li, W.; Wang, J.; Liu, X.; Han, B.; Fan, X.; Qiu, T.; et al. Wearable Hydrogel SERS Chip Utilizing Plasmonic Trimers for Uric Acid Analysis in Sweat. Nano Lett. 2024, 24, 13447–13454. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.M.; Wee, E.J.H.; Mainwaring, P.N.; Wang, Y.; Trau, M. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine. Small 2016, 12, 6233–6242. [Google Scholar] [CrossRef]
- Qiao, X.; Su, B.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure. Adv. Mater. 2018, 30, 1702275. [Google Scholar] [CrossRef]
- Qiao, X.; Chen, X.; Huang, C.; Li, A.; Li, X.; Lu, Z.; Wang, T. Detection of Exhaled Volatile Organic Compounds Improved by Hollow Nanocages of Layered Double Hydroxide on Ag Nanowires. Angew. Chem. Int. Ed. 2019, 58, 16523–16527. [Google Scholar] [CrossRef]
- Treerattrakoon, K.; Roeksrungruang, P.; Dharakul, T.; Japrung, D.; Faulds, K.; Graham, D.; Bamrungsap, S. Detection of a MiRNA Biomarker for Cancer Diagnosis Using SERS Tags and Magnetic Separation. Anal. Methods 2022, 14, 1938–1945. [Google Scholar] [CrossRef]
- Murali, V.P.; Karunakaran, V.; Murali, M.; Lekshmi, A.; Kottarathil, S.; Deepika, S.; Saritha, V.N.; Ramya, A.N.; Raghu, K.G.; Sujathan, K.; et al. A Clinically Feasible Diagnostic Spectro-Histology Built on SERS-Nanotags for Multiplex Detection and Grading of Breast Cancer Biomarkers. Biosens. Bioelectron. 2023, 227, 115177. [Google Scholar] [CrossRef]
- Yin, B.; Ho, W.K.H.; Xia, X.; Chan, C.K.W.; Zhang, Q.; Ng, Y.M.; Lam, C.Y.K.; Cheung, J.C.W.; Wang, J.; Yang, M.; et al. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. Small 2023, 19, 2206762. [Google Scholar] [CrossRef]
- He, J.; Hua, S.; Zhang, D.; Wang, K.; Chen, X.; Zhou, M. SERS/NIR-II Optical Nanoprobes for Multidimensional Tumor Imaging from Living Subjects, Pathology, and Single Cells and Guided NIR-II Photothermal Therapy. Adv. Funct. Mater. 2022, 32, 2208028. [Google Scholar] [CrossRef]
- Wang, J.; Liang, D.; Jin, Q.; Feng, J.; Tang, X. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for In Vivo SERS Imaging and Cancer Photothermal Therapy. Bioconjug. Chem. 2020, 31, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Y.; Fan, R.; Liu, A.; Chen, Y.; Zhong, H.; Liu, Y.; Chen, H.; Guo, Z.; Liu, Z. Silver@Prussian Blue Core-Satellite Nanostructures as Multimetal Ions Switch for Potent Zero-Background SERS Bioimaging-Guided Chronic Wound Healing. Nano Lett. 2023, 23, 8761–8769. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Duan, N.; He, C.; Yu, Q.; Dai, S.; Wang, Z. Surface-Enhanced Raman Spectroscopic–Based Aptasensor for Shigella Sonnei Using a Dual-Functional Metal Complex-Ligated Gold Nanoparticles Dimer. Colloids Surf. B Biointerfaces 2020, 190, 110940. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lodeiro, C.; González-Cabaleiro, L.; Vázquez-Iglesias, L.; Serrano-Pertierra, E.; Bodelón, G.; Carrera, M.; Blanco-López, M.C.; Pérez-Juste, J.; Pastoriza-Santos, I. Au@Ag Core–Shell Nanoparticles for Colorimetric and Surface-Enhanced Raman-Scattering-Based Multiplex Competitive Lateral Flow Immunoassay for the Simultaneous Detection of Histamine and Parvalbumin in Fish. ACS Appl. Nano Mater. 2024, 7, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Haughey, S.A.; Sun, Y.-M.; Eremin, S.A.; Li, Z.-F.; Liu, H.; Xu, Z.-L.; Shen, Y.-D.; Lei, H.-T. Development of a Fluorescence Polarization Immunoassay for the Detection of Melamine in Milk and Milk Powder. Anal. Bioanal. Chem. 2011, 399, 2275–2284. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, J.; Lv, J.; Ke, T.; Tian, J.; Miao, K.; Wang, Y.; Kong, D.; Ruan, H.; Luo, J.; et al. Development of Broad-Specific Monoclonal Antibody-Based Immunoassays for Simultaneous Ochratoxin Screening in Medicinal and Edible Herbs. Food Control 2023, 148, 109626. [Google Scholar] [CrossRef]
- Tong, L.; Li, D.; Huang, M.; Huang, L.; Wang, J. Gold-Silver Alloy Nanoparticle-Incorporated Pitaya-Type Silica Nanohybrids for Sensitive Competitive Lateral Flow Immunoassay. Anal. Chem. 2023, 95, 17318–17327. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Li, H.; Wang, X.; Xu, K.; Li, Q.; Zheng, T.; Li, J. Highly Sensitive Microarray Immunoassay for Multiple Mycotoxins on Engineered 3D Porous Silicon SERS Substrate with Silver Nanoparticle Magnetron Sputtering. Anal. Chem. 2024, 96, 2425–2434. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, X.; Wallace, G.Q.; Brunet, M.H.; Wilkinson, K.J.; Wu, P.; Cai, C.; Bazuin, C.G.; Masson, J.F. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS Appl. Mater. Interfaces 2021, 13, 6545–6556. [Google Scholar] [CrossRef]
- Li, J.; Qi, Y.; Yang, R.; Chen, X.; Chen, Z.; Zhu, J.J. Intellectualized Visualization of Single-Particle Raman Spectra for Sensitive Detection and Simultaneous Multianalysis of Heavy Metal Ions. Anal. Chem. 2023, 95, 14736–14745. [Google Scholar] [CrossRef]
- Geng, P.; Sun, S.; Wang, X.; Ma, L.; Guo, C.; Li, J.; Guan, M. Rapid and Sensitive Detection of Amphetamine by SERS-Based Competitive Immunoassay Coupled with Magnetic Separation. Anal. Methods 2022, 14, 2608–2615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jin, Y.; Wang, Y.; Liang, P.; Zou, M.; Li, S.; Liu, J.; Qi, X.; Zhang, X.; Shang, Z.; et al. Measurement of Trace Bisphenol A in Drinking Water with Combination of Immunochromatographic Detection Technology and SERS Method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120519. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, Y.; Zhang, P.; Mei, R.; Ji, Y.; Zhao, X.; Zhang, Z.; Ma, J.; Chen, L. Quantitative Assessment of in Vivo Distribution of Nanoplastics in Bivalve Ruditapes Philippinarum Using Reliable SERS Tag-Labeled Nanoplastic Models. Nanoscale 2022, 14, 7807–7816. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Wu, T.; Zheng, H.; Kadasala, N.R.; Yang, S.; Guo, C.; Chen, L.; Liu, Y.; Yang, J. Recyclable Magnetic MIP-Based SERS Sensors for Selective, Sensitive, and Reliable Detection of Paclobutrazol Residues in Complex Environments. ACS Sustain. Chem. Eng. 2020, 8, 14549–14556. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, X.; Huang, J.; Wang, G.; Zhao, Y.; Chen, F.; Wei, J.; Song, Z.; Zhao, Y. Polydopamine@Gold Nanowaxberry Enabling Improved SERS Sensing of Pesticides, Pollutants, and Explosives in Complex Samples. Anal. Chem. 2018, 90, 9048–9054. [Google Scholar] [CrossRef]
- Chao, S.; Valsecchi, C.; Sun, J.; Shao, H.; Li, X.; Tang, C.; Fan, M. Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor. Environ. Sci. Technol. 2024, 58, 16497–16506. [Google Scholar] [CrossRef]
- Larson, T.A.; Joshi, P.P.; Sokolov, K. Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield. ACS Nano 2012, 6, 9182–9190. [Google Scholar] [CrossRef]
- Ngernpimai, S.; Puangmali, T.; Kopwitthaya, A.; Tippayawat, P.; Chompoosor, A.; Teerasong, S. Enhanced Stability of Gold Nanoparticles with Thioalkylated Carboxyl-Terminated Ligands for Applications in Biosensing. ACS Appl. Nano Mater. 2024, 7, 13124–13133. [Google Scholar] [CrossRef]
- Kang, J.S.; Taton, T.A. Oligothiol Graft-Copolymer Coatings Stabilize Gold Nanoparticles against Harsh Experimental Conditions. Langmuir 2012, 28, 16751–16760. [Google Scholar] [CrossRef]
- Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Strategies for Interfacing Inorganic Nanocrystals with Biological Systems Based on Polymer-Coating. Chem. Soc. Rev. 2014, 44, 193–227. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.; Dever, B.; Li, X.F.; Le, X.C. Thermal Stability of DNA Functionalized Gold Nanoparticles. Bioconjug. Chem. 2013, 24, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Ling, L.; Du, Y.; He, W.; Xia, Q.; Yao, C.; Li, X. Thiol-Mediated Multidentate Phosphorylcholine as a Zwitterionic Ligand for Stabilizing Biocompatible Gold Nanoparticles. Langmuir 2019, 35, 13031–13039. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E.J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M.L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem. Int. Ed. 2020, 59, 5454–5462. [Google Scholar] [CrossRef] [PubMed]
- Sloan-Dennison, S.; Wallace, G.Q.; Hassanain, W.A.; Laing, S.; Faulds, K.; Graham, D. Advancing SERS as a Quantitative Technique: Challenges, Considerations, and Correlative Approaches to Aid Validation. Nano Converg. 2024, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Leventi, A.A.; Billimoria, K.; Bartczak, D.; Laing, S.; Goenaga-Infante, H.; Faulds, K.; Graham, D. New Model for Quantifying the Nanoparticle Concentration Using SERS Supported by Multimodal Mass Spectrometry. Anal. Chem. 2023, 95, 2757–2764. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, J.; Chen, X.; Liu, H.; Li, Q.; Wang, Y.; Yang, S. Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function. Nano Lett. 2020, 20, 7304–7312. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, L.; Ren, Z.; Zhu, J.; Lee, C. Machine Learning-Augmented Surface-Enhanced Spectroscopy Toward Next-Generation Molecular Diagnostics. Nanoscale Adv. 2023, 5, 538–570. [Google Scholar] [CrossRef]
- Panneerselvam, R.; Sadat, H.; Höhn, E.M.; Das, A.; Noothalapati, H.; Belder, D. Microfluidics and Surface-Enhanced Raman Spectroscopy, a Win–Win Combination? Lab Chip 2022, 22, 665–682. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Zhang, S.; Bao, L.; Li, H.; Xu, J.; He, B.; Hou, X. Reporter Molecules Embedded Au@Ag Core-Shell Nanospheres as SERS Nanotags for Cardiac Troponin I Detection. Biosensors 2022, 12, 1108. [Google Scholar] [CrossRef]
- Dai, T.; Xiao, Z.; Shan, D.; Moreno, A.; Li, H.; Prakash, M.; Banaei, N.; Rao, J. Culture-Independent Multiplexed Detection of Drug-Resistant Bacteria Using Surface-Enhanced Raman Scattering. ACS Sens. 2023, 8, 3264–3271. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, D.W.; Pu, H.; Wei, Q.; Lin, X. Ti3C2Tx MXenes Loaded with Au Nanoparticle Dimers as a Surface-Enhanced Raman Scattering Aptasensor for AFB1 Detection. Food Chem. 2022, 372, 131293. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Wu, T.; Yu, Q.; Li, J.; Zheng, S.; Qi, K.; Sun, G.; Xiao, R.; Wang, C. Introduction of Multilayered Magnetic Core–Dual Shell SERS Tags into Lateral Flow Immunoassay: A Highly Stable and Sensitive Method for the Simultaneous Detection of Multiple Veterinary Drugs in Complex Samples. J. Hazard. Mater. 2023, 448, 130912. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.; Zhao, J.; Li, Q.; Shi, P.; Zhang, J.; Yan, M.; Zhang, S. A DNAzyme-Mediated Signal Amplification Biosensor for Ultrasensitive Detection of Lead Ions Based on SERS Tags. Sens. Diagn. 2023, 2, 132–139. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Wang, X.; Qiao, X.; Waterhouse, G.I.N.; Xu, Z. A Core-Satellite Self-Assembled SERS Aptasensor Containing a “Biological-Silent Region” Raman Tag for the Accurate and Ultrasensitive Detection of Histamine. Food Sci. Hum. Wellness 2024, 13, 1029–1039. [Google Scholar] [CrossRef]
- Guo, R.; Wang, J.; Zhao, W.; Cui, S.; Qian, S.; Chen, Q.; Li, X.; Liu, Y.; Zhang, Q. A Novel Strategy for Specific Sensing and Inactivation of Escherichia Coli: Constructing a Targeted Sandwich-Type Biosensor with Multiple SERS Hotspots to Enhance SERS Detection Sensitivity and near-Infrared Light-Triggered Photothermal Sterilization Performance. Talanta 2024, 269, 125466. [Google Scholar] [CrossRef]
- Xia, K.; Yatabe, T.; Yonesato, K.; Kikkawa, S.; Yamazoe, S.; Nakata, A.; Ishikawa, R.; Shibata, N.; Ikuhara, Y.; Yamaguchi, K.; et al. Ultra-Stable and Highly Reactive Colloidal Gold Nanoparticle Catalysts Protected Using Multi-Dentate Metal Oxide Nanoclusters. Nat. Commun. 2024, 15, 851. [Google Scholar] [CrossRef]
- Man, R.W.Y.; Li, C.-H.; MacLean, M.W.A.; Zenkina, O.V.; Zamora, M.T.; Saunders, L.N.; Rousina-Webb, A.; Nambo, M.; Crudden, C.M. Ultrastable Gold Nanoparticles Modified by Bidentate N-Heterocyclic Carbene Ligands. J. Am. Chem. Soc. 2018, 140, 1576–1579. [Google Scholar] [CrossRef]
- Rotem, R.; Giustra, M.; Arrigoni, F.; Bertolini, J.A.; Garbujo, S.; Rizzuto, M.A.; Salvioni, L.; Barbieri, L.; Bertini, L.; De Gioia, L.; et al. Conjugation of Gold Nanoparticles with Multidentate Surfactants for Enhanced Stability and Biological Properties. J. Mater. Chem. B 2023, 11, 61–71. [Google Scholar] [CrossRef]
- Ruff, J.; Steitz, J.; Buchkremer, A.; Noyong, M.; Hartmann, H.; Besmehn, A.; Simon, U. Multivalency of PEG-Thiol Ligands Affects the Stability of NIR-Absorbing Hollow Gold Nanospheres and Gold Nanorods. J. Mater. Chem. B 2016, 4, 2828–2841. [Google Scholar] [CrossRef]
- Wang, Y.; Quinsaat, J.E.Q.; Ono, T.; Maeki, M.; Tokeshi, M.; Isono, T.; Tajima, K.; Satoh, T.; Sato, S.; Miura, Y.; et al. Enhanced Dispersion Stability of Gold Nanoparticles by the Physisorption of Cyclic Poly(Ethylene Glycol). Nat. Commun. 2020, 11, 6089. [Google Scholar] [CrossRef]
- Lee, J.C.; Donahue, N.D.; Mao, A.S.; Karim, A.; Komarneni, M.; Thomas, E.E.; Francek, E.R.; Yang, W.; Wilhelm, S. Exploring Maleimide-Based Nanoparticle Surface Engineering to Control Cellular Interactions. ACS Appl. Nano Mater. 2020, 3, 2421–2429. [Google Scholar] [CrossRef]
- Kobayashi, K.; Wei, J.; Iida, R.; Ijiro, K.; Niikura, K. Surface Engineering of Nanoparticles for Therapeutic Applications. Polym. J. 2014, 46, 460–468. [Google Scholar] [CrossRef]
- Zhu, H.; Prince, E.; Narayanan, P.; Liu, K.; Nie, Z.; Kumacheva, E. Colloidal Stability of Nanoparticles Stabilized with Mixed Ligands in Solvents with Varying Polarity. Chem. Commun. 2020, 56, 8131–8134. [Google Scholar] [CrossRef]
- Gupta, A.; Ndugire, W.; Hirschbiegel, C.-M.; Grigely, L.; Rotello, V.M. Interfacing Nanomaterials with Biology through Ligand Engineering. Acc Chem. Res. 2023, 56, 2151–2169. [Google Scholar] [CrossRef] [PubMed]
- Dridi, N.; Jin, Z.; Perng, W.; Mattoussi, H. Probing Protein Corona Formation around Gold Nanoparticles: Effects of Surface Coating. ACS Nano 2024, 18, 8649–8662. [Google Scholar] [CrossRef] [PubMed]
- Le Goas, M.; Saber, J.; Bolívar, S.G.; Rabanel, J.-M.; Awogni, J.-M.; Boffito, D.C.; Banquy, X. (In)Stability of Ligands at the Surface of Inorganic Nanoparticles: A Forgotten Question in Nanomedicine? Nano Today 2022, 45, 101516. [Google Scholar] [CrossRef]
- Calvin, J.J.; Brewer, A.S.; Alivisatos, A.P. The Role of Organic Ligand Shell Structures in Colloidal Nanocrystal Synthesis. Nat. Synth. 2022, 1, 127–137. [Google Scholar] [CrossRef]
- Kim, Y.; Ji, S.; Nam, J.-M. A Chemist’s View on Electronic and Steric Effects of Surface Ligands on Plasmonic Metal Nanostructures. Acc. Chem. Res. 2023, 56, 2139–2150. [Google Scholar] [CrossRef]
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119, 4819–4880. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Zhang, Y.; Zhao, J.; Wang, Y.; Xu, Z. Dual-Aptamer-Assisted Ratiometric SERS Biosensor for Ultrasensitive and Precise Identification of Breast Cancer Exosomes. ACS Sens. 2023, 8, 875–883. [Google Scholar] [CrossRef]
- Wu, Y.; Yi, R.; Zang, H.; Li, J.; Xu, R.; Zhao, F.; Wang, J.; Fu, C.; Chen, J. A Ratiometric SERS Sensor with One Signal Probe for Ultrasensitive and Quantitative Monitoring of Serum Xanthine. Analyst 2023, 148, 5707–5713. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Weng, Y.; Liu, Y.; Lin, D.; Yang, H.; Chen, Z.; Feng, S. Ratiometric SERS Sensing Chip for High Precision and Ultra-Sensitive Detection of SARS-CoV-2 RNA in Human Saliva. Sens. Actuators B Chem. 2024, 399, 134803. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Xu, R.; Li, J.; Fu, C.; Shi, W.; Chen, J. Recent Advances in Ratiometric Surface-Enhanced Raman Spectroscopy Sensing Strategies. Microchem. J. 2024, 199, 110127. [Google Scholar] [CrossRef]
- Sun, D.; Qi, G.; Yi, X.; Zhu, H.; Jin, Y. Smart Ratiometric SERS Nanoprobe for Real-Time Monitoring Hydrogen Peroxide in Living Cells During NADH Treatment Associated with Ferroptosis. Anal. Chem. 2023, 95, 18075–18081. [Google Scholar] [CrossRef]
- Li, Q.; Ge, X.; Ye, J.; Li, Z.; Su, L.; Wu, Y.; Yang, H.; Song, J. Dual Ratiometric SERS and Photoacoustic Core–Satellite Nanoprobe for Quantitatively Visualizing Hydrogen Peroxide in Inflammation and Cancer. Angew. Chem. Int. Ed. 2021, 60, 7323–7332. [Google Scholar] [CrossRef]
- Bi, X.; Czajkowsky, D.M.; Shao, Z.; Ye, J. Digital Colloid-Enhanced Raman Spectroscopy by Single-Molecule Counting. Nature 2024, 628, 771–775. [Google Scholar] [CrossRef]
- Wang, W.; Srivastava, S.; Garg, A.; Xiao, C.; Hawks, S.; Pan, J.; Duggal, N.; Isaacman-VanWertz, G.; Zhou, W.; Marr, L.C.; et al. Digital Surface-Enhanced Raman Spectroscopy–Lateral Flow Test Dipstick: Ultrasensitive, Rapid Virus Quantification in Environmental Dust. Environ. Sci. Technol. 2024, 58, 4926–4936. [Google Scholar] [CrossRef]
- Schorr, H.C.; Schultz, Z.D. Digital Surface Enhanced Raman Spectroscopy for Quantifiable Single Molecule Detection in Flow. Analyst 2024, 149, 3711–3715. [Google Scholar] [CrossRef]
NP Types | Advantages | Disadvantages | Optimization Strategies | Refs. | |
---|---|---|---|---|---|
Simple solid | Isotropic (sphere, cube, etc.) |
|
|
| [69,71,72] |
Anisotropic (rod, star, etc.) |
|
|
| [63,67] | |
Inter-nanogap |
|
|
| [79,81,89,90] | |
Core–shell |
|
|
| [51,52] | |
Core–satellite |
|
|
| [95,99,102] | |
Intra-nanogap |
|
|
| [106,110,114,115] |
CLINICAL | ||||
SERS Substrate | Target | Linear Range | LOD | Ref. |
Au NRs | TBI biomarkers | 1 pg/mL to 50 ng/mL | ∼10−1 pg/mL | [119] |
SiO2@Au NRbs | IAV | 2.63 × 103 to 109 copies/mL | 2.63 × 103 copies/mL | [120] |
AgMBA@Au NPs | SARS-CoV-2 IgG | 10−9 to 10−4 mg/mL | 0.22 pg/mL | [121] |
RT-RPA/SERS | Prostate cancer tumor RNA biomarker | log(1–106) copies | 200 zmol (100 copies) | [126] |
GSPs@ZIF-8 | VOCs | - | 10 ppb | [127] |
Ag@LDH | VOCs (Aldehyde) | 0 to 100 ppm | 1.9 × 10−9 v/v (1.9 ppb) | [128] |
Au NRs–4-MBA | miR-29a | 0 to 1000 pM | 10 pM | [129] |
AuNP@CV@PEG@anti-ER/PR/HER2 | ER/PR/HER2 | (1+, 2+ and 4+ tissue SERS imaging) | Recognized of 1+, 2+ and 4+ tissue SERS imaging | [130] |
RGD/DOX–pAS@AuNC | HeLa cells | (0 to 24 h SERS imaging) | Maximum 2 h SERS imaging | [131] |
AuDAg2S | CT26 colon cancer cells | (0.25 to 24 h SERS imaging) | Maximum at 4 h SERS imaging | [132] |
Au NR | MCF-7 cells | - | Recognized MCF-7 cells at 6 h. | [133] |
Au@4-MBA@Ag | cTn I | 0.01 to 10.0 ng/mL | 0.0086 ng/mL | [161] |
AuNPs | β-lactamases | 103 to 107 cfu/mL | 103 cfu/mL | [162] |
ACPA | S. aureus | 10 to 109 cfu/mL | 10 CFU/mL | [134] |
Fe3O4@DTNB@Au | Hyaluronidase | 10−3 to 10 U/mL | 0.32 mU/mL | [98] |
Ag@MBN@ PEG-NH2 | MMP-2 | 5 to 100 ng/mL | 2.067 ng/mL | [103] |
SiO2@Au-Ag Janus CJS | Carbohydrate antigen 19-9 | 3 × 10−5 to 1 × 104 IU/mL | 3.7 × 10−5 IU/mL | [97] |
CS@SiO2 | SARS-CoV-2 | 0 to 1000 PFU/mL | 8.81 PFU/mL | [100] |
AHETE dimer | microRNA | 0.1 to 100 pM | 0.011 amol/ngRNA | [85] |
AHSBS dimer | microRNA | 0.023 amol/ngRNA | ||
FOOD | ||||
SERS Substrate | Target | Linear Range | LOD | Ref |
citrate-stabilized Au nanoparticles (cit-Au NPs) | S. sonnei | 10 to 106 cfu/mL | 10 cfu/mL | [135] |
Au@Ag NPs | Histamine | 2.5 to 5 × 10−6 mg/mL | 6.29 × 10−5 mg/mL | [136] |
Parvalbumin | 0.5 to 2.5 × 10−4 mg/mL | 7.74 × 10−3 mg/mL | ||
Ti3C2Tx MXenes | AFB1 | 0.001 to 100 ng/mL | 0.6 pg/mL | [163] |
Au-Ag NPs | AFB1 | 0.01 to 0.2 ng/mL | 0.00314 ng/mL | [139] |
AgNP-Psi | OTA | 0.001 to 10,000 ng/mL | 3.35 pg/mL | [140] |
AFB1 | 0.36 pg/mL | |||
DON | 2.70 pg/mL | |||
Au@Ag NP | Patulin | 0.05–250 ng/mL | 0.0281 ng/mL | [99] |
AuMBA@AgMBA-antigen and AuMBA@AgMBANPs | Zearalenone | 5 to 400 μg/kg | 3 μg/kg | [102] |
MDAu@Ag-DTNB and MDAu@Ag-MBA | Kanamycin | 0.15 pg/mL to 3 ng/mL | 0.52 pg/mL | [164] |
Ractopamine (RAC) | 2.5 pg/mL | |||
Clenbuterol | 6.2 pg/mL | |||
Chloramphenicol | 0.87 pg/mL | |||
Au NPs | Pb2+ | 10−16 to 2 × 10−12 M | - | [165] |
Ag@4-MBN@Ag-c-DNA | Histamine | 10−2 to 105 ng/mL | 0.65 × 10−3 ng/mL | [166] |
Fe3O4@SiO2–Au-Apt | Escherichia coli | 101 to 108 cfu/mL | 10 cfu/mL | [167] |
cGNPs-4MBA-cDNA | RAC | 0.05 ng/mL to 10 μg/mL | 0.03 ng/mL | [96] |
ENVIRONMENTAL | ||||
SERS Substrate | Target | Linear Range | LOD | Ref |
Au@label@Ag@Au NPs | MC-LR | 0.01 to 10 nM | 1.5 pM | [141] |
MC-RR | 0.01 to 10 nM | 1.3 pM | ||
Au@Ag | BPA | 0.1 to 1000 pg/mL | 0.1 pg/mL | [144] |
Au-XP013@Ag-AMP-mAb | AMP | 0 to 200 ng/mL | 2.28 ng/mL | [143] |
Au NPs on Au film | Pb2+ | 100 pM to 100 nM | 1 pM | [142] |
Hg2+ | 100 fM | |||
SERS@PS@BSA | Nanoplastics (in bivalve Ruditapes philippinarum) | 0.2 mg/L (about 5.9 × 1011 particles per mL | - | [145] |
Fe3O4@SiO2-Au@Ag (FSAA) | Paclobutrazol | 0.075 to 12.75 μg/g | 0.075 μg/g | [146] |
PDA@AuSERS | Thiram | 11 μg/g to 0.31 μg/g | 0.31 μg/g | [147] |
Benzidine | 10 μM to 100 nM | 100 nM (0.018 ppm) | ||
2,4-Dinitrotoluene DNT | - | Presence | ||
•OH-Phthalhydrazide (Phth)/AgNPs | •OH | 2 nM to 2 μM | 0.34 nM | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Martínez, V.; Lee, E.; Oh, J.-W. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. Nanomaterials 2024, 14, 1839. https://doi.org/10.3390/nano14221839
Rojas Martínez V, Lee E, Oh J-W. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. Nanomaterials. 2024; 14(22):1839. https://doi.org/10.3390/nano14221839
Chicago/Turabian StyleRojas Martínez, Valentina, Eunseo Lee, and Jeong-Wook Oh. 2024. "Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields" Nanomaterials 14, no. 22: 1839. https://doi.org/10.3390/nano14221839
APA StyleRojas Martínez, V., Lee, E., & Oh, J. -W. (2024). Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. Nanomaterials, 14(22), 1839. https://doi.org/10.3390/nano14221839