Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection
"> Figure 1
<p>Illustration of multidimensional spectroscopy and nanomaterial dimensions: Schematic of multidimensional spectroscopy setup. A laser generates pulses to excite a sample on a substrate, producing vibrational signals that are subsequently captured by a spectrometer. Nanomaterials, categorized by their dimensions, include 0D spherical and cubic nanoparticles, 1D nanotubes and nanorods, 2D graphene and other layered materials, and 3D nanostructured arrays. Reprinted with permission from ACS Mater. Au 2022, 2, 5, 552–557 [<a href="#B15-nanomaterials-14-01750" class="html-bibr">15</a>].</p> "> Figure 2
<p>Overall advantages of SERS in food safety detection.</p> "> Figure 3
<p>Detection of pesticides on fruit using Raman spectroscopy. Illustration of pesticide detection in apples using Raman spectroscopy. The inset shows pesticide molecules on the apple surface. A laser from the Raman spectrometer was used to target the surface to produce the Raman spectrum. The graph indicates the presence of pesticides (TMTD, MPT, and MG) with distinct peaks at specific Raman shifts (e.g., 1348, 1379, and 1617 cm<sup>−1</sup>), enabling the precise identification and quantification of pesticide residues. Reprinted with permission from Analytical Chemistry, 2017, 89(4), 2424–2431 [<a href="#B180-nanomaterials-14-01750" class="html-bibr">180</a>].</p> "> Figure 4
<p>Fabrication process of the cauliflower-inspired 3D SERS substrate. Reprinted with permission from Analytical Chemistry, 2019, 91.6: 3885–3892 [<a href="#B181-nanomaterials-14-01750" class="html-bibr">181</a>].</p> "> Figure 5
<p>A schematic experimental setup for the detection of antibiotics using Raman spectroscopy and SERS substrates. Reprinted with permission from Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 122584 [<a href="#B107-nanomaterials-14-01750" class="html-bibr">107</a>].</p> "> Figure 6
<p>Schematic diagrams show the creation of COF-based Raman tags (<b>A</b>) and their application in simultaneous immuno-SERS detection of <span class="html-italic">E. coli</span> and <span class="html-italic">S. enteritidis</span> (<b>B</b>). Reprinted with permission from Talanta, 243 (2022): 123369 [<a href="#B116-nanomaterials-14-01750" class="html-bibr">116</a>].</p> "> Figure 7
<p>(<b>a</b>) Raman spectra of three samples: (i) SLGO capture substrate, (ii) 4-MBA on an untreated glass slide, and (iii) SLGO-4MBA substrate. (<b>b</b>) TEM image illustrating the sandwich-type immunocomplex consisting of mag-MoO<sub>3</sub>/NoV-LPs/4-MBA-antibody-SLGO. Reprinted with permission from ACS Applied Materials and Interfaces (2020), 12(39):43522-43534 [<a href="#B123-nanomaterials-14-01750" class="html-bibr">123</a>].</p> ">
Abstract
:1. Introduction
1.1. The Necessity and Importance of Rapid Food Safety Detection Methods
1.2. History and Discovery of Surface-Enhanced Raman Spectroscopy (SERS)
- Electromagnetic enhancement: This occurs because of localized surface plasmon resonance (LSPR) in metallic nanostructures, which amplifies the electric field near the surface, thereby increasing the Raman scattering cross-section of the molecules present.
- Charge transfer mechanism: This involves the transfer of charge between the adsorbate (the molecule being studied) and the metal surface, which can also enhance the Raman signal [10].
1.3. Overview of Surface-Enhanced Raman Spectroscopy (SERS) Technique
1.4. Comparison of SERS with Commonly Used Detection Methods in Food Safety
2. Principles of SERS
2.1. Why Has SERS Emerged as a Powerful Tool to Rapidly Detect Food Safety Issues?
2.2. Raman Scattering: Explanation of the Phenomenon and Its Significance
2.3. Enhancement Mechanisms: Introduction to Plasmonic Nanoparticles and Their Role in SERS
2.4. Signal Enhancement: Description of the SERS Effect and Its Amplification Mechanisms
3. Advantages of SERS in Food Safety Detection
3.1. High Sensitivity and Selectivity: Detecting Trace Analytes with Precision
Contaminant Type | Contaminant | Detection Limit (µg/L) | Sensitivity (Slope) | Specificity (%) | Ref. |
---|---|---|---|---|---|
Pesticides | 2,4-Dichlorophenoxyacetic acid (2,4-D) | 0.11 | 0.001–100 | 89.73–100.27 | [57] |
Methomyl | 0.5 | 0.90 | 95 | [58] | |
Heavy Metals | Lead | 1.0 | 0.85 | 97 | [59] |
Cadmium | 0.5 | 1.0 | 96 | [60] | |
Pathogens | Salmonella | 10 | 1.5 | 99 | [61] |
E. coli | 5 | 1.3 | 98 | [62] | |
Toxins | Aflatoxin | 0.2 | 1.1 | 97 | [63] |
Mycotoxin | 0.3 | 1.0 | 95 | [64] |
3.2. Multiplexing Capabilities: Simultaneous Detection of Multiple Contaminants
3.3. Non-Destructive Analysis: Preserving Sample Integrity
3.4. On-Site and Real-Time Monitoring: Enhancing Food Safety Measures
4. Applications of SERS in Food Safety Detection
4.1. Detection of Biological and Chemical Contaminants
4.1.1. Pesticides and Herbicides
4.1.2. Mycotoxins
4.1.3. Veterinary Drugs and Antibiotics
4.2. Identification of Foodborne Pathogens
4.2.1. Bacteria (e.g., Salmonella, Escherichia coli)
4.2.2. Viruses (e.g., Norovirus)
4.3. Authentication and Quality Control of Food Products
4.3.1. Adulteration Detection (e.g., Food Fraud)
4.3.2. Origin and Authenticity Verification
4.4. Analysis of Food Packaging Materials for Safety Assessment
5. Challenges and Future Perspectives
5.1. Integration of Big Data Analysis and Usage of Artificial Intelligence (AI)
5.2. Standardization and Validation of SERS Techniques
5.3. Regulatory Approvals, Market Readiness, and Barriers to Commercialization
5.4. Sample Preparation and Matrix Effects
5.5. Integration of SERS with Portable and User-Friendly Devices
5.6. Exploration of New SERS Substrates and Enhancement Strategies
6. Conclusions
6.1. Recap of the Importance and Potential of SERS in Rapid Food Safety Detection
6.2. Final Thoughts on the Future Prospects and Impact of SERS in Ensuring Food Safety
6.3. Highlighting the Need for Continued Research and Development in This Field
Author Contributions
Funding
Conflicts of Interest
References
- Cherukulappurath, S.; Lee, S.H.; Campos, A.; Haynes, C.L.; Oh, S.H. Rapid and sensitive in situ SERS detection using dielectrophoresis. Chem. Mater. 2014, 26, 2445–2452. [Google Scholar] [CrossRef]
- Shi, R.; Liu, X.; Ying, Y. Facing challenges in real-life application of surface-enhanced Raman scattering: Design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J. Agric. Food Chem. 2017, 66, 6525–6543. [Google Scholar] [CrossRef] [PubMed]
- Bülbül, G.; Hayat, A.; Andreescu, S. Portable nanoparticle-based sensors for food safety assessment. Sensors 2015, 15, 30736–30758. [Google Scholar] [CrossRef] [PubMed]
- Atalay, Y.T.; Vermeir, S.; Witters, D.; Vergauwe, N.; Verbruggen, B.; Verboven, P.; Nicolaï, B.M.; Lammertyn, J. Microfluidic analytical systems for food analysis. Trends Food Sci. Technol. 2011, 22, 386–404. [Google Scholar] [CrossRef]
- Santos, F.J.; Galceran, M.T. Modern developments in gas chromatography–mass spectrometry-based environmental analysis. J. Chromatogr. A 2003, 1000, 125–151. [Google Scholar] [CrossRef]
- Zulkifli, S.N.; Rahim, H.A.; Lau, W.J. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. Sens. Actuators B Chem. 2018, 255, 2657–2689. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14, 28–117. [Google Scholar] [CrossRef]
- Tian, Z.Q. Surface-enhanced Raman spectroscopy: Advancements and applications. J. Raman Spectrosc. 2005, 36, 466–470. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Ju, H.; Lu, G. From lab to field: Surface-enhanced Raman scattering-based sensing strategies for on-site analysis. TrAC Trends Anal. Chem. 2022, 146, 116488. [Google Scholar] [CrossRef]
- Chang, R. (Ed.) Surface Enhanced Raman Scattering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Graham, D.; Moskovits, M.; Tian, Z.Q. SERS–facts, figures and the future. Chem. Soc. Rev. 2017, 46, 3864–3865. [Google Scholar] [CrossRef]
- Moskovits, M.; Piorek, B.D. A brief history of surface-enhanced Raman spectroscopy and the localized surface plasmon Dedicated to the memory of Richard Van Duyne (1945–2019). J. Raman Spectrosc. 2021, 52, 279–284. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Attia, A.B.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Campion, A.; Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241–250. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Jiang, P.; Long, Y.; Ju, L.; Yang, H.Y.; Li, Z. Dimensional design for surface-enhanced raman spectroscopy. ACS Mater. Au 2022, 2, 552–575. [Google Scholar]
- Schatz, G.C.; Van Duyne, R.P. Electromagnetic mechanism of surface-enhanced spectroscopy. Handb. Vib. Spectrosc. 2002, 1, 759–774. [Google Scholar]
- Liddle, J.A.; Gallatin, G.M. Nanomanufacturing: A perspective. ACS Nano 2016, 10, 2995–3014. [Google Scholar] [CrossRef]
- Haus, J.W. (Ed.) Fundamentals and Applications of Nanophotonics; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Ozin, G.A.; Hou, K.; Lotsch, B.V.; Cademartiri, L.; Puzzo, D.P.; Scotognella, F.; Ghadimi, A.; Thomson, J. Nanofabrication by self-assembly. Mater. Today 2009, 12, 12–23. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X.; Zhao, C.; Chen, G.Q. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct. Target. Ther. 2023, 8, 199. [Google Scholar] [CrossRef]
- Halvorson, R.A.; Vikesland, P.J. Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environ. Sci. Technol. 2010, 44, 7749–7755. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wei, H.; Santiago, P.J.; Thrift, W.J.; Ragan, R.; Jiang, S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. Environ. Sci. Technol. 2023, 57, 4880–4891. [Google Scholar] [CrossRef]
- Zhong, L.B.; Liu, Q.; Wu, P.; Niu, Q.F.; Zhang, H.; Zheng, Y.M. Facile on-site aqueous pollutant monitoring using a flexible, ultralight, and robust surface-enhanced Raman spectroscopy substrate: Interface self-assembly of Au@Ag nanocubes on a polyvinyl chloride template. Environ. Sci. Technol. 2018, 52, 5812–5820. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Irudayaraj, J. Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Dadosh, T.; Sperling, J.; Bryant, G.W.; Breslow, R.; Shegai, T.; Dyshel, M.; Haran, G.; Bar-Joseph, I. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS nano 2009, 3, 1988–1994. [Google Scholar] [CrossRef] [PubMed]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Rodríguez-Lázaro, D.; Lombard, B.; Smith, H.; Rzezutka, A.; D’Agostino, M.; Helmuth, R.; Schroeter, A.; Malorny, B.; Miko, A.; Guerra, B.; et al. Trends in analytical methodology in food safety and quality: Monitoring microorganisms and genetically modified organisms. Trends Food Sci. Technol. 2007, 18, 306–319. [Google Scholar] [CrossRef]
- Snyder, L.R.; Kirkland, J.J.; Glajch, J.L. Practical HPLC Method Development; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sharma, B.; Cardinal, M.F.; Kleinman, S.L.; Greeneltch, N.G.; Frontiera, R.R.; Blaber, M.G.; Schatz, G.C.; Van Duyne, R.P. High-performance SERS substrates: Advances and challenges. MRS Bull. 2013, 38, 615–624. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, Z.; Yang, D.; Xie, S.; Jiang, Z.; Niessner, R.; Haisch, C.; Zhou, H.; Sun, P. Bacteria detection: From powerful SERS to its advanced compatible techniques. Adv. Sci. 2020, 7, 2001739. [Google Scholar] [CrossRef]
- Cho, Y.; Kang, S. (Eds.) Emerging Technologies for Food Quality and Food Safety Evaluation; Taylor and Francis Group: Boca Raton, FL, USA, 2011; p. 346. [Google Scholar]
- Shen, W.; Wang, C.; Zheng, S.; Jiang, B.; Li, J.; Pang, Y.; Wang, C.; Hao, R.; Xiao, R. Ultrasensitive multichannel immunochromatographic assay for rapid detection of foodborne bacteria based on two-dimensional film-like SERS labels. J. Hazard. Mater. 2022, 437, 129347. [Google Scholar] [CrossRef]
- Zhang, X.; Young, M.A.; Lyandres, O.; Van Duyne, R.P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489. [Google Scholar] [CrossRef]
- Schlücker, S. SERS microscopy: Nanoparticle probes and biomedical applications. ChemPhysChem 2009, 10, 1344–1354. [Google Scholar] [CrossRef]
- Jayan, H.; Sun, D.W.; Pu, H.; Wei, Q. Mesoporous silica coated core-shell nanoparticles substrate for size-selective SERS detection of chloramphenicol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121817. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.M.; Narayanan, N.; Nair, J.B.; Karunakaran, V.; Ramya, A.N.; Sujai, P.T.; Saranya, G.; Arya, J.S.; Vijayan, V.M.; Maiti, K.K. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018, 181, 140–181. [Google Scholar] [CrossRef] [PubMed]
- Nasdala, L.U.T.Z.; Smith, D.C.; Kaindl, R.; Ziemann, M.A. Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. In Spectroscopic Methods in Mineralogy; European Mineralogical Union Notes in Mineralogy: London, UK, 2004. [Google Scholar] [CrossRef]
- Rostron, P.; Gaber, S.; Gaber, D. Raman spectroscopy, review. Laser 2016, 21, 24. [Google Scholar]
- Gala, U.; Chauhan, H. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin. Drug Discov. 2015, 10, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Long, D.A. Raman spectroscopy; McGraw-Hill: New York, NY, USA, 1977; Volume 1, p. 310. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Schatz, G.C. Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res. 1984, 17, 370–376. [Google Scholar] [CrossRef]
- Wu, D.Y.; Li, J.F.; Ren, B.; Tian, Z.Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. [Google Scholar] [CrossRef]
- Sugawa, K.; Akiyama, T.; Tanoue, Y.; Harumoto, T.; Yanagida, S.; Yasumori, A.; Tomita, S.; Otsuki, J. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au (core)–Ag (shell) nanospheres. Phys. Chem. Chem. Phys. 2015, 17, 21182–21189. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Dang, L.T.; Van Pham, H. Gold nanorods coated by molecularly imprinted polymer for sensitive and specific SERS detection of dyes. Colloid Polym. Sci. 2023, 301, 577–586. [Google Scholar] [CrossRef]
- Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A.E.; Byrne, H.J. Surface enhanced Raman scattering with gold nanoparticles: Effect of particle shape. Anal. Methods 2014, 6, 9116–9123. [Google Scholar] [CrossRef]
- Rycenga, M.; Camargo, P.H.; Li, W.; Moran, C.H.; Xia, Y. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J. Phys. Chem. Lett. 2010, 1, 696–703. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, E.; Shi, H.; Tao, Y.; Ren, X. Semiconductor-based surface enhanced Raman scattering (SERS): From active materials to performance improvement. Analyst 2022, 147, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Etchegoin, P.; Liem, H.; Maher, R.C.; Cohen, L.F.; Brown, R.J.C.; Hartigan, H.; Milton, M.J.T.; Gallop, J.C. A novel amplification mechanism for surface enhanced Raman scattering. Chem. Phys. Lett. 2002, 366, 115–121. [Google Scholar] [CrossRef]
- Yuan, C.; Fang, J.; de la Chapelle, M.L.; Zhang, Y.; Zeng, X.; Huang, G.; Yang, X.; Fu, W. Surface-enhanced Raman scattering inspired by programmable nucleic acid isothermal amplification technology. TrAC Trends Anal. Chem. 2021, 143, 116401. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, Y.; Wang, X.; Zhang, H.; Zheng, H.; Gu, N. Plasmonic/magnetic nanoarchitectures: From controllable design to biosensing and bioelectronic interfaces. Biosens. Bioelectron. 2023, 219, 114744. [Google Scholar] [CrossRef]
- Yaseen, T.; Pu, H.; Sun, D.W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci. Technol. 2018, 72, 162–174. [Google Scholar] [CrossRef]
- Lee, C.; Carney, R.; Lam, K.; Chan, J.W. SERS analysis of selectively captured exosomes using an integrin-specific peptide ligand. J. Raman Spectrosc. 2017, 48, 1771–1776. [Google Scholar] [CrossRef]
- Coorevits, P.; Sundgren, M.; Klein, G.O.; Bahr, A.; Claerhout, B.; Daniel, C.; Dugas, M.; Dupont, D.; Schmidt, A.; Singleton, P.; et al. Electronic health records: New opportunities for clinical research. J. Intern. Med. 2013, 274, 547–560. [Google Scholar] [CrossRef]
- Wang, L.; Ma, P.; Chen, H.; Chang, M.; Lu, P.; Chen, N.; Yuan, Y.; Chen, N.; Zhang, X. Rapid determination of mixed pesticide residues on apple surfaces by surface-enhanced Raman spectroscopy. Foods 2022, 11, 1089. [Google Scholar] [CrossRef]
- Dube, S.; Rawtani, D. Detection and mineralization of pesticides using silver nanoparticles. In Silver Nanomaterials for Agri-Food Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 383–406. [Google Scholar]
- Guo, Z.; Chen, P.; Yosri, N.; Chen, Q.; Elseedi, H.R.; Zou, X.; Yang, H. Detection of heavy metals in food and agricultural products by surface-enhanced Raman spectroscopy. Food Rev. Int. 2023, 9, 1440–1461. [Google Scholar] [CrossRef]
- Chen, P.; Yin, L.; El-Seedi, H.R.; Zou, X.; Guo, Z. Green reduction of silver nanoparticles for cadmium detection in food using surface-enhanced Raman spectroscopy coupled multivariate calibration. Food Chem. 2022, 394, 133481. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Tian, F.; Liu, X.; Du, S.; Ren, G. Overview of rapid detection methods for Salmonella in foods: Progress and challenges. Foods 2021, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
- Mungroo, N.A.; Oliveira, G.; Neethirajan, S. SERS based point-of-care detection of food-borne pathogens. Microchim. Acta 2016, 183, 697–707. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, S.; Yao, Z.; Liu, M. Aflatoxin detection technologies: Recent advances and future prospects. Environ. Sci. Pollut. Res. 2023, 30, 79627–79653. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.; He, L. Detection of mycotoxins in food using surface-enhanced Raman spectroscopy: A review. ACS Appl. Bio Mater. 2020, 4, 295–310. [Google Scholar] [CrossRef]
- Lee, J.U.; Kim, S.; Sim, S.J. SERS-based nanoplasmonic exosome analysis: Enabling liquid biopsy for cancer diagnosis and monitoring progression. BioChip J. 2020, 14, 231–241. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Li, Y.; Wang, B.; Yang, S.; Chen, W.; Wu, X.; Guo, J.; Ma, X. SERS substrate fabrication for biochemical sensing: Towards point-of-care diagnostics. J. Mater. Chem. B 2021, 9, 8378–8388. [Google Scholar] [CrossRef]
- Raz, S.R.; Haasnoot, W. Multiplex bioanalytical methods for food and environmental monitoring. TrAC Trends Anal. Chem. 2011, 30, 1526–1537. [Google Scholar]
- Di Nardo, F.; Alladio, E.; Baggiani, C.; Cavalera, S.; Giovannoli, C.; Spano, G.; Anfossi, L. Colour-encoded lateral flow immunoassay for the simultaneous detection of aflatoxin B1 and type-B fumonisins in a single Test line. Talanta 2019, 192, 288–294. [Google Scholar] [CrossRef]
- Ha, M.; Kim, J.H.; You, M.; Li, Q.; Fan, C.; Nam, J.M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208–12278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef] [PubMed]
- Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y.; De La Fuente, J.M.; Liang, X.J.; Parak, W.J.; Del Pino, P. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano–bio interactions. Small 2013, 9, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S. Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chem. Eng. J. 2022, 435, 133879. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Keçili, R.; Hussain, C.M. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2022, 120, 418–438. [Google Scholar] [CrossRef]
- Lin, Z.; He, L. Recent advance in SERS techniques for food safety and quality analysis: A brief review. Curr. Opin. Food Sci. 2019, 28, 82–87. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Wu, M.; He, H. Recent advances on surface enhanced raman spectroscopy in safety assessment and quality control of meat and meat products. Food Mater. Res. 2024, 10, 1–5. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Wang, R.; Waterhouse, G.I.; Xu, Z. SERS-tag technology in food safety and detection: Sensing from the “fingerprint” region to the “biological-silent” region. J. Future Foods 2024, 4, 309–323. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Hossainy, S.J.; Khaliduzzaman, A.; Emmert, J.L.; Kamruzzaman, M. Non-destructive optical sensing technologies for advancing the egg industry toward Industry 4.0: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4378–4403. [Google Scholar] [CrossRef] [PubMed]
- Iwaszkiewicz-Eggebrecht, E.; Łukasik, P.; Buczek, M.; Deng, J.; Hartop, E.A.; Havnås, H.; Prus-Frankowska, M.; Ugarph, C.R.; Viteri, P.; Andersson, A.F.; et al. FAVIS: Fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 2023, 18, e0286272. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Gong, L.; Wang, W.; Gong, Z.; Wang, D.; Fan, M. Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence 2020, 35, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Z.; Wang, H.; Huang, L.; Yang, Z.; Wang, Y.; Li, H. Versatile flexible SERS substrate for in situ detection of contaminants in water and fruits based on Ag NPs decorated wrinkled PDMS film. Opt. Express 2023, 31, 21025–21037. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Zhao, J.; Li, H.; Xu, J.; Gao, Z.; Ding, C.; Song, Y.Y. A “Test-to-Treat” Pad for Real-Time Visual Monitoring of Bacterial Infection and On-Site Performing Smart Therapy Strategies. ACS Nano 2023, 17, 13296–13309. [Google Scholar] [CrossRef]
- Doğan, V.; Evliya, M.; Kahyaoglu, L.N.; Kılıç, V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024, 266, 125021. [Google Scholar] [CrossRef]
- Mattarozzi, M.; Laski, E.; Bertucci, A.; Giannetto, M.; Bianchi, F.; Zoani, C.; Careri, M. Metrological traceability in process analytical technologies and point-of-need technologies for food safety and quality control: Not a straightforward issue. Anal. Bioanal. Chem. 2023, 415, 119–135. [Google Scholar] [CrossRef]
- Xie, T.; Cao, Z.; Li, Y.; Li, Z.; Zhang, F.L.; Gu, Y.; Han, C.; Yang, G.; Qu, L. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chem. 2022, 381, 132208. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Z.; Li, X. Advances in pesticide biosensors: Current status, challenges, and future perspectives. Anal. Bioanal. Chem. 2013, 405, 63–90. [Google Scholar] [CrossRef]
- Shao, F.; Lu, Z.; Liu, C.; Han, H.; Chen, K.; Li, W.; He, Q.; Peng, H.; Chen, J. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Interfaces 2014, 6, 6281–6289. [Google Scholar] [CrossRef] [PubMed]
- Lacina, O.; Zachariasova, M.; Urbanova, J.; Vaclavikova, M.; Cajka, T.; Hajslova, J. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Ataide, V.N.; Pradela Filho, L.A.; Guinati, B.G.S.; Moreira, N.S.; Gonçalves, J.D.; Ribeiro, C.M.G.; Grasseschi, D.; Coltro, W.K.T.; Salles, M.O.; Paixão, T.R.L.C. Combining chemometrics and paper-based analytical devices for sensing: An overview. TrAC Trends Anal. Chem. 2023, 164, 117091. [Google Scholar] [CrossRef]
- Adeyeye, S.A. Fungal mycotoxins in foods: A review. Cogent Food Agric. 2016, 2, 1213127. [Google Scholar] [CrossRef]
- Kos, J.; Anić, M.; Radić, B.; Zadravec, M.; Janić Hajnal, E.; Pleadin, J. Climate Change—A Global Threat Resulting in Increasing Mycotoxin Occurrence. Foods 2023, 12, 2704. [Google Scholar] [CrossRef]
- Chen, R.; Wang, H.; Sun, C.; Zhao, Y.; He, Y.; Nisar, M.S.; Wei, W.; Kang, H.; Xie, X.; Du, C.; et al. Au@0SiO2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin, B.1.; ochratoxin, A. Talanta 2023, 258, 124401. [Google Scholar] [CrossRef]
- Majdinasab, M.; Lamy de la Chapelle, M.; Marty, J.L. Recent Progresses in Optical Biosensors for Interleukin 6 Detection. Biosensors 2023, 13, 898. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Jayan, H.; Yin, L.; Xue, S.; El-Seedi, H.R.; Zou, X. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables. Food Chem. 2023, 434, 137469. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, J.; Yang, C.; Jiang, J.; Zhang, Q.; Ping, J.; Li, P. Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): Principles, application, and perspective. TrAC Trends Anal. Chem. 2023, 165, 117144. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- Mathur, P.; Sanyal, D.; Callahan, D.L.; Conlan, X.A.; Pfeffer, F.M. Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ-ment and human health. Environ. Pollut. 2021, 291, 118233. [Google Scholar] [CrossRef] [PubMed]
- Dawadi, S.; Thapa, R.; Modi, B.; Bhandari, S.; Timilsina, A.P.; Yadav, R.P.; Aryal, B.; Gautam, S.; Sharma, P.; Thapa, B.B.; et al. Technological advancements for the detection of antibiotics in food products. Processes 2021, 9, 1500. [Google Scholar] [CrossRef]
- Han, Y.; Matteini, P.; Hwang, B. Fabrication method of colloidal dispersions and substrates for detection of pesticide, veterinary drug, and biomolecule using surfaced-enhanced Raman spectroscopy: A review. Appl. Spectrosc. Rev. 2024, 1–22. [Google Scholar] [CrossRef]
- Qiu, M.; Zheng, M.; Zhang, J.; Yang, X.; Zhang, Y.; Zhang, W.; Man, C.; Zhao, Q.; Jiang, Y. Recent advances on emerging biosensing technologies and on-site analytical devices for detection of drug-resistant foodborne pathogens. TrAC Trends Anal. Chem. 2023, 167, 117258. [Google Scholar] [CrossRef]
- Gao, S.; Guo, Z.; Liu, Z. Recent Advances in Rational Design and Engineering of Signal-Amplifying Substrates for Surface-Enhanced Raman Scattering-Based Bioassays. Chemosensors 2023, 11, 461. [Google Scholar] [CrossRef]
- Sunil, J.; Narayana, C.; Kumari, G.; Jayaramulu, K. Raman spectroscopy, an ideal tool for studying the physical properties and applications of metal–organic frameworks (MOFs). Chem. Soc. Rev. 2023, 52, 3397–3437. [Google Scholar] [CrossRef] [PubMed]
- Kurćubić, V.S.; Raketić, S.V.; Mašković, J.M.; Mašković, P.Z.; Kurćubić, L.V.; Heinz, V.; Tomasevic, I.B. Evaluation of Antimicrobial Activity of Kitaibelia vitifolia Extract against Proven Antibiotic-Susceptible and Multidrug-Resistant (MDR) Strains of Bacteria of Clinical Origin. Plants 2023, 12, 3236. [Google Scholar] [CrossRef]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-borne diseases—The challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139, S3–S15. [Google Scholar] [CrossRef]
- Limwichean, S.; Leung, W.; Sataporncha, P.; Houngkamhang, N.; Nimittrakoolchai, O.U.; Saekow, B.; Pogfay, T.; Somboonsaksri, P.; Chia, J.Y.; Botta, R.; et al. Label free detection of multiple trace antibiotics with SERS substrates and independent components analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 295, 122584. [Google Scholar] [CrossRef]
- Arora, P.; Sindhu, A.; Dilbaghi, N.; Chaudhury, A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011, 28, 1–12. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, R.; Viswakarma, J.N.; Gupta, V.K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 2023, 60, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Jia, Q.; Rong, F.; Zhang, S.; Zhang, Z.; Du, M. Universal biosensing platform based on polyMn-MOF nanosheets for efficient analysis of foodborne pathogens from diverse foodstuffs. Food Chem. 2022, 395, 133618. [Google Scholar] [CrossRef] [PubMed]
- Kapena, M.S.; Muma, J.B.; Mubita, C.M.; Munyeme, M. Antimicrobial resistance of Escherichia coli and Salmonella in raw retail table eggs in Lusaka, Zambia. Vet. World 2020, 13, 2528. [Google Scholar] [CrossRef] [PubMed]
- Alnakip, M.E.; Youssef, M.Z.; Abd-Elaal, S.F.; Bayoumi, M.A. Screening of Food-borne Staphylococcus aureus and E. coli Pathogens in Artisanal White Soft Cheese in Delta Region, Egypt. J. Adv. Vet. Res. 2023, 13, 1203–1209. [Google Scholar]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, X.; Wang, H.; Yan, M.; Chen, Z.; Yang, Q.; Shao, Y. Research advances of SERS analysis method based on silent region molecules for food safety detection. Microchim. Acta 2023, 190, 387. [Google Scholar] [CrossRef]
- Bai, Z.; Xu, X.; Wang, C.; Wang, T.; Sun, C.; Liu, S.; Li, D. A comprehensive review of detection methods for Escherichia coli O157: H7. TrAC Trends Anal. Chem. 2022, 152, 116646. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, P.; Fan, L.; Shi, Y. Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags. Talanta 2022, 243, 123369. [Google Scholar] [CrossRef]
- da Cunha, D.T.; Hakim, M.P.; Soon, J.M.; Stedefeldt, E. Swiss Cheese Model of food safety incidents: Preventing foodborne illness through multiple layers of defence. Food Control 2022, 139, 109053. [Google Scholar] [CrossRef]
- Faour-Klingbeil, D.; CD Todd, E. Prevention and control of foodborne diseases in Middle-East North African countries: Review of national control systems. Int. J. Environ. Res. Public Health 2020, 17, 70. [Google Scholar] [CrossRef]
- Suther, C.; Stoufer, S.; Zhou, Y.; Moore, M.D. Recent developments in isothermal amplification methods for the detection of foodborne viruses. Front. Microbiol. 2022, 13, 841875. [Google Scholar] [CrossRef] [PubMed]
- Zaczek-Moczydlowska, M.A.; Beizaei, A.; Dillon, M.; Campbell, K. Current state-of-the-art diagnostics for Norovirus detection: Model approaches for point-of-care analysis. Trends Food Sci. Technol. 2021, 114, 684–695. [Google Scholar] [CrossRef]
- Robilotti, E.; Deresinski, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. [Google Scholar] [CrossRef] [PubMed]
- Jenns, K.; Sassi, H.P.; Zhou, R.; Cullen, P.J.; Carter, D.; Mai-Prochnow, A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci. Technol. 2022, 124, 323–333. [Google Scholar] [CrossRef]
- Achadu, O.J.; Abe, F.; Suzuki, T.; Park, E.Y. Molybdenum trioxide nanocubes aligned on a graphene oxide substrate for the detection of norovirus by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2020, 12, 43522–43534. [Google Scholar] [CrossRef]
- Xu, M.L.; Gao, Y.; Han, X.X.; Zhao, B. Innovative application of SERS in food quality and safety: A brief review of recent trends. Foods 2022, 11, 2097. [Google Scholar] [CrossRef]
- Li, G.; Liu, Q.; Shang, X. Risk analysis and early warning of food safety testing based on big data. In 2020 International Conference on Applications and Techniques in Cyber Intelligence: Applications and Techniques in Cyber Intelligence (ATCI 2020); Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 417–422. [Google Scholar]
- Xu, S.; Li, M.; Li, X.; Jiang, Y.; Yu, L.; Zhao, Y.; Wen, L.; Xue, Q. Engineering an Ag/Au bimetallic nanoparticle-based acetylcholinesterase SERS biosensor for in situ sensitive detection of organophosphorus pesticide residues in food. Anal. Bioanal. Chem. 2023, 415, 203–210. [Google Scholar] [CrossRef]
- Chu, C.Y.; Lin, P.Y.; Li, J.S.; Kirankumar, R.; Tsai, C.Y.; Chen, N.F.; Wen, Z.H.; Hsieh, S. A novel SERS substrate based on discarded oyster shells for rapid detection of organophosphorus pesticide. Coatings 2022, 12, 506. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chen, W.R.; Lu, L.C.; Chen, H.L.; Chen, Y.H.; Pan, M.; Chen, C.C.; Chen, C.; Yen, T.H.; Wan, D. Direct thermal growth of gold nanopearls on 3D interweaved hydrophobic fibers as ultrasensitive portable SERS substrates for clinical applications. Small 2023, 19, 2207404. [Google Scholar] [CrossRef]
- Lin, D.-Y.; Yu, C.-Y.; Ku, C.-A.; Chung, C.-K. Design, fabrication, and applications of SERS substrates for food safety detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, L.; Yi, Y.; Feng, A.; Zhang, K.; Xu, J.-J. Multistage nucleic acid amplification induced nano-aggregation for 3D hotspots-improved SERS detection of circulating miRNAs. J. Nanobiotechnology 2022, 20, 285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Amit, K.; Yang, Y. Unveiling practical considerations for reliable and standardized SERS measurements: Lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem. Soc. Rev. 2024, 53, 1004–1057. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Li, Y.; Liu, J.; Liu, L.; Pi, F. Progress on aptamer-based SERS sensors for food safety and quality assessment: Methodology, current applications and future trends. Crit. Rev. Food Sci. Nutr. 2024, 64, 783–800. [Google Scholar] [CrossRef] [PubMed]
- Gabbitas, A.; Ahlborn, G.; Allen, K.; Pang, S. Advancing Mycotoxin Detection: Multivariate Rapid Analysis on Corn Using Surface Enhanced Raman Spectroscopy (SERS). Toxins 2023, 15, 610. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.; Liu, X.; Zhen, X.; Feng, Q.; Gu, Y.; Yang, G.; Qu, L.; Zhu, J. PEC-SERS dual-mode detection of foodborne pathogens based on binding-induced DNA walker and C3N4/MXene-Au NPs accelerator. Anal. Chem. 2023, 95, 14297–14307. [Google Scholar] [CrossRef]
- Muthukumar, D.; Shtenberg, G. SERS-based immunosensor for E. coli contaminants detection in milk using silver-coated nanoporous silicon substrates. Talanta 2023, 254, 124132. [Google Scholar] [CrossRef]
- Hassan, M.; Zareef, M.; Xu, Y.; Li, H.; Chen, Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem. 2021, 344, 128652. [Google Scholar] [CrossRef]
- Chiacchio, M.A.; Campisi, A.; Iannazzo, D.; Giofrè, S.V.; Legnani, L. Design of New Schiff Bases and Their Heavy Metal Ion Complexes for Environmental Applications: A Molecular Dynamics and Density Function Theory Study. Int. J. Mol. Sci. 2024, 25, 4159. [Google Scholar] [CrossRef]
- Terry, L.R.; Sanders, S.; Potoff, R.H.; Kruel, J.W.; Jain, M.; Guo, H. Applications of surface-enhanced Raman spectroscopy in environmental detection. Anal. Sci. Adv. 2022, 3, 113–145. [Google Scholar] [CrossRef]
- Bharathi, M.S.S.; Byram, C.; Banerjee, D.; Sarma, D.; Barkakaty, B.; Soma, V.R. Gold nanoparticle nanofibres as SERS substrate for detection of methylene blue and a chemical warfare simulant (methyl salicylate). Bull. Mater. Sci. 2021, 44, 1–8. [Google Scholar] [CrossRef]
- Moram, S.S.B.; Byram, C.; Soma, V.R. Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP. Beilstein J. Nanotechnol. 2024, 15, 1054–1069. [Google Scholar] [CrossRef] [PubMed]
- Elashnikov, R.; Khrystonko, O.; Trelin, A.; Kuchař, M.; Švorčík, V.; Lyutakov, O. Label-free SERS-ML detection of cocaine trace in human blood plasma. J. Hazard. Mater. 2024, 472, 134525. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Lin, X.; Liang, X.; Wu, J.; Xu, W.; Hasi, W.; Dong, B. Machine Learning-Driven 3D Plasmonic Cavity-in-Cavity Surface-Enhanced Raman Scattering Platform with Triple Synergistic Enhancement Toward Label-Free Detection of Antibiotics in Milk. Small 2022, 18, 2204588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, H.; Jiang, L. A highly reproducible SERS sensor based on an Au nanoparticles/graphene oxide hybrid nanocomposite for label-free quantitative detection of antibiotics. Analyst 2021, 146, 5740–5746. [Google Scholar] [CrossRef] [PubMed]
- Atta, S.; Vo-Dinh, T. Solution-based ultra-sensitive surface-enhanced Raman scattering detection of the toxin bacterial biomarker pyocyanin in biological fluids using sharp-branched gold nanostars. Anal. Chem. 2023, 95, 2690–2697. [Google Scholar] [CrossRef] [PubMed]
- Zengin, A.; Tamer, U.; Caykara, T. Fabrication of a SERS based aptasensor for detection of ricin B toxin. J. Mater. Chem. B 2015, 3, 306–315. [Google Scholar] [CrossRef]
- Larkin, P.J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J.T.; Smith, B.C. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy. Appl. Spectrosc. 2014, 68, 758–776. [Google Scholar] [CrossRef]
- Song, S.H.; Gao, Z.F.; Guo, X.; Chen, G.H. Aptamer-based detection methodology studies in food safety. Food Anal. Methods 2019, 12, 966–990. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, Y.; Zhang, S.; Wei, S.; Ming, A.; Mao, C. Hydrophobic wafer-scale high-reproducibility SERS sensor based on silicon nanorods arrays decorated with Au nanoparticles for pesticide residue detection. Biosensors 2022, 12, 273. [Google Scholar] [CrossRef]
- Amaya-González, S.; De-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Aptamer-based analysis: A promising alternative for food safety control. Sensors 2013, 13, 16292–16311. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Wang, L.; Liang, Y.; Jialading, A.; Wang, Z.; Zhang, J. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 2021, 40, 173–186. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for food authentication: A review. TrAC Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Lehmann, R.J.; Tröger, R.; Bungart, J.; Bartram, T. FoodAuthent–Developing a System for Food Authenticity by Collecting, Analyzing and Utilizing Product Data. Int. J. Food Syst. Dyn. Proc. Syst. Dyn. Innov. Food Netw. 2017. [Google Scholar] [CrossRef]
- Kato, L.S.; Conte-Junior, C.A. Safety of plastic food packaging: The challenges about non-intentionally added substances (NIAS) discovery, identification and risk assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef] [PubMed]
- Alfei, S.; Marengo, B.; Zuccari, G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res. Int. 2020, 137, 109664. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Mas, M.J.; de Dios-Pérez, C.; Ballesteros-Gómez, A.; Rubio, S. Supramolecular solvent extraction and ambient mass spectrometry for the determination of organic contaminants in food packaging material. Chemosphere 2023, 324, 138359. [Google Scholar]
- Sharma, S.; Gahlawat, V.K.; Rahul, K.; Mor, R.S.; Malik, M. Sustainable innovations in the food industry through artificial intelligence and big data analytics. Logistics 2021, 5, 66. [Google Scholar] [CrossRef]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 24, 115796. [Google Scholar] [CrossRef]
- Dobrucka, R.; Cierpiszewski, R. Active and intelligent packaging food-Research and development-A Review. Pol. J. Food Nutr. Sci. 2014, 64, 7–15. [Google Scholar] [CrossRef]
- El-Bendary, N.; El Hariri, E.; Hassanien, A.E.; Badr, A. Using machine learning techniques for evaluating tomato ripeness. Expert Syst. Appl. 2015, 42, 1892–1905. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, L.; Ren, Z.; Zhu, J.; Lee, C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Adv. 2023, 5, 538–570. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.P.; Sena, M.M.; Almeida, M.R.; Mazali, I.O.; Olivieri, A.C.; Villa, J.E. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: Principles, progress, and trends. Anal. Bioanal. Chem. 2023, 415, 3945–3966. [Google Scholar] [CrossRef] [PubMed]
- Fadhilah, H.; Djamal, E.C.; Ilyas, R.; Najmurrokhman, A. Non-halal ingredients detection of food packaging image using convolutional neural networks. In Proceedings of the 2018 International symposium on advanced intelligent informatics (SAIN), Yogyakarta, Indonesia, 29–30 August 2018; pp. 131–136. [Google Scholar]
- Liu, Z.; Mutukumira, A.N.; Chen, H. Food safety governance in China: From supervision to coregulation. Food Sci. Nutr. 2019, 7, 4127–4139. [Google Scholar] [CrossRef] [PubMed]
- Fricker, M.; Skånseng, B.; Rudi, K.; Stessl, B.; Ehling-Schulz, M. Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. Int. J. Food Microbiol. 2011, 145, S24–S30. [Google Scholar] [CrossRef]
- Ibarra, D. Modified atmosphere packaging and controlled atmosphere packaging. Gases Agro-Food Process. 2019, 319–431. [Google Scholar]
- Lee, S.; Dang, H.; Moon, J.-I.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef]
- Jain, K.K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007, 53, 2002–2009. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, K.; Yang, Q.; Wu, W. Semiconductor-based surface-enhanced Raman scattering sensing platforms: State of the art, applications and prospects in food safety. Trends Food Sci. Technol. 2024, 147, 104460. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, C.; Meng, G.; Wu, N. Surface-enhanced Raman scattering sensors for food safety and environmental monitoring. J. Electrochem. Soc. 2018, 165, B3098. [Google Scholar] [CrossRef]
- Yang, Y.; Creedon, N.; O’riordan, A.; Lovera, P. Surface enhanced Raman spectroscopy: Applications in agriculture and food safety. Photonics 2021, 8, 568. [Google Scholar] [CrossRef]
- Long, M.M.; Needs, S.H.; Edwards, A.D. Dilution reduces sample matrix effects for rapid, direct, and miniaturised phenotypic antibiotic susceptibility tests for bovine mastitis. Antibiotics 2023, 12, 1363. [Google Scholar] [CrossRef]
- Vloemans, D.; Pieters, A.; Dal Dosso, F.; Lammertyn, J. Revolutionizing sample preparation: A novel autonomous microfluidic platform for serial dilution. Lab A Chip 2024, 24, 2791–2801. [Google Scholar] [CrossRef]
- Srinivasan, B.; Tung, S. Development and applications of portable biosensors. J. Lab. Autom. 2015, 20, 365–389. [Google Scholar] [CrossRef]
- Mansoor, F.; Ju, H.; Saeed, M.; Kanwal, S. Facile synthesis of gold nanocages with silver nanocubes templates dual metal effects enabled SERS imaging and catalytic reduction. RSC Adv. 2023, 13, 31366–31374. [Google Scholar] [CrossRef]
- Demishkevich, E.; Zyubin, A.; Seteikin, A.; Samusev, I.; Park, I.; Hwangbo, C.K.; Choi, E.H.; Lee, G.J. Synthesis methods and optical sensing applications of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. Materials 2023, 16, 3342. [Google Scholar] [CrossRef]
- Song, L.; Huang, Y.; Nie, Z.; Chen, T. Macroscopic two-dimensional monolayer films of gold nanoparticles: Fabrication strategies, surface engineering and functional applications. Nanoscale 2020, 12, 7433–7460. [Google Scholar] [CrossRef]
- Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 4, 2424–2431. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 6, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
SERS Application | Case Study | Nanomaterials/Substrates Used | Preparation Method | Sensitivity Achieved | Ref. |
---|---|---|---|---|---|
Pesticide Detection | Detection of organophosphorus pesticides | Ag/Au bimetallic nanoparticles | Acetylcholinesterase SERS biosensor | In situ detection of pesticide residues | [126,127] |
Detection of thiram in food samples | Sliver nanoparticles AgNP-based SERS | Chemical reduction of silver salts, followed by functionalization | Detects at sub-femtomolar concentrations, reaching single-molecule levels. | [128,129] | |
Detection of malachite green in water | Hydrophobic SiNRs with Au nanoparticles | Plasma etching and magnetron sputtering | Detection at 1 ng/mL | [130] | |
Mycotoxin Detection | Detection of aflatoxin B1 in corn | Novel nanostructured materials | Bottom-up and top-down nanofabrication | Enhanced specificity and reproducibility | [131] |
Detection of aflatoxin in food matrices (Corn) | Gold nanoparticles (AuNPs) using AuNP-based SERS | Citrate reduction of HAuCl4, functionalized with specific ligands | Picomolar detection limits for aflatoxin in corn samples | [132,133] | |
Foodborne Pathogen Detection | Detection of bacterial pathogens in food | Gold nanoparticles | Machine learning-assisted SERS | Rapid, sensitive detection of bacterial pathogens | [134] |
Detection of E. coli in milk | Silver-coated nanoporous silicon | Indirect immunoassay with 4-ATP/Ag-pSi | 3 CFU/mL detection limit | [135] | |
Detection of salmonella in food using magnetic-SERS | Magnetic nanoparticles coated with Ag or Au | Coating magnetic nanoparticles with Ag/Au via chemical deposition | Detection limit as low as a few colony-forming units (CFU) | [113] | |
Heavy Metal Detection and Environmental Monitoring | Detection of mercury ions | Upconversion nanoparticles (UCNPs) | Lanthanide ion-doped | Rapid, cost-effective detection | [136] |
Gold nanoparticles (AuNPs) | Citrate reduction followed by ligand functionalization | Sub-nanomolar detection limit for Hg2+ ions | [137] | ||
Detection of PAHs | Pd@Au nanocomposite | Ion irradiation on thin films | 5 μM for Methylene Blue | [138] | |
Chemical Warfare Agent Detection | Detection of methyl salicylate | Gold nanoparticle nanofibers | SERS substrate preparation for chemical warfare simulants | Picomolar detection | [139] |
Detection of organophosphates (e.g., Sarin) | Silver-coated silicon nanowires (Ag-SiNWs) | Vapor-phase deposition of silver onto silicon nanowires | Picomolar detection of organophosphates | [126,140] | |
Drug Detection | Detection of illegal drugs (e.g., cocaine) using AgNPs | Silver nanoparticles (AgNPs) | Chemical reduction followed by colloidal dispersion | Nanomolar sensitivity for cocaine detection | [141] |
Detection of Antibiotics in Food | Detection of ampicillin in milk | 3D plasmonic cavity-in-cavity SERS platform | Machine learning-driven, truncated concave nanocubes | A detection limit of 0.1 ppm | [142] |
Detection of ampicillin and nitrofurantoin | Au nanoparticles/graphene oxide hybrid | In situ reduction method | Detection limits as low as 0.01 ng/mL | [143] | |
Biological Toxin Detection | Detection of aflatoxin B1 in food matrices | Au@Ag nanoparticles | Uniform synthesis for detection | Detection limit of 10−8 M | [144] |
Detection of Ricin toxin using AgNP-based SERS | Silver nanoparticles (AgNPs) | Chemical reduction and surface modification | A detection limit as low as 0.32 fM | [145] | |
Pharmaceuticals Monitoring | Detection of active pharmaceutical ingredients (APIs) | Gold-coated polystyrene nanospheres (Au@PS) | Layer-by-layer assembly of polystyrene beads coated with gold | Nanomolar detection of APIs in pharmaceutical samples | [146] |
Food Quality Control | Detection of 4-mercaptopyridine | Au-nanoparticle-decorated cotton swabs (CS-Au NP) | Dropwise addition of gold colloid on cotton fibers | Detection at 1 × 10−8 M | [147] |
Pesticide Residue Analysis | Analysis of pesticide residues in fruits and detection limit for crystal violet | ZnO nanorods decorated with Ag nanoflowers | Hybrid substrate with “hotspots” engineering | A detection limit of 10⁻13 M | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahlol, H.S.; Li, J.; Deng, J.; Foda, M.F.; Han, H. Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection. Nanomaterials 2024, 14, 1750. https://doi.org/10.3390/nano14211750
Bahlol HS, Li J, Deng J, Foda MF, Han H. Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection. Nanomaterials. 2024; 14(21):1750. https://doi.org/10.3390/nano14211750
Chicago/Turabian StyleBahlol, Hagar S., Jiawen Li, Jiamin Deng, Mohamed F. Foda, and Heyou Han. 2024. "Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection" Nanomaterials 14, no. 21: 1750. https://doi.org/10.3390/nano14211750