Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation
<p>A schematic illustration of the direct writing process using femtosecond laser pulse-induced reductive sintering and/or melting of Cu<sub>2</sub>O NSs.</p> "> Figure 2
<p>FE-SEM images and particle size distributions of Cu<sub>2</sub>O NSs with diameters of (<b>a</b>) 100 nm and (<b>b</b>) 200 nm.</p> "> Figure 3
<p>Absorption coefficients of three Cu<sub>2</sub>O NS inks.</p> "> Figure 4
<p>FE-SEM images of line patterns fabricated on Cu thin film-coated Si at various laser pulse energies with a writing speed of 0.1 mm/s.</p> "> Figure 5
<p>Relationship between line width and laser pulse energy.</p> "> Figure 6
<p>SEM images of the typical four bonding states on the Cu thin film-coated Si substrates: (<b>a</b>) single-layered, (<b>b</b>) multi-layered, (<b>c</b>) melted NSs, and (<b>d</b>) LIPSS. Scale bar: 500 nm.</p> "> Figure 7
<p>(<b>a</b>) Three-dimensional overall view of Cu<sub>2</sub>O NS mixed model, (<b>b</b>) xy-plane view, and (<b>c</b>) xz-plane view for calculating electromagnetic fields.</p> "> Figure 8
<p>Electric field distribution for the φ200 nm/φ100 nm Cu<sub>2</sub>O NS mix model: (<b>a</b>) xz plane, (<b>b</b>) yz plane (φ200 nm NS side), (<b>c</b>) yz plane (φ100 nm NS side), and (<b>d</b>) xy plane of the contact point between the Cu<sub>2</sub>O NS and Cu thin film.</p> "> Figure 9
<p>(<b>a</b>) Schematic illustration of the cross-sectional model showing the <span class="html-italic">z</span>-axis penetrating the φ200 nm and φ100 nm Cu<sub>2</sub>O NSs. (<b>b</b>) Electric field intensity distribution along the <span class="html-italic">z</span>-axis, and (<b>c</b>) absorbed electric field intensity distribution along the <span class="html-italic">z</span>-axis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cu2O NS Inks
2.2. Femtosecond Laser Irradiation of Cu2O NS Ink
2.3. Evaluation Methods
3. Results and Discussion
3.1. Preparation of Cu2O NS Inks Using Different Sizes of Cu2O NSs
3.2. Patterning Properties
3.3. Effect of Cu Thin Films on Electromagnetic Field under Irradiating a Femtosecond Laser Pulse
4. Conclusions
- (1)
- Cu2O NSs with diameters of ~100 nm and ~200 nm were successfully synthesized and used to prepare inks. The patterning experiments revealed that the morphology of the laser-written patterns was significantly influenced by the size of the NSs. At lower laser pulse energies, NSs of both sizes bonded as single layers when using the mixed ink. However, at higher pulse energies, smaller NSs melted more readily compared to larger NSs, resulting in differences in the final morphology of the patterns.
- (2)
- The morphology of the patterns was categorized into single-layered, multi-layered, melted, and laser-induced periodic surface structures (LIPSSs). As the pulse energy increased, all the NSs melted and formed LIPSSs, indicating that high pulse energies led to excessive irradiation. The results suggest that the concentration of different sizes of NSs can be used to control the morphology of the patterns by adjusting the laser pulse energy.
- (3)
- Finite element method (FEM) simulations showed that the electromagnetic field intensities at the contact points between the NSs and the Cu thin films were similar for both small and large NSs. This finding implies that the observed differences in morphology are not due to variations in the electromagnetic field intensity but rather due to the heat capacity of the NSs. The simulations confirmed that the size-dependent morphological effects were influenced by the thermal properties of the NSs rather than by differences in the electromagnetic field distribution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maruo, S.; Saeki, T. Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt. Express 2008, 16, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Watanabe, A. Conductive network structure formed by laser sintering of silver nanoparticles. J. Nanopart. Res. 2014, 16, 2684. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Zhang, Y.; Wang, J.; Wang, L.; Xia, H.; Chen, Q.; Ding, H.; Sun, H. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Sci. Technol. Adv. Mater. 2015, 16, 024805. [Google Scholar] [CrossRef]
- Blasco, E.; Müller, J.; Müller, P.; Trouillet, V.; Schön, M.; Scherer, T.; Barner-Kowollik, C.; Wegener, M. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing. Adv. Mater. 2016, 28, 3592–3595. [Google Scholar] [CrossRef] [PubMed]
- Komori, T.; Furukawa, T.; Iijima, M.; Maruo, S. Multi-scale laser direct writing of conductive metal microstructures using a 405-nm blue laser. Opt. Express 2020, 28, 8363–8370. [Google Scholar] [CrossRef]
- Jo, Y.; Park, H.J.; Kim, Y.-B.; Lee, S.S.; Lee, S.Y.; Kim, S.-K.; Choi, Y.; Jeong, S. Form-Factor Free 3D Copper Circuits by Surface-Conformal Direct Printing and Laser Writing. Adv. Funct. Mater. 2020, 30, 2004659. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Li, P.; Zhang, Y.; Wen, Y.; Qiu, Y.; Liu, Z.; Li, Y.P.; Liu, L. Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review. Opt. Laser Technol. 2021, 135, 106687. [Google Scholar] [CrossRef]
- Pinheiro, T.; Morais, M.; Silvestre, S.; Carlos, E.; Coelho, J.; Almeida, H.V.; Barquinha, P.; Fortunato, E.; Martins, R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. Adv. Mater. 2024, 36, 2402014. [Google Scholar] [CrossRef]
- Kefer, S.; Bischoff, K.; Roth, G.-L.; Haubner, J.; Schmauss, B.; Hellmann, R. Tunable Bulk Polymer Planar Bragg Gratings Electrified via Femtosecond Laser Reductive Sintering of CuO Nanoparticles. Adv. Opt. Mater. 2021, 9, 2002203. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, J.; Cheng, Y.; Xu, Z.; Sugioka, S.; Midorikawa, K. Surface-Enhanced Raman Scattering Substrate Fabricated by Femtosecond Laser Direct Writing. Jpn. J. Appl. Phys. 2008, 47, 189. [Google Scholar] [CrossRef]
- Schumann, M.; Bückmann, T.; Gruhler, N.; Wegener, M.; Pernice, W. Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light: Sci. Appl. 2014, 3, 175. [Google Scholar] [CrossRef]
- Izquierdo-Lorenzo, I.; Jradi, S.; Adam, P.-M. Direct laser writing of random Au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements. RSC Adv. 2014, 4, 4128–4133. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Zhang, Y.-L.; Han, B.; Liu, X.-Q.; Zhang, H.-Z.; Chen, Q.-D.; Sun, H.-B. Femtosecond Laser Direct Writing of Plasmonic Ag/Pd Alloy Nanostructures Enables Flexible Integration of Robust SERS Substrates. Adv. Mater. Technol. 2017, 2, 1600270. [Google Scholar] [CrossRef]
- Ma, Z.-C.; Zhang, Y.-L.; Han, B.; Chen, Q.-D.; Sun, H.-B. Femtosecond-Laser Direct Writing of Metallic Micro/Nanostructures: From Fabrication Strategies to Future Applications. Small Methods 2018, 2, 1700413. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, B.; Yu, Z.; Xu, Z. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H2O2 detection via semiconductor-based SERS. Talanta 2024, 278, 126483. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, H.; Zhang, X. Direct Writing of SERS Substrates Using Femtosecond Laser Pulses. ACS Omega 2024, 9, 37188–37196. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Hata, S. Selective fabrication of p-type and n-type thermoelectric micropatterns by the reduction of CuO/NiO mixed nanoparticles using femtosecond laser pulses. Appl. Phys. A 2018, 124, 64. [Google Scholar] [CrossRef]
- Ho, L.D.-A.; Nam, V.B.; Lee, D. Flexible Ni/NiOx-Based Sensor for Human Breath Detection. Materials 2022, 15, 47. [Google Scholar] [CrossRef]
- Nam, V.B.; Lee, D. Evaluation of Ni-Based Flexible Resistance Temperature Detectors Fabricated by Laser Digital Pattering. Nanomaterials 2021, 11, 576. [Google Scholar] [CrossRef]
- Zhu, P.; Yang, W.; Wang, R.; Gao, S.; Li, B.; Li, Q. Direct Writing of Flexible Barium Titanate/Polydimethylsiloxane 3D Photonic Crystals with Mechanically Tunable Terahertz Properties. Adv. Optical Mater. 2017, 5, 1600977. [Google Scholar] [CrossRef]
- Standaert, A.; Brancato, L.; Lips, B.; Ceyssens, F.; Puers, R.; Reynaert, P. Three techniques for the fabrication of high precision, mm-sized metal components based on two-photon lithography, applied for manufacturing horn antennas for THz transceivers. J. Micromech. Microeng. 2018, 28, 035008. [Google Scholar] [CrossRef]
- Dai, Z.; Su, Q.; Wang, Y.; Qi, P.; Wang, X.; Liu, W. Fast fabrication of THz devices by femtosecond laser direct writing with a galvanometer scanner. Laser Phys. 2019, 29, 065301. [Google Scholar] [CrossRef]
- Lin, T.; Zeng, Q.; Huang, Y.; Zhong, S.; Shi, T.; Zhong, Y.; Sun, F.; Chen, X. Femtosecond laser direct writing wedge metallic microcavities for terahertz sensing. Opt. Laser Technol. 2025, 180, 111434. [Google Scholar] [CrossRef]
- Manshina, A.A.; Tumkin, I.I.; Khairullina, E.M.; Mizoshiri, M.; Ostendorf, A.; Kulinich, S.A.; Makarov, S.; Kuchmizhak, A.A.; Gurevich, E.L. The Second Laser Revolution in Chemistry: Emerging Laser Technologies for Precise Fabrication of Multifunctional Nanomaterials and Nanostructures. Adv. Funct. Mater. 2024, 2405457. [Google Scholar] [CrossRef]
- Mainik, P.; Spiegel, C.A.; Blasco, E. Recent Advances in Multi-Photon 3D Laser Printing: Active Materials and Applications. Adv. Mater. 2024, 36, 2310100. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Ishikawa, A.; Kawata, S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 2006, 88, 081107. [Google Scholar] [CrossRef]
- Ishikawa, A.; Tanaka, T.; Kawata, S. Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye. Appl. Phys. Lett. 2006, 89, 113102. [Google Scholar] [CrossRef]
- Cao, Y.-Y.; Takeyasu, N.; Tanaka, T.; Duan, X.-M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148. [Google Scholar] [CrossRef]
- Shukla, S.; Furlani, E.P.; Vidal, X.; Swihart, M.T.; Prasad, P.N. Two-Photon Lithography of Sub-Wavelength Metallic Structures in a Polymer Matrix. Adv. Mater. 2010, 22, 3695–3699. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, C.; Tian, W.; Liu, F.; Cheng, G.J. Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping. Nat. Mater. 2024. [Google Scholar] [CrossRef]
- Kang, B.; Han, S.; Kim, J.; Ko, S.; Yang, M. One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle. J. Phys. Chem. C 2011, 115, 23664–23670. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Arakane, S.; Sakurai, J.; Hata, S. Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles. Appl. Phys. Express 2016, 9, 036701. [Google Scholar] [CrossRef]
- Nam, V.B.; Giang, T.T.; Lee, D. Laser digital patterning of finely-structured flexible copper electrodes using copper oxide nanoparticle ink produced by a scalable synthesis method. Appl. Surf. Sci. 2021, 570, 151179. [Google Scholar]
- Bischoff, K.; Esen, C.; Hellmann, R. Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling. Nanomaterials 2023, 13, 2693. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, K.; Esen, C.; Hellmann, R. Femtosecond reductive Laser Sintering under multiple focus conditions for rapid production of conductive copper layers. Procedia CIRP 2024, 124, 629–633. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, X.; Li, M.; Xu, M.; Long, J. Copper circuits fabricated on flexible polymer substrates by a high repetition rate femtosecond laser-induced selective local reduction of copper oxide nanoparticles. Opt. Express 2021, 29, 4453–4463. [Google Scholar] [CrossRef]
- Nam, V.B.; Shin, J.; Yoon, Y.; Giang, T.T.; Kwon, J.; Suh, Y.D.; Yeo, J.; Hong, S.; Ko, S.H.; Lee, D. Highly Stable Ni-Based Flexible Transparent Conducting Panels Fabricated by Laser Digital Patterning. Adv. Funct. Mater. 2019, 29, 1806895. [Google Scholar] [CrossRef]
- Lee, D.; Paeng, D.; Park, H.K.; Grigoropoulos, C.P. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS Nano 2014, 8, 9807–9814. [Google Scholar] [CrossRef]
- Paeng, D.; Lee, D.; Yeo, J.; Yoo, J.-H.; Allen, F.I.; Kim, E.; So, H.; Park, H.K.; Minor, A.M.; Grigoropoulos, C.P. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions. J. Phys. Chem. C 2015, 119, 6363–6372. [Google Scholar] [CrossRef]
- Nam, V.B.; Shin, J.; Choi, A.; Choi, H.; Ko, S.H.; Lee, D. High-temperature, thin, flexible and transparent Ni-based heaters patterned by laser-induced reductive sintering on colorless polyimide. J. Mater. Chem. C 2021, 9, 5652–5661. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Yoshidomi, K.; Darkhanbaatar, N.; Khairullina, E.M.; Tumkin, I.I. Effect of Substrates on Femtosecond Laser Pulse-Induced Reductive Sintering of Cobalt Oxide Nanoparticles. Nanomaterials 2021, 11, 3356. [Google Scholar] [CrossRef] [PubMed]
- Truong, P.L.; Lee, D. Non-vacuum fabrication of conductive, mechanochemically stable, flexible Ni–Cu alloy electrodes with customizable composition ratios via laser digital patterning. Chem. Eng. J. 2024, 487, 150565. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Hayashi, T.; Narushima, J.; Ohishi, T. Femtosecond laser direct writing of Cu-Ni alloy patterns in ambient atmosphere using glyoxylic acid Cu/Ni mixed complexes. Opt. Laser Technol. 2021, 144, 107418. [Google Scholar] [CrossRef]
- Ohishi, T.; Kimura, R. Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air. Mater. Sci. Appl. 2015, 6, 799–808. [Google Scholar] [CrossRef]
- Ohishi, T.; Takahashi, N. Preparation and properties of copper fine wire on polyimide film in air by laser irradiation and mixed-copper-complex solution containing glyoxylic acid copper complex and methylamine copper complex. Mater. Sci. Appl. 2018, 9, 859–872. [Google Scholar] [CrossRef]
- Min, H.; Lee, B.; Jeong, S.; Lee, M. Fabrication of 10-µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink. Opt. Laser Technol. 2017, 88, 128–133. [Google Scholar] [CrossRef]
- Lee, J.; Lee, B.; Jeong, S.; Kim, Y.; Lee, M. Microstructure and electrical property of laser-sintered Cu complex ink. Appl. Surf. Sci. 2014, 307, 42–45. [Google Scholar] [CrossRef]
- Yu, J.H.; Rho, Y.; Kang, H.; Jung, H.S.; Kang, K.-T. Electrical behavior of laser-sintered Cu based metal-organic decomposition ink in air environment and application as current collectors in supercapacitor. Int. J. Precis. Eng. Manuf. Green. Technol. 2015, 2, 333–337. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, S.; Zhou, W.; Ma, D.; Ma, Y.; Joshi, P.; Hu, A. Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano Micro Lett. 2017, 9, 42. [Google Scholar] [CrossRef]
- Mizoshiri, M.; Kondo, Y. Direct writing of Cu-based fine micropatterns using femtosecond laser pulse-induced sintering of Cu2O nanospheres. Jpn. J. Appl. Phys. 2019, 58, SDDF05. [Google Scholar] [CrossRef]
- Murayama, S.; Nguyen, K.V.T.; Anzai, M.; Magara, H.; Nakamura, T.; Mizoshiri, M. Bonding of single-layered Cu2O nanospheres on Cu substrates in irradiating near-infrared femtosecond laser pulses. J. Appl. Phys. 2022, 61, SD1032. [Google Scholar] [CrossRef]
- Nguyen, K.V.T.; Kobayashi, Y.; Tran, T.D.; Anzai, M.; Mizoshiri, M. Effect of Cu2O nanosphere size on femtosecond laser reductive sintering/melting for Cu printing. Nano Struct. Nano Objects 2023, 36, 101062. [Google Scholar] [CrossRef]
- Kim, M.H.; Lim, B.; Lee, E.P.; Xia, Y. Polyol synthesis of Cu2O nanoparticles: Use of chloride to promote the formation of a cubic morphology. J. Mater. Chem. 2008, 18, 4069–4073. [Google Scholar] [CrossRef]
Size | Cu(NO3)2·2.5H2O (g) | Ethylene Glycol (mL) | PVP (g) | Injecting Speed (mL/h) | Oil Bath Temperature (°C) |
---|---|---|---|---|---|
φ100 | 0.20 | 44 | 0.39 | 50 | 160 |
φ200 | 0.20 | 44 | 1.56 | 100 | 140 |
Pulse Energy (nJ) | φ100 nm NS Ink | φ200 nm NS Ink | Mixed Ink (φ100 nm: φ200 nm = 1:2 (wt%)) |
---|---|---|---|
0.09 | S and Melted | Non-bonded | S |
0.13 | M and Melted | S and Melted | M and Melted |
0.17 | M and Melted | S and Melted | M and Melted |
0.21 | Melted and LIPSS | S and Melted | M and Melted |
0.24 | Melted and LIPSS | S and Melted | Melted and LIPSS |
0.28 | Melted and LIPSS | Melted and LIPSS | Melted and LIPSS |
0.32 | Melted and LIPSS | Melted and LIPSS | Melted and LIPSS |
Materials | Refractive Index n | Extinction Coefficient k | Absorption Coefficient (cm−1) |
---|---|---|---|
Cu2O NSs | 2.262 | 0.025 | 4027 |
Cu thin film | 0.247 | 4.855 | 782,100 |
Si substrate | 3.71 | 0.0077 | 1240 |
Air | 1 | 0.001 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizoshiri, M.; Tran, T.D.; Nguyen, K.V.T. Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation. Nanomaterials 2024, 14, 1584. https://doi.org/10.3390/nano14191584
Mizoshiri M, Tran TD, Nguyen KVT. Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation. Nanomaterials. 2024; 14(19):1584. https://doi.org/10.3390/nano14191584
Chicago/Turabian StyleMizoshiri, Mizue, Thuan Duc Tran, and Kien Vu Trung Nguyen. 2024. "Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation" Nanomaterials 14, no. 19: 1584. https://doi.org/10.3390/nano14191584