Muscle Activation during the Squat Performed in Different Ranges of Motion by Women
<p>Muscle activation during the squat performed by women at 90° and 140° of range of motion * Differences between concentric and eccentric actions; ¥ Differences between eccentric actions; # Differences between concentric actions.</p> "> Figure 2
<p>(<bold>A</bold>) Strength test (10 RM); (<bold>B</bold>) Electromyographic analysis during the squat.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Experimental Protocol
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullett, J.C.; Tillman, M.D.; Gutierrez, G.M.; Chow, J.W. A biomechanical comparison of back and front squats in healthy trained individuals. J. Strength Cond. Res. 2009, 23, 284–292. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19002072 (accessed on 7 December 2022). [CrossRef] [PubMed] [Green Version]
- Marchetti, P.H.; da Silva, J.J.; Schoenfeld, B.J.; Nardi, P.S.M.; Pecoraro, S.L.; Greve, J.M.D.; Hartigan, E. Muscle activation differs between three different knee joint-angle positions during a maximal isometric back squat exercise. J. Sport. Med. 2016, 2016, 3846123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durward, B.R.; Baer, G.D.; Rowe, P.J. Movimento Funcional Humano: Mensuração e Análise; Manole: Barueri, Brazil, 2001. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sport. Med. 2018, 48, 765–785. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29372481 (accessed on 7 December 2022). [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 933–942. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31230110 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The difference between squat jump and countermovement jump in 770 male and female participants from different sports. Eur. J. Sport Sci. 2022, 22, 985–993. Available online: http://www.ncbi.nlm.nih.gov/pubmed/34075858 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Padulo, J.; Kuvačić, G.; Ardigò, L.P.; Dhahbi, W.; Esposito, F.; Samozino, P.; Cè, E. Bilateral deficit magnitude increases with velocity during a half-squat exercise. J. Sport. Sci. 2022, 20, 1206–1213. Available online: http://www.ncbi.nlm.nih.gov/pubmed/35442850 (accessed on 7 December 2022). [CrossRef]
- Pérez-Castilla, A.; Jukic, I.; Janicijevic, D.; Akyildiz, Z.; Senturk, D.; García-Ramos, A. Load-Velocity Relationship Variables to Assess the Maximal Neuromuscular Capacities During the Back-Squat Exercise. Sport. Health 2022, 3, 19417381211064604. Available online: http://www.ncbi.nlm.nih.gov/pubmed/35114871 (accessed on 7 December 2022). [CrossRef]
- Gorsuch, J.; Long, J.; Miller, K.; Primeau, K.; Rutledge, S.; Sossong, A.; Durocher, J.J. The effect of squat depth on multiarticular muscle activation in collegiate cross-country runners. J. Strength Cond. Res. 2013, 27, 2619–2625. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23254544 (accessed on 7 December 2022). [CrossRef]
- Sousa, C.D.O.; Ferreira, J.J.D.A.; Medeiros, A.C.L.V.; Carvalho, A.H.D.; Pereira, R.C.; Guedes, D.T.; Alencar, J.F.D. Atividade eletromiográfica no agachamento nas posições de 40°, 60° e 90° de flexão do joelho. Rev. Bras. Med. Esporte 2007, 13, 310–316. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922007000500006&lng=pt&tlng=pt (accessed on 7 December 2022). [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes. Hum. Mov. 2016, 17, 43–49. Available online: https://www.termedia.pl/Joint-angle-specific-strength-adaptations-influence-improvements-in-power-in-highly-trained-athletes,129,32482,0,1.html (accessed on 7 December 2022). [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport Sci. 2020, 20, 115–124. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31092132 (accessed on 7 December 2022). [CrossRef]
- Mckean, M.R.; Burkett, B.J. Does segment length influence the hip, knee and ankle coordination during the squat movement? J. Fit. Res. 2012, 1, 23–30. [Google Scholar]
- Mauntel, T.C.; Post, E.G.; Padua, D.A.; Bell, D.R. Sex differences during an over-head squat assessment. J. Appl. Biomech. 2015, 31, 244–249. Available online: https://pubmed.ncbi.nlm.nih.gov/25838245/ (accessed on 7 December 2022). [CrossRef]
- Lynn, S.K.; Noffal, G.J. Lower extremity biomechanics during a regular and counterbalanced squat. J. Strength Cond. Res. 2012, 26, 2417–2425. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22076098 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Mehls, K.; Grubbs, B.; Jin, Y.; Coons, J. Electromyography Comparison of Sex Differences During the Back Squat. J. Strength Cond. Res. 2022, 36, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Harput, G.; Soylu, A.R.; Ertan, H.; Ergun, N.; Mattacola, C.G. Effect of gender on the quadriceps-to-hamstrings coactivation ratio during different exercises. J. Sport Rehabil. 2014, 23, 36–43. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24084227 (accessed on 7 December 2022). [CrossRef]
- Trindade, T.B.; de Medeiros, J.A.; Dantas, P.M.S.; Neto, L.D.O.; Schwade, D.; Vieira, W.H.D.B.; Oliveira-Dantas, F.F. A comparison of muscle electromyographic activity during different angles of the back and front squat. Isokinet. Exerc. Sci. 2020, 28, 1–8. Available online: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IES-193142 (accessed on 7 December 2022). [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; Cronin, J. A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyography Amplitude in the Parallel, Full, and Front Squat Variations in Resistance-Trained Females. J. Appl. Biomech. 2016, 32, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Aspe, R.R.; Swinton, P.A. Electromyographic and kinetic comparison of the back squat and overhead squat. J. Strength Cond. Res. 2014, 28, 2827–2836. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24662228 (accessed on 7 December 2022). [CrossRef]
- Jaberzadeh, S.; Yeo, D.; Zoghi, M. The Effect of Altering Knee Position and Squat Depth on VMO: VL EMG Ratio During Squat Exercises. Physiother. Res. Int. 2016, 21, 164–173. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25962352 (accessed on 7 December 2022). [CrossRef]
- Choe, K.H.; Coburn, J.W.; Costa, P.B.; Pamukoff, D.N. Hip and Knee Kinetics During a Back Squat and Deadlift. J. Strength Cond. Res. 2021, 35, 1364–1371. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30335723 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Bryanton, M.A.; Kennedy, M.D.; Carey, J.P.; Chiu, L.Z.F. Effect of squat depth and barbell load on relative muscular effort in squatting. J. Strength Cond. Res. 2012, 26, 2820–2828. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22797000 (accessed on 7 December 2022). [CrossRef] [PubMed]
- da Silva, J.J.; Schoenfeld, B.J.; Marchetti, P.N.; Pecoraro, S.L.; Greve, J.M.D.; Marchetti, P.H. Muscle Activation Differs Between Partial and Full Back Squat Exercise with External Load Equated. J. Strength Cond. Res. 2017, 31, 1688–1693. Available online: https://journals.lww.com/00124278-201706000-00029 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Flores, V.; Becker, J.; Burkhardt, E.; Cotter, J. Knee Kinetics During Squats of Varying Loads and Depths in Recreationally Trained Women. J. Strength Cond. Res. 2020, 34, 1945–1952. Available online: http://www.ncbi.nlm.nih.gov/pubmed/29528960 (accessed on 7 December 2022). [CrossRef]
- Robertson, D.G.E.; Wilson, J.M.J.; St. Pierre, T.A. Lower Extremity Muscle Functions during Full Squats. J. Appl. Biomech. 2008, 24, 333–339. Available online: https://journals.humankinetics.com/view/journals/jab/24/4/article-p333.xml (accessed on 7 December 2022). [CrossRef] [PubMed] [Green Version]
- Morton, R.W.; Sonne, M.W.; Farias Zuniga, A.; Mohammad, I.Y.; Jones, A.; McGlory, C.; Keir, P.J.; Potvin, J.R.; Phillips, S.M. Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. J. Physiol. 2019, 597, 4601–4613. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31294822 (accessed on 7 December 2022). [CrossRef]
- Looney, D.P.; Kraemer, W.J.; Joseph, M.F.; Comstock, B.A.; Denegar, C.R.; Flanagan, S.D.; Newton, R.U.; Szivak, T.K.; DuPont, W.H.; Hooper, D.R.; et al. Electromyographical and Perceptual Responses to Different Resistance Intensities in a Squat Protocol: Does Performing Sets to Failure with Light Loads Produce the Same Activity? J. Strength Cond. Res. 2016, 30, 792–799. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26270694 (accessed on 7 December 2022). [CrossRef]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle activation in the loaded free barbell squat: A brief review. J. Strength Cond. Res. 2012, 26, 1169–1178. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22373894 (accessed on 7 December 2022). [CrossRef] [Green Version]
- Prilutsky, B.I. Coordination of two- and one-joint muscles: Functional consequences and implications for motor control. Mot. Control 2000, 4, 1–44. Available online: http://www.ncbi.nlm.nih.gov/pubmed/10675807 (accessed on 7 December 2022). [CrossRef]
- Bryanton, M.A.; Carey, J.P.; Kennedy, M.D.; Chiu, L.Z.F. Quadriceps effort during squat exercise depends on hip extensor muscle strategy. Sport. Biomech. 2015, 14, 122–138. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25895990 (accessed on 7 December 2022). [CrossRef]
- Coratella, G.; Tornatore, G.; Caccavale, F.; Longo, S.; Esposito, F.; Cè, E. The Activation of Gluteal, Thigh, and Lower Back Muscles in Different Squat Variations Performed by Competitive Bodybuilders: Implications for Resistance Training. Int. J. Environ. Res. Public Health 2021, 18, 772. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33477561 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sport. Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, O.; Perry, J.; Hislop, H. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. Clin. Biomech. 2002, 17, 569–579. Available online: http://www.ncbi.nlm.nih.gov/pubmed/2243716 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Yavuz, H.U.; Erdağ, D.; Amca, A.M.; Aritan, S. Kinematic and EMG activities during front and back squat variations in maximum loads. J. Sport. Sci. 2015, 33, 1058–1066. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25630691 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-up exercises. PLoS ONE 2020, 15, e0230841. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32236133 (accessed on 7 December 2022). [CrossRef]
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 1996, 81, 2339–2346. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9018476 (accessed on 7 December 2022). [CrossRef] [PubMed] [Green Version]
- Ebben, W.P.; Jensen, R.L. Electromyographic and kinetic analysis of traditional, chain, and elastic band squats. J. Strength Cond. Res. 2002, 16, 547–550. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12423183 (accessed on 7 December 2022).
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J. Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Danneels, L.; Cools, A. Optimal Normalization Tests for Muscle Activation of the Levator Scapulae, Pectoralis Minor, and Rhomboid Major: An Electromyography Study Using Maximum Voluntary Isometric Contractions. Arch. Phys. Med. Rehabil. 2015, 96, 1820–1827. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26119465 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Longpré, H.S.; Acker, S.M.; Maly, M.R. Muscle activation and knee biomechanics during squatting and lunging after lower extremity fatigue in healthy young women. J. Electromyogr. Kinesiol. 2015, 25, 40–46. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25258248 (accessed on 7 December 2022). [CrossRef] [PubMed]
Concentric Action | Eccentric Action | Interaction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
90° | 140° | p | ∆ | 90° | 140° | p | ∆ | F(1,34) | p | η2 | E.S. | |
Rectus femoris (RF) | 52.8 ± 7.1 | 55.6 ± 6.7 | 0.097 | 2.8 | 41.3 ± 6.8 | 36.2 ± 8.1 | 0.001 | 5.1 | 37.9 | 0.001 | 0.527 | Larger |
Vastus lateralis (VL) | 55.5 ± 8.5 | 59.4 ± 6.2 | 0.005 | 3.9 | 41.3 ± 6.9 | 37.6 ± 7.6 | 0.006 | 3.7 | 32.0 | 0.001 | 0.485 | Larger |
Gluteus maximus (GM) | 55.8 ± 7.6 | 50.4 ± 7.1 | 0.020 | 5.4 | 23.2 ± 9.3 | 19.1 ± 6.1 | 0.022 | 4.1 | 0.70 | 0.409 | 0.020 | Small |
Biceps femoris (BF) | 58.4 ± 12.0 | 56.9 ± 12.8 | 0.055 | 1.5 | 34.6 ± 12.1 | 30.6 ± 10.2 | 0.020 | 4.0 | 61.8 | 0.902 | 0.026 | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabral, L.A.; Lima, L.C.R.; Cabido, C.E.T.; Fermino, R.C.; Oliveira, S.F.M.; Medeiros, A.I.A.; Barbosa, L.F.; Souza, T.M.F.d.; Banja, T.; Assumpção, C.d.O. Muscle Activation during the Squat Performed in Different Ranges of Motion by Women. Muscles 2023, 2, 12-22. https://doi.org/10.3390/muscles2010002
Cabral LA, Lima LCR, Cabido CET, Fermino RC, Oliveira SFM, Medeiros AIA, Barbosa LF, Souza TMFd, Banja T, Assumpção CdO. Muscle Activation during the Squat Performed in Different Ranges of Motion by Women. Muscles. 2023; 2(1):12-22. https://doi.org/10.3390/muscles2010002
Chicago/Turabian StyleCabral, Lissiane Almeida, Leonardo Coelho Rabello Lima, Christian Emmanuel Torres Cabido, Rogério César Fermino, Saulo Fernandes Melo Oliveira, Alexandre Igor Araripe Medeiros, Luis Fabiano Barbosa, Thiago Mattos Frota de Souza, Túlio Banja, and Cláudio de Oliveira Assumpção. 2023. "Muscle Activation during the Squat Performed in Different Ranges of Motion by Women" Muscles 2, no. 1: 12-22. https://doi.org/10.3390/muscles2010002