Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium
<p>Petrophysical properties of Pb–Zn sedimentary ore deposits, represented by black rectangles (modified after [<a href="#B18-minerals-08-00233" class="html-bibr">18</a>]). Geophysical properties are represented by white rectangles.</p> "> Figure 2
<p>Location of the Belgian Mississippi Valley Type (MVT) ore deposit (<b>top</b>) (modified after [<a href="#B23-minerals-08-00233" class="html-bibr">23</a>]) and their formation process (after [<a href="#B23-minerals-08-00233" class="html-bibr">23</a>,<a href="#B24-minerals-08-00233" class="html-bibr">24</a>,<a href="#B25-minerals-08-00233" class="html-bibr">25</a>,<a href="#B26-minerals-08-00233" class="html-bibr">26</a>,<a href="#B27-minerals-08-00233" class="html-bibr">27</a>,<a href="#B28-minerals-08-00233" class="html-bibr">28</a>,<a href="#B29-minerals-08-00233" class="html-bibr">29</a>]) (<b>bottom</b>).</p> "> Figure 3
<p>Geology of the Lontzen–Poppelsberg ore deposit showing projection of the drillhole and modelling of the deposit (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]).</p> "> Figure 4
<p>Typical chargeability decay curves (Time domain induce polarization (IP)). (<b>A</b>,<b>B</b>) exponential curves type are kept while non-exponential decreasing curves (<b>C</b>,<b>D</b>) type are rejected.</p> "> Figure 5
<p>Depth of investigation (DOI) models for electrical resistivity tomography (ERT) and IP data after processing for Profiles 2 and 10. High reliability areas have DOI lower than 0.1.</p> "> Figure 6
<p>Resistivity results showing DOI 0.1 isolines and drillholes. The rectangles on the drillings represent mineralized area. Colour of these rectangles indicate the distance to the drillholes from the tomographic section, as follows: white rectangles: <10 m; grey rectangles: between 10 m to 20 m; and dark rectangles >20 m. A, B, C, D and E correspond to the anomalies which could be attributed to Pb–Zn mineralization (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]). Profiles 11 and 12 were combined in one single profile by juxtaposition.</p> "> Figure 7
<p>IP profiles (normalized chargeability) displaying drillings and mineralized area. Rectangles represent the thickness and location of the Pb–Zn mineralization. Colour of these rectangles indicate the distance of the drillings from the tomographic section, as follows: white rectangles: <10 m; grey rectangles: between 10 m to 20 m; and dark rectangles >20 m. The percentage on the right of each profile indicates the proportion of remaining data after data selection (see <a href="#minerals-08-00233-f004" class="html-fig">Figure 4</a>). The white dashed lines represent the DOI limit corresponding to a value of 0.1. A, B, and C corresponds to the anomalies attributed to Pb–Zn mineralization (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]).</p> "> Figure 8
<p>Electromagnetic results on the Poppelsberg East lode. (<b>A</b>) 20 m coaxial, (<b>B</b>) 40 m coaxial, (<b>C</b>) 20 m coplanar, and (<b>D</b>) 40 m coplanar. Ppe—Poppelsberg East lode; Ppw—Poppelsberg West lode.</p> "> Figure 9
<p>Bouguer gravity anomaly after processing of the dataset (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]). Units are µGal. The rectangles present on the profiles correspond to the supposed location of the Pb–Zn vein according to the 3D modelling.</p> "> Figure 10
<p>Bouguer anomaly map of the survey area. Gravity data were interpolated using the minimum curvature method with a cell size of 2.5 m<sup>2</sup>. Ppe—Poppelsberg East mineralization; Ppw—Poppelsberg West mineralization. Circled f2, f3, and f4 correspond to extensional faults. First 300 m of gravity Profile 4 have been removed in this map because they correspond to inconstant measures in swamp area.</p> "> Figure 11
<p>Conceptual model (<b>right down</b>) from gravity and ERT observation along Profile A–B oriented SSW–NNE (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]).</p> "> Figure 12
<p>2D modelling of resistivity data of Profile 2 (1) with Res2DMOD [<a href="#B54-minerals-08-00233" class="html-bibr">54</a>]. Inversion of the two parallel lodes model (2) and the horizontal lode model (3) are represented at (2′) and (3′), respectively. As seen in (2′), the only presence of two conductive lodes, as supposed in the 3D model, cannot reproduce the low resistivity anomaly (1). The presence of a horizontal conductive layer between the two vertical lodes (3) is more appropriate to explain the geophysical signature of (1).</p> "> Figure 13
<p>2D modelling of the IP data in the case of Profile 2 (1) with Res2DMOD [<a href="#B54-minerals-08-00233" class="html-bibr">54</a>]. Inversion of the two parallel lodes model (2) and the horizontal lode model (3) are represented at (2′) and (3′). As seen in (2′), the presence of only the two conductive lodes, as assumed in the 3D model, cannot explain the low chargeability anomaly (1). The presence of a horizontal conductive layer between the two vertical lodes (3) is more appropriate to explain the geophysical signature of (1).</p> "> Figure 14
<p>Redrawing of the Pb–Zn lodes at the ground surface using geophysical survey information. Areas 1–3 represent possible extensions of the ore deposit according to geophysical investigation (geological map modified from Laloux et al. [<a href="#B30-minerals-08-00233" class="html-bibr">30</a>]).</p> "> Figure A1
<p>On the left: Resistivity results showing DOI 0.1 isolines and drillholes. The rectangles on the drillings represent mineralized area. On the right: IP profiles (normalized chargeability) displaying drillings and mineralized area. Rectangles represent the thickness and location of the Pb–Zn mineralization. The percentage on the right of each profile indicates the proportion of remaining data after data selection (see <a href="#minerals-08-00233-f004" class="html-fig">Figure 4</a>). The white dashed lines represent the DOI limit corresponding to a value of 0.1.</p> ">
Abstract
:1. Introduction
2. Geological Context
3. Methods
Geophysical Surveys
3.1.1. Electrical Resistivity/Induced Potential
- Twelve 320 m long profiles in a dipole–dipole array, with 5 m spacing (64 electrodes) (Profiles 1, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17).
- Two 320 m long profiles in a gradient array, with 5 m spacing (64 electrodes) (Profiles 2 and 6).
- A 640 m long profile (ERT/IP), with 5 m spacing (128 electrodes) in a dipole–dipole array (Profile 7).
- A 40 m-long profile with 32 electrodes and 1.25 m spacing in dipole-dipole array (Profile 3)
- A 64 m-long profile with 32 electrodes and 2 m spacing in a dipole-dipole configuration (Profile 4).
3.1.2. Electromagnetic Survey
3.1.3. Gravity Survey
4. Results
4.1. 3D Geological Modelling and Mineralization Analysis
4.2. Electrical Resistivity/IP
4.3. Electromagnetic Survey
4.4. Gravity Survey
5. Discussion and Implications for the Genesis of the MVT Ore Deposit
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
References
- Leach, D.L.; Sangster, D.F. Mississippi Valley type lead zinc deposits. In Mineral Deposit Models; Special Paper; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1993; Volume 40, pp. 289–314. [Google Scholar]
- Leach, D.L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A Deposit Model for Mississippi Valley-Type Lead Zinc Ores: Chap. A of Mineral Deposit Models for Resources Assessment; U.S. Geological Survey Scientific Investigation Report; United States Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- USGS. ZINC, Mineral Commodity Summaries; USGS: Reston, VA, USA, 2017; pp. 192–193. [Google Scholar]
- Zinc Outlook 2018: Will Prices Continue to Rally? Available online: http://investingnews.com/daily/resource-investing/base-metals investing/zinc-investing/zinc-outlook/ (accessed on 8 January 2018).
- European Commission. Report on Critical Raw Material for the EU: Report of the Ad Hoc Working Group on Defining Critical Raw Materials, 2014. Available online: http://www.catalysiscluster.eu/wp/wp-content/uploads/2015/05/2014_Critical-raw-materials-for-the-EU-2014.pdf (accessed on 2 November 2017).
- IEP on Raw Materials. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/content/european-exploration-project (accessed on 11 November 2017).
- Mineral4EU. Available online: http://www.minerals4eu.eu/ (accessed on 11 November 2017).
- The Promine Project. Available online: http://promine.gtk.fi/index.php/about (accessed on 9 November 2017).
- Blue Mining. Available online: http://www.bluemining.eu/ (accessed on 11 November 2017).
- Ford, K.; Keating, P.; Thomas, M.D. Overview of geophysical signatures associated with Canadian ore deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 939–970. [Google Scholar]
- Hambleton, W.W.; Lyden, J.P.; Broockie, D.C. Geophysical investigation in the Tri-State Zinc and Lead Mining district. Symp. Geophys. Kansas Kansas Geol. Surv. 1959, 137, 357–375. [Google Scholar]
- Seigel, H.O.; Hill, H.L.; Baird, J.G. Discovery case history of the pyramid ore bodies Pine Point, Northwest Territories, Canada. Geophysics 1968, 33, 645–656. [Google Scholar] [CrossRef]
- Lajoie, J.J.; Klein, J. Geophysical exploration at the Pine Point Mines Ltd, zinc-lead property, Northwest Territories, Canada. In Geophysics and Geochemistry in the Search for Metallic Ores; Hood, P.J., Ed.; Geological Survey of Canada: Ottawa, ON, Canada, 1979; Volume 31, pp. 653–664. [Google Scholar]
- Mutton, A.L. The application of geophysics during the evaluation of the Century zinc deposit. Geophysics 2000, 65, 1946–1960. [Google Scholar] [CrossRef]
- Dewing, K.; Turner, E.; Harrison, J.C. Geological history, mineral occurrences and mineral potential of the sedimentary rocks of the Canadian Arctic Archipelago. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 733–753. [Google Scholar]
- Paradis, S.; Hannigan, P.; Dewing, K. Mississippi Valley-Type Lead-Zinc deposits (MVT). In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; Volume 5, pp. 185–203. [Google Scholar]
- Dejonghe, L.; Ladeuze, F.; Jans, D. Atlas des gisements plombo-zincifères du Synclinorium de Verviers (Est de la Belgique). Mémoire-Service géologique de Belgique 1993, 33, 1–483. [Google Scholar]
- Bishop, J.R.; Emerson, D. Geophysical properties of zinc-bearing deposits. Aust. J. Earth Sci. 1999, 46, 311–328. [Google Scholar] [CrossRef]
- Scott, R.L.; Turner, R.; Whiting, T.H. Role of geophysics in exploration for MVT lead-zinc deposits on the Lennard Shelf, Western Australia. Explor. Geophys. 1994, 25, 163–163. [Google Scholar] [CrossRef]
- Isles, D.; Watt, M.; Harman, P.; Lebel, A. Geophysical experience from the Blendevale deposit WA. Explor. Geophys. 1987, 18, 108–110. [Google Scholar] [CrossRef]
- Buchhorn, I.J. Geology and mineralization of the Wagon Pass prospect, Napier Range, Lennard Shelf, Western Australia. In Geological Aspects of the Discovery of Some Important Mineral Deposits in Australia; Glasson, K.R., Rattigan, J.H., Eds.; Australian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 1986; Volume 17, pp. 163–172. [Google Scholar]
- Krahenbuhl, A.; Hitzman, M. Geophysical modeling of two willemite deposits, Vazante (Brazil) and Beltana (Australia). In Proceedings of the 74th SEG Annual Meeting, Denver, CO, USA, 10–15 October 2004. [Google Scholar]
- Dejonghe, L. Mineral Deposits of Belgium. Bull. Soc. Belge Géol. 1985, 95, 203–212. [Google Scholar]
- Redecke, P.; Friedrich, G. Constraints for sulphides mineralization in the Lower Rhine Basin, Germany. In Source, Transport and Deposition of Metals; Pagel, M., Leroy, O., Eds.; CRC Press/Balkema: Rotterdam, The Netherlands, 1991; pp. 481–484. [Google Scholar]
- Dewaele, S.; Muchez, P.; Banks, D. Fluid evolution along multistage composite fault systems at the southern margin of the Lower Paleozoic Anglo-Brabant fold belt, Belgium. Geofluids 2004, 4, 1–16. [Google Scholar] [CrossRef]
- Muchez, P.; Sintubin, M.; Swennen, R. Origin and migration pattern of paleofluids during orogeny: Discussion on the Variscides of Belgium and Northern France. J. Geochem. Explor. 2000, 69–70, 47–51. [Google Scholar] [CrossRef]
- De Magnée, I. Contribution à l’étude génétique des gisements belges de plomb, zinc et barytine. Econ. Geol. Monogr. 1967, 3, 255–266. [Google Scholar]
- Dejonghe, L. Zinc-lead deposits of Belgium. Ore Geol. Revue 1998, 2, 329–354. [Google Scholar] [CrossRef]
- Muchez, P.; Heijlen, W.; Banks, D.; Blundell, C.; Boni, M.; Grandia, F. Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol. Rev. 2005, 27, 241–267. [Google Scholar] [CrossRef]
- Laloux, M.; Geukens, F.; Ghysel, P.; Hance, L. Carte Géologique de Wallonie Henri-Chapelle-Raeren 43/1-2; Service géologique de Belgique: Bruxelles, Belgium, 2010. [Google Scholar]
- Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001, 27, 1019–1029. [Google Scholar] [CrossRef]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2011, 95, 135–156. [Google Scholar] [CrossRef]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Zonge, K.; Wynn, J.; Urquhart, S. Chapter 9, Resitivity, Induced Polarization, and Compex Resistivity. In Near-Surface Geophysics; Society of Exploration Geophysicists: Tulsa, OK, USA, 2005; p. 36. [Google Scholar]
- Sumner, J.S. The induced-polarization exploration method. In Geophysics and Geochemistry in the Search for Metallic Ores; Geological Survey of Canada, Economic Geology Report; Peter, J.H., Ed.; Canadian Society of Petroleum: Calgary, AB, Canada, 1979; Volume 31, pp. 123–133. [Google Scholar]
- Oldenburg, D.W.; Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 1999, 64, 403–416. [Google Scholar] [CrossRef]
- Marescot, L.; Loke, M.H.; Chapellier, D.; Delaloye, R.; Lambiell, C.; Reynard, E. Assessing Reliability of 2D Resistivity Imaging in Mountain Permafrost Studies Using the Depth of Investigation Index Method; Near Surface Geophysics; European Association of Geoscientists and Engineers: Houten, The Netherlands, 2003; pp. 57–67. [Google Scholar]
- Caterina, D.; Hermans, T.; Nguyen, F. Case studies of incorporation of prior information in electrical resistivity tomography: Comparison of different approaches. Near Surf. Geophys. 2014, 12, 451–465. [Google Scholar] [CrossRef]
- Geotomo Software. RES2DINV ver. 4.0. Rapid 2-D Resistivity & IP Inversion Using the Least Squares Method; Geotomo Software: Gelugor, Malaysia, 2011. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.A. Solution of Ill-Posed Problems; Winston & Sons: New York, NY, USA, 1977. [Google Scholar]
- Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [Google Scholar] [CrossRef]
- Pierwola, J. Using Geoelectrical Imaging to Recognize Zn-Pb Post-Mining Waste Deposits. Pol. J. Environ. Stud. 2015, 24, 2127–2137. [Google Scholar] [CrossRef]
- Frischknecht, F.C. Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys. Quart. Colo. Sch. Min. 1967, 65, 1–326. [Google Scholar]
- Zhdanov, M.S. Electromagnetic geophysics: Notes from the past and the road ahead. Geophysics 2010, 75, A49–A66. [Google Scholar] [CrossRef]
- Seigel, H.O. A Guide to High Precision Land Gravimeter Surveys; Scintrex Limited: Concord, ON, Canada, 1995. [Google Scholar]
- Chouteau, M. Géophysique Appliquée I: Gravimétrie; Ecole polytechnique de Montreal: Montreal, QC, Canada, 2002. [Google Scholar]
- Van Camp, M. Efficiency of tidal corrections on absolute gravity measurements at the Membach station. In IMG-2002 Instrumentation and Metrology in Gravimetry, Cahiers du Centre Européen de Géodynamique et de Séismologie; Centre Européen de Géodynamique et de Séismologie: Luxembourg, 2003; Volume 22, pp. 99–103. [Google Scholar]
- Union Minière. Traitement du Préconcentré Gravimétrique du Minerai de Lontzen par Séparation Magnétique à Haute Intensité et Par Milieu Dense; Archives of Union Minière Company: Bruxelles, Belgium, 1984. [Google Scholar]
- Coppola, V.; Boni, M.; Gilg, H.A.; Balassone, G.; Dejonghe, L. The “calamine” nonsulfide Zn-Pb deposits of Begium: Petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 2008, 33, 187–210. [Google Scholar] [CrossRef]
- Dewing, K.; Sharp, R.J.; Muraro, T. Exploration History and Mineral Potential of the Central Arctic Zn-Pb District, Nunavut. Arctic 2006, 59, 415–427. [Google Scholar] [CrossRef]
- Slowey, E. Technical Report on the Mallow Base Metal Exploration Project, County Cork, Ireland, Rathdowney Resources Limited; 04/10; Rathdowney Resources Limited: Dublin, Ireland, 2010. [Google Scholar]
- Carvalho, D.L.; Vidotti, R.M.; Araujo Filho, J.O.; Meneses, P.R. Geology, airborne geophysics and ground gravity of the central graben of Agua Bonita, Brazil. Rev. Bras. Geofis. 2011, 30, 483–494. [Google Scholar] [CrossRef]
- Hasanah, L.; Aminudin, A.; Ardi, N.D.; Utomo, A.S.; Yuwono, H.; Kamtomo; Wardhana, D.D.; Gaol, K.L.; Iryanti, M. Graben Structure Identification Using Gravity Method. IOP Conf. Ser. Earth Environ. Sci. 2016, 29, 6. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Brown, AC.; Sangster, D.F. Mechanisms of formation of internal sediments at the Beddiane lead-zinc deposit, Toussit mining district, north-eastern Morocco. In Carbonate-Hosted Lead-Zinc Deposits; Sangster, D.F., Ed.; Society of Economic Geologists Special Publication: Littleton, CO, USA, 1996; Volume 4, pp. 356–363. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S.G. Sediment-hosted lead-zinc deposits: A global perspective. Econ. Geol. 2005, 100, 561–607. [Google Scholar]
Min Depth (m) | Max Depth (m) | Average Vertical Thickness | Average % Zn | Average % Pb | Average Ag ppm | kTons of Ore | |
---|---|---|---|---|---|---|---|
Lode West | 18 | 115.5 | 1.75 | 8.28 | 3.75 | 4.9 | 282 |
Lode East | 12 | 65 | 1.68 | 9.5 | 0.5 | 3.25 | 221 |
Property | Mineralization | Host Rocks |
---|---|---|
Electrical resistivity | Pyrite: 3 × 10−5–1.5 Ohm·m (1) Chalcopyrite: 1.2 × 10−5–0.3 Ohm·m (1) Galena: 3 × 10−5–300 Ohm·m (1) Sphalerite: 3.8 × 1011 Ohm·m (2) Native silver: 1.6 × 10−8 Ohm·m (1) Sulphides ore: 10–50 Ohm·m | Famennian sandstones/shales: 50–800 Ohm·m (3) Tournaisian dolostones: 250–1000 Ohm·m (3) |
Density | Pb–Zn sulphides: 3–3.5 (4) | Famennian sandstones/shales: 2.6 (4) Tournaisian dolostones: 2.78 (4) |
Magnetic susceptibility | If present, Magnetite: 10 SI (2) Pyrrhotite: 0.01–0.5 SI (2) | None (3, 4) |
Electrical chargeability | Sulphides ore: 20–200 ms (5, 6) | Sedimentary rocks: 5–15 ms (3) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evrard, M.; Dumont, G.; Hermans, T.; Chouteau, M.; Francis, O.; Pirard, E.; Nguyen, F. Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium. Minerals 2018, 8, 233. https://doi.org/10.3390/min8060233
Evrard M, Dumont G, Hermans T, Chouteau M, Francis O, Pirard E, Nguyen F. Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium. Minerals. 2018; 8(6):233. https://doi.org/10.3390/min8060233
Chicago/Turabian StyleEvrard, Maxime, Gaël Dumont, Thomas Hermans, Michel Chouteau, Olivier Francis, Eric Pirard, and Frédéric Nguyen. 2018. "Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium" Minerals 8, no. 6: 233. https://doi.org/10.3390/min8060233
APA StyleEvrard, M., Dumont, G., Hermans, T., Chouteau, M., Francis, O., Pirard, E., & Nguyen, F. (2018). Geophysical Investigation of the Pb–Zn Deposit of Lontzen–Poppelsberg, Belgium. Minerals, 8(6), 233. https://doi.org/10.3390/min8060233