Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods
<p>Electric furnace heating: (<b>a</b>) heating up the furnace during one experiment; (<b>b</b>) schematic design of the furnace.</p> "> Figure 2
<p>Diagram of predicted ternary SiO<sub>2</sub>, CaO, and Al<sub>2</sub>O<sub>3</sub> slag system with the projected liquidus surfaces according to FactSage<sup>TM</sup> [<a href="#B33-minerals-14-00130" class="html-bibr">33</a>].</p> "> Figure 3
<p>Diagram of predicted quasi-ternary SiO<sub>2</sub>, CaO, and Al<sub>2</sub>O<sub>3</sub> with the projected viscosity surfaces in poise (<b>a</b>) and density surfaces in g/cm³ (<b>b</b>) at 1500 °C according to FactSage<sup>TM</sup> [<a href="#B33-minerals-14-00130" class="html-bibr">33</a>].</p> "> Figure 4
<p>Overview of the work carried out in this study: (<b>a</b>) the whole slag sample; (<b>b</b>) after cutting the slag in half using a diamond cutter to obtain a flat surface in the middle of the slag; (<b>c</b>) micro X-ray fluorescence (µXRF) element mapping on the slag’s flat surface to see heterogeneous structure along the slag; (<b>d</b>) drill core sampling of 6 mm diameter from different position where different structures can be identified for X-ray computer tomography (XCT) and X-ray diffraction (XRD) measurement.</p> "> Figure 5
<p>Image pre-processing in ImageJ: (<b>a</b>) grey value histogram of (<b>b</b>) raw image data after 2D reconstruction; (<b>c</b>) segmented objects after thresholding using 16,000–32,000; (<b>d</b>) morphological opening to remove isolated pixel objects.</p> "> Figure 6
<p>Element distribution in Slag B (25 °C/h) from µXRF (<b>a</b>–<b>c</b>) and XCT results (<b>d</b>,<b>e</b>) from drill core sample from selected position: (<b>a</b>) overlay of Al, Si, Ca, and Mn element map to obtain a chemical overview of the slag’s horizontal flat surface with 150 µm resolution; (<b>b</b>) individual element map; (<b>c</b>) overlay of element map with 50 µm resolution in the area with different morphology transition; and (<b>d</b>) cut 3D volume of the drill cores and (<b>e</b>) the reconstructed horizontal cross section.</p> "> Figure 7
<p>Visualisation of the EnAM morphology of sample G in Slag A (50 °C/h) and Slag B (25 °C/h): (<b>a</b>) 3D visualisation of the drill core sample; (<b>b</b>) 2D horizontal cross-sectional view; (<b>c</b>) segmented EnAM segmented as the object structure; (<b>d</b>) 3D morphology of the EnAM in drill core sample; (<b>e</b>) rendering of a single EnAM grain.</p> "> Figure 8
<p>Number-based probability density distribution with continuous representation through kernel density estimation (KDE) from sampling area G of sample Slag A (50 °C/h) and Slag B (25 °C/h): volume-based where the radius of circle plots corresponds to grain volume.</p> "> Figure A1
<p>Element distribution in Slag A (50 °C/h) from µXRF (<b>a</b>–<b>c</b>) and XCT results (<b>d</b>,<b>e</b>) from drill core sample from selected position: (<b>a</b>) Overlay of Al, Si, Ca, and Mn element map to obtain a chemical overview of the slag horizontal flat surface with 150 µm resolution; (<b>b</b>) individual element map and; (<b>c</b>) overlay of element map with 50 µm resolution in the area with different morphology transition; (<b>d</b>) cut 3D volume of the drill cores and (<b>e</b>) the reconstructed horizontal cross section.</p> "> Figure A2
<p>XRD pattern of the Slag B (25 °C/h).</p> "> Figure A3
<p>Volume-based probability density distribution with continuous representation through kernel density estimation (KDE) from sampling area G of sample Slag A (50 °C/h) and Slag B (25 °C/h). The radius of the circle plots corresponds to grain volume.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.1.1. Slag Production
2.1.2. Thermochemical Simulation
2.2. Methods for Characterisation
2.2.1. Micro X-ray Fluorescence (µXRF)
2.2.2. X-ray Diffraction (XRD)
2.2.3. X-ray Computer Tomography (XCT)
3. Results
3.1. Slag Overview from µXRF, XRD and XCT
3.2. EnAM Morphology from XCT
4. Discussion
5. Conclusions
- The µXRF analysis identifies variations in EnAM structures along the height of both slags.
- Three different qualities of the EnAM are defined based on the different morphology distributions of aluminium in µXRF to represent the occurrence of LiAlO2, which are G for granular, D for dendritic, and I for the areas with irregular-shape EnAM.
- XCT images provide a quantified comparison between granular EnAM from the two slags with different cooling rates.
- The sample with the lower cooling rate (25 °C/h) has a coarser grain size in the granular areas, due to the lower cooling rate. The less spherical shape indicates that the crystal has a specific direction of growth.
- A faster cooling rate (50 °C/h) forms finer and more spherical EnAMs in the centre area, where the sampling for granular shape grains is taken for both slags.
- An interdisciplinary approach, e.g., metallurgy and mineral processing, is necessary to give a more detailed evaluation of the recycling process.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
XCT Analysis | Slag A_G | Slag B_G |
---|---|---|
analysed drill core (µm3) | 1.9 × 1011 | 1.9 × 1011 |
segmented EnAM (µm3) | 4.1 × 1010 | 3.6 × 1010 |
x10,0 (µm) | 80 | 224 |
x50,0 (µm) | 125 | 433 |
x90,0 (µm) | 227 | 583 |
References
- International Energy Agency (IEA). Global Electric Vehicle Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Shine, I. The World Needs 2 Billion Electric Vehicles to Get to Net Zero. But Is There Enough Lithium to Make All the Batteries? Available online: https://www.weforum.org/agenda/2022/07/electric-vehicles-world-enough-lithium-resources/ (accessed on 20 July 2022).
- Castelvecchi, D. Electric Cars and Batteries: How Will the World Produce Enough? Nature 2021, 596, 336–339. [Google Scholar] [CrossRef]
- Fleischmann, J.; Schaufuss, P.; Linder, M.; Hanicke, M.; Horetsky, E.; Ibrahim, D.; Jautelat, S.; Torscht, L.; De Van Rijt, A. Battery 2030: Resilient, Sustainable, and Circular. Battery Demand Is Growing—And So Is the Need for Better Solutions along the Value Chain. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular (accessed on 16 January 2023).
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling—Overview of Techniques and Trends. Acs Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Yliniemi, J.; Ismailov, A.; Levanen, E.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Recycling Lithium Mine Tailings in the Production of Low Temperature (700–900 °C) Ceramics: Effect of Ladle Slag and Sodium Compounds on the Processing and Final Properties. Constr. Build. Mater. 2019, 221, 332–344. [Google Scholar] [CrossRef]
- Zhou, M.; Li, B.; Li, J.; Xu, Z. Pyrometallurgical Technology in the Recycling of A Spent Lithium Ion Battery: Evolution and the Challenge. ACS EST Eng. 2021, 1, 1369–1382. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Vonderstein, C.; Dertmann, C.; Klimko, J.; Oráč, D.; Miškufová, A.; Havlík, T.; Friedrich, B. A Combined Pyro- And Hydrometallurgical Approach to Recycle Pyrolyzed Lithium-Ion Battery Black Mass Part 1: Production of Lithium Concentrates in An Electric Arc Furnace. Metals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Werner, D.; Peuker, U.A.; Mütze, T. Recycling Chain For Spent Lithium-Ion Batteries. Metals 2020, 10, 316. [Google Scholar] [CrossRef]
- Wuschke, L.; Jäckel, H.-G.; Leißner, T.; Peuker, U.A. Crushing Of Large Li-Ion Battery Cells. Waste Manag. 2019, 85, 317–326. [Google Scholar] [CrossRef]
- Reinhart, L.; Vrucak, D.; Woeste, R.; Lucas, H.; Rombach, E.; Friedrich, B.; Letmathe, P. Pyrometallurgical Recycling of Different Lithium-Ion Battery Cell Systems: Economic And Technical Analysis. J. Clean. Prod. 2023, 416, 137834. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-Of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Windisch-Kern, S.; Holzer, A.; Ponak, C.; Raupenstrauch, H. Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging With the Indured Reactor Concept. Processes 2021, 9, 84. [Google Scholar] [CrossRef]
- Holzer, A.; Windisch-Kern, S.; Ponak, C.; Raupenstrauch, H. A Novel Pyrometallurgical Recycling Process for Lithium-Ion Batteries And Its Application to the Recycling Of Lco And Lfp. Metals 2021, 11, 149. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of Lithium Recycling From Waste Lithium Ion Batteries: A Review. Mater. Adv. 2021, 2, 3234–3250. [Google Scholar] [CrossRef]
- Werner, D.M.; Mütze, T.; Kaas, A.; Peuker, U.A. Mechanical And Physical Processes of Battery Recycling. In Nano Technology for Battery Recycling, Remanufacturing, And Reusing; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–486. [Google Scholar]
- Wilke, C.; Werner, D.M.; Kaas, A.; Peuker, U.A. Influence of the Crusher Settings And A Thermal Pre-Treatment on the Properties of the Fine Fraction (Black Mass) From Mechanical Lithium-Ion Battery Recycling. Batteries 2023, 9, 514. [Google Scholar] [CrossRef]
- Dang, H.; Chang, Z.; Zhou, H.; Ma, S.; Li, M.; Xiang, J. Extraction of Lithium From the Simulated Pyrometallurgical Slag of Spent Lithium-Ion Batteries By Binary Eutectic Molten Carbonates. Int. J. Miner. Met. Mater. 2022, 29, 1715–1721. [Google Scholar] [CrossRef]
- Shen, H.; Forssberg, E. An Overview of Recovery of Metals From Slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef]
- Schirmer, T.; Qiu, H.; Li, H.; Goldmann, D.; Fischlschweiger, M. Li-Distribution in Compounds of the Li2o-Mgo-Al2o3-Sio2-Cao System—A First Survey. Metals 2020, 10, 1633. [Google Scholar] [CrossRef]
- Elwert, T.; Goldmann, D.; Strauss, K.; Schirmer, T. Phase Composition of High Lithium Slags from the Recycling of Lithium Ion Batteries. World Metall. Erzmetall 2012, 65, 163–171. [Google Scholar]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melançon, J.; Pelton, A.D.; Petersen, S. Factsage Thermochemical Software and Databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Buchmann, M.; Borowski, N.; Leißner, T.; Heinig, T.; Reuter, M.A.; Friedrich, B.; Peuker, U.A. Evaluation of Recyclability of A Weee Slag By Means Of Integrative X-Ray Computer Tomography And Sem-Based Image Analysis. Minerals 2020, 10, 309. [Google Scholar] [CrossRef]
- Hewlett, P.C.; Liška, M. (Eds.) Lea’s Chemistry of Cement And Concrete; Butterworth-Heinemann: Oxford, UK; Cambridge, UK, 2019. [Google Scholar]
- Reyes, F.; Lin, Q.; Cilliers, J.J.; Neethling, S.J. Quantifying Mineral Liberation by Particle Grade And Surface Exposure Using X-Ray Microct. Miner. Eng. 2018, 125, 75–82. [Google Scholar] [CrossRef]
- Leißner, T.; Mütze, T.; Bachmann, K.; Rode, S.; Gutzmer, J.; Peuker, U.A. Evaluation of Mineral Processing by Assessment of Liberation And Upgrading. Miner. Eng. 2013, 53, 171–173. [Google Scholar] [CrossRef]
- Wittkowski, A.; Schirmer, T.; Qiu, H.; Goldmann, D.; Fittschen, U.E.A. Speciation of Manganese in A Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries. Metals 2021, 11, 188. [Google Scholar] [CrossRef]
- Schirmer, T.; Wahl, M.; Bock, W.; Kopnarski, M. Determination of the Li Distribution in Synthetic Recycling Slag with Sims. Metals 2021, 11, 825. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, J.-M.; Lee, J.B.; Heo, N.S.; Kwon, H.; Kim, Y.H.; Ryu, T. Recovery of Lithium from Lialo2 in Waste Box Sagger Through Sulfation to Produce Li2so4 And Sequential Wet Conversion to Li3po4, Licl And Li2co3. Hydrometallurgy 2023, 215, 105988. [Google Scholar] [CrossRef]
- Fandrich, R.G.; Bearman, R.A.; Boland, J.; Lim, W. Mineral Liberation by Particle Bed Breakage. Miner. Eng. 1997, 10, 175–187. [Google Scholar] [CrossRef]
- King, R.P.; Schneider, C.L. Mineral Liberation And the Batch Comminution Equation. Miner. Eng. 1998, 11, 1143–1160. [Google Scholar] [CrossRef]
- Lennartsson, A.; Engström, F.; Samuelsson, C.; Björkman, B.; Pettersson, J. Large-Scale Weee Recycling Integrated in An Ore-Based Cu-Extraction System. J. Sustain. Metall. 2018, 4, 222–232. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. Factsage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Fittschen, U.E.; Möckel, R.; Schreiner, M.; Klinger, M.; Radtke, M.; Meyer, B.; Guhl, S.; Renno, A.; Godinho, J.; Gloaguen, R.; et al. Bundling Analytical Capacities to Understand Phase Formation in Recycling of Functional Materials. Msf 2019, 959, 183–190. [Google Scholar] [CrossRef]
- Kaskes, P.; Déhais, T.; De Graaff, S.J.; Goderis, S.; Claeys, P. Micro–X-ray Fluorescence (µxrf) Analysis of Proximal Impactites: High-Resolution Element Mapping, Digital Image Analysis, and Quantifications. In Large Meteorite Impacts And Planetary Evolution Vi; Reimold, W.U., Koeberl, C., Eds.; Geological Society of America: Boulder, CO, USA, 2021; pp. 171–206. [Google Scholar]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. (Eds.) Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Doebelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program Bgmn. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-Ray Computed Tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- Hanna, R.D.; Ketcham, R.A. X-Ray Computed Tomography of Planetary Materials: A Primer And Review of Recent Studies. Geochemistry 2017, 77, 547–572. [Google Scholar] [CrossRef]
- Wadell, H. Volume, Shape, And Roundness of Rock Particles. J. Geol. 1932, 40, 443–451. [Google Scholar] [CrossRef]
- Li, H.; Ranneberg, M.; Fischlschweiger, M. High-Temperature Phase Behavior of Li2o-Mno with A Focus on the Liquid-To-Solid Transition. JOM 2023, 75, 5796–5807. [Google Scholar] [CrossRef]
- Buchwald, T.; Schach, E.; Peuker, U.A. A Framework for the Description of Multidimensional Particle Separation Processes. Powder Technol. 2024, 433, 119165. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. Scipy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jacob, E.; Garik, P. The Formation of Patterns in Non-Equilibrium Growth. Nature 1990, 343, 523–530. [Google Scholar] [CrossRef]
- Heo, S.J.; Batra, R.; Ramprasad, R.; Singh, P. Crystal Morphology And Phase Transformation of Lialo 2: Combined Experimental And First-Principles Studies. J. Phys. Chem. C 2018, 122, 28797–28804. [Google Scholar] [CrossRef]
- Bhagurkar, A.G.; Qin, R. The Microstructure Formation in Slag Solidification at Continuous Casting Mold. Metals 2022, 12, 617. [Google Scholar] [CrossRef]
- Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. Characteristics of Steel Slag under Different Cooling Conditions. Waste Manag. 2007, 27, 1335–1344. [Google Scholar] [CrossRef]
Slag System | Li2O | MnO2 | MgO | Al2O3 | SiO2 | CaO |
---|---|---|---|---|---|---|
High Manganese Content | 8.3% | 9.5% | 1.4% | 44.5% | 17.5% | 16.1% |
Sample Name | Li2O | MnO | Al2O3 | SiO2 | CaO | Cooling Rate |
---|---|---|---|---|---|---|
Slag A | 8.5% | 10.4% | 45.3% | 18.9% | 16.9% | 50 °C/h |
Slag B | 25 °C/h |
Phase | LiAl5O8-Spinel | Li2Ca2Si2O7 | LiAlO2 | Li2SiO3 | Mn-Al Spinel | Gehlenite |
---|---|---|---|---|---|---|
wt.% | 15.83 | 14.95 | 10.02 | 8.4 | 16.46 | 21.63 |
Scan Parameter | Low Resolution | High Resolution |
---|---|---|
X-ray source | Rhodium (Rh) | |
Acceleration voltage (W) | 50 | |
Electrical power (W) | 600 | |
spot size (µm) | 20 µm | |
measurement time/pixel (ms) | 30 | 20 |
measurement point distance (µm) | 150 | 50 |
Parameter | Value |
---|---|
Detector position (mm) | 120 |
Source position (mm) | −16 |
Lens | 0.4 X |
Acceleration voltage (keV) | 80 |
Electrical power (W) | 7 |
Filter (Zeiss Standard) | LE5 |
Camera binning | 2 |
Voxel size (µm) | 8.07 |
Number of projections | 1601 |
Scan angle (o) | 360 |
Exposure time (s) | 1.5 |
Scan time (hh:mm) | 01:24 |
Mineral Phase in wt.% | Slag B_G | Slag B_D | Slag B_I |
---|---|---|---|
Lithium aluminate (LiAlO2) | 14.4 | 11.2 | 14.1 |
Eucryptite (LiAlSiO4) | 6.8 | 6.8 | 10.8 |
Lithium manganese silicate (Li2MnSiO4) | 9.6 | 7.7 | 9.1 |
Mn-Al spinel (MnAl2O4) | 23.4 | 24.8 | 7.1 |
Gehlenite (Ca2Al2SiO7) | 35.0 | 37.3 | 43.5 |
Glaucochroite (Ca, Mn)2SiO4 | 10.1 | 11.4 | 15.1 |
Quartz (SiO2) | <1 | <1 | <1 |
Total Li from LiAlO2 in the sample (calculated) in wt.% | 1.5 | 1.2 | 1.5 |
Total Li in the feed (calculated) in wt.% | 3.9 | ||
Total Li (feed) transformed into LiAlO2 in % | 38.4 | 29.9 | 37.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachmawati, C.; Weiss, J.; Lucas, H.I.; Löwer, E.; Leißner, T.; Ebert, D.; Möckel, R.; Friedrich, B.; Peuker, U.A. Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods. Minerals 2024, 14, 130. https://doi.org/10.3390/min14020130
Rachmawati C, Weiss J, Lucas HI, Löwer E, Leißner T, Ebert D, Möckel R, Friedrich B, Peuker UA. Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods. Minerals. 2024; 14(2):130. https://doi.org/10.3390/min14020130
Chicago/Turabian StyleRachmawati, Cindytami, Joao Weiss, Hugo Ignacio Lucas, Erik Löwer, Thomas Leißner, Doreen Ebert, Robert Möckel, Bernd Friedrich, and Urs Alexander Peuker. 2024. "Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods" Minerals 14, no. 2: 130. https://doi.org/10.3390/min14020130
APA StyleRachmawati, C., Weiss, J., Lucas, H. I., Löwer, E., Leißner, T., Ebert, D., Möckel, R., Friedrich, B., & Peuker, U. A. (2024). Characterisation of the Grain Morphology of Artificial Minerals (EnAMs) in Lithium Slags by Correlating Multi-Dimensional 2D and 3D Methods. Minerals, 14(2), 130. https://doi.org/10.3390/min14020130