Review on the Development and Utilization of Ionic Rare Earth Ore
<p>Distribution of global weathering crust, ionic rare earth deposits, and related projects [<a href="#B15-minerals-12-00554" class="html-bibr">15</a>].</p> "> Figure 2
<p>Occurrence characteristics of rare earth elements on the surface of kaolinite [<a href="#B41-minerals-12-00554" class="html-bibr">41</a>].</p> "> Figure 3
<p>Structural characteristics of different weathering crusts: (<b>a</b>) Weathering crust of Zudong muscovite alkali feldspar granite in Jiangxi Province, (<b>b</b>) Weathering crust of Liutang rhyolite in Guangxi Province, and (<b>c</b>) Weathered crust of Getengzui metamorphic tuff in Jiangxi Province [<a href="#B15-minerals-12-00554" class="html-bibr">15</a>].</p> "> Figure 4
<p>Ionic rare earth ore types according to the relationship between rare earth grade and ore body depth.</p> "> Figure 5
<p>First generation leaching extraction process.</p> "> Figure 6
<p>Second generation leaching extraction process.</p> "> Figure 7
<p>Third generation leaching extraction process.</p> "> Figure 8
<p>Schematic diagram of mass transfer process of ionic rare earth ore.</p> "> Figure 9
<p>Theoretical tray height curve at different flow rates.</p> "> Figure 10
<p>Illustrative diagram of shrinking unreacted core model.</p> "> Figure 11
<p>Relationship between ore body floor and groundwater level.</p> "> Figure 12
<p>Schematic diagram of fully covered ionic rare earth mine artificial baseplate concealed ditch net liquid collection method.</p> "> Figure 13
<p>SEM of rare earth carbonate precipitate in the absence (<b>a</b>) and presence (<b>b</b>) of aluminum ions.</p> "> Figure 14
<p>Composition of Al<sup>3+</sup> and RE<sup>3+</sup> in rare earth leaching solution varies with pH.</p> "> Figure 15
<p>XRD diffraction patterns of rare earth carbonate precipitates under different conditions.</p> ">
Abstract
:1. Introduction
2. Overview of Ionic Rare Earth Ore Resources
2.1. Discovery and Naming of Ionic Rare Earth Ore
2.2. Formation Conditions of Ionic Rare Earth Ore
2.3. Distribution and Prospecting Progress of Ionic Rare Earth Resources
2.4. Occurrence Form of Ionic Rare Earth
2.5. Characteristics of Ionic Rare Earth Deposits
3. Leaching Process of Ionic Rare Earth Ore
3.1. Reform of Leaching Process of Ionic Rare Earth Ore
3.2. In Situ Leaching Process Rare Earth Recovery Process
3.3. Adaptability Evaluation of In Situ Leaching Process
4. Leachate Purification and Rare Earth Extraction of Ionic Rare Earth Ore
4.1. Leachate Purification Technology of Ionic Rare Earth Ore
4.2. Extraction Technology of Rare Earth Ions from Leachate
5. Development Direction of Ionic Rare Earth Exploitation Technology
5.1. Ammonium Free in “Leaching, Impurity Removal and Precipitation” Process of Ionic Rare Earth Ore
5.2. Enhancement of Seepage and Mass Transfer Process of In Situ Leaching of Ionic Rare Earth Ore
5.3. New Technology of Impurity Removal and Rare Earth Extraction from Leachate
6. Conclusions
Funding
Conflicts of Interest
References
- Li, F.; Xiao, Z.; Zeng, J.; Chen, J.; Sun, X. Recovery of REEs from leaching liquor of ion-adsorbed-type rare earths ores using ionic liquid based on cooking oil. Hydrometallurgy 2020, 196, 105449. [Google Scholar] [CrossRef]
- Qiu, T.; Yan, H.; Li, J.; Liu, Q.; Ai, G. Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technol. 2018, 330, 330–338. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.; Rohitha, L.; Dissanayake, D. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Kamitani, M. Rare earth minerals and resources in the world. J. Alloys Compd. 2006, 408, 1339–1343. [Google Scholar] [CrossRef]
- Deng, Y.; Ding, Y.; Huang, Z.; Yu, Y.; Zhang, Y. Boosting the extraction of rare earth elements from chloride medium by novel carboxylic acid based ionic liquids. J. Mol. Liq. 2021, 329, 115549. [Google Scholar] [CrossRef]
- Yu, S.; Duan, H.; Cheng, J. An evaluation of the supply risk for China’s strategic metallic mineral resources. Resour. Policy 2020, 70, 101891. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Q.; Feng, J.; Su, J.; Liu, X.; Chi, R. Role of initial moisture content on the leaching process of weathered crust elution-deposited rare earth ores. Sep. Purif. Technol. 2019, 217, 24–30. [Google Scholar] [CrossRef]
- Bao, Z. A geochemistry study of the granitoid weathering crust in southeast China. Geogeochemistry 1988, 10, 83–85. (In Chinese) [Google Scholar]
- Ichimura, K.; Sanematsu, K.; Kon, Y.; Takagi, T.; Murakami, T. REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. Am. Mineral. 2020, 105, 848–859. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, F.; Chi, R.; Liu, X.; Xu, Y.; Liu, Q. Effect of a novel compound on leaching process of weathered crust elution-deposited rare earth ore. Miner. Eng. 2018, 129, 63–70. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Z.; Chi, R.; Xu, Z.; Yu, J.; Wu, M.; Bai, R. Leaching hydrodynamics of weathered elution-deposited rare earth ore with ammonium salts solution. J. Rare Earths 2017, 35, 824–830. [Google Scholar] [CrossRef]
- Ding, J. Review of some important issues in the history of research, exploration, exploitation and utilization of ion-adsorbed rare earths. Rare Earth Inf. 2017, 03, 25–29. (In Chinese) [Google Scholar]
- Chi, R.; Liu, X. Prospect and Development of Weathered Crust Elution-Deposited Rare Earth Ore. J. Chin. Soc. Rare Earths 2019, 37, 129–140. (In Chinese) [Google Scholar]
- Chi, R.; Tian, J.; Luo, X.; Xu, Z.; He, Z. The basic research on the weathered crust elution-deposited rare earth ores. Nonferrous Met. Sci. Eng. 2012, 3, 1–13. (In Chinese) [Google Scholar]
- Zhao, Z.; Wang, D.; Wang, C.; Wang, Z.; Zou, X.; Feng, W.; Zhou, H.; Huang, X.; Huang, H. Progress in prospecting and research of ion-adsorption type REE deposits. Acta Geol. Sin. 2019, 93, 1454–1465. (In Chinese) [Google Scholar]
- Dill, H.G.; Buzatu, A. From the aeolian landform to the aeolian mineral deposit in the present and its use as an ore guide in the past. Constraints from mineralogy, chemistry and sediment petrography. Ore Geol. Rev. 2022, 141, 104490. [Google Scholar] [CrossRef]
- Liu, H.; Chen, B.; Peng, L.; Zhao, Z.; Zhang, X. Characteristics and genesis of the ion Adsorption REE deposit in Jiangbei Metamorphic was recognized crust, Southern Jiangxi Province. East China Geol. 2020, 41, 315–324. (In Chinese) [Google Scholar]
- Luo, X. Metallogenic conditions and formation mechanism of ion-adsorption rare earth deposits in Hunan Province. J. Min. 2011, 1, 332–333. (In Chinese) [Google Scholar]
- Yang, D.; Xiao, G. Regional Metallogenic Regularities of the Ion Adsorption Type of Rare-Earth Deposits in Guangdong Province. Geol. Resour. 2012, 20, 462–468. (In Chinese) [Google Scholar]
- Wu, C.; Huang, D.; Guo, Z. Geochemical study of rare earth elements in granite weathering crust in Longnan area, Jiangxi Province. Acta Geol. Sin. 2012, 20, 462–468. (In Chinese) [Google Scholar]
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Mentani, T.; Ohmura, T.; Watanabe, Y.; Urabe, T. So-Called “Ion-Adsorption Type” REE Deposits Found in Weathered Crust of Ilmenite-Series Granite in Northern Vietnam. Master’s Thesis, The University of Tokyo, Tokyo, Japan, 2010. [Google Scholar]
- Li, Y.; Zhao, W.; Zhou, M. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Bern, C.R.; Yesavage, T.; Foley, N.K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration. J. Geochem. Explor. 2017, 172, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Sanematsu, K.; Watanabe, Y.; Verplanck, P.L.; Hitzman, M.W. Characteristics and Genesis of Ion Adsorption-Type Rare Earth Element Deposits. In Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016; Volume 18. [Google Scholar]
- Sanematsu, K.; Kon, Y.; Imai, A.; Watanabe, K.; Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner. Depos. 2013, 48, 437–451. [Google Scholar] [CrossRef]
- Sanematsu, K.; Kon, Y.; Imai, A. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand. J. Asian Earth Sci. 2015, 111, 14–30. [Google Scholar] [CrossRef]
- Sanematsu, K.; Murakami, H.; Watanabe, Y.; Duangsurigna, S.; Siphandone, V. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bull. Geol. Surv. Jpn. 2009, 60, 527–558. [Google Scholar] [CrossRef] [Green Version]
- Padrones, J.T.; Imai, A.; Takahashi, R. Geochemical Behavior of Rare Earth Elements in Weathered Granitic Rocks in Northern Palawan, Philippines. Resour. Geol. Off. J. Soc. Resour. Geol. 2017, 67, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Maulana, A.; Yonezu, K.; Watanabe, K. Geochemistry of rare earth elements (REE) in the weathered crusts from the granitic rocks in Sulawesi Island, Indonesia. J. Earth Sci. 2014, 25, 460–472. [Google Scholar] [CrossRef]
- Berger, A.; Janots, E.; Gnos, E.; Frei, R.; Bernier, F. Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl. Geochem. 2014, 41, 218–228. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.F.; Williams-Jones, A.E. The Genesis of Regolith-Hosted Heavy Rare Earth Element Deposits: Insights from the World-Class Zudong Deposit in Jiangxi Province, South China. Econ. Geol. 2019, 114, 541–568. [Google Scholar] [CrossRef]
- Sanematsu, K.; Kon, Y. Geochemical characteristics determined by multiple extraction from ion-adsorption type REE ores. Bull. Geol. Surv. Jpn. 2013, 64, 313–330. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Feng, Y.; Feng, M.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Li, M.Y.H.; Zhou, M.F. The role of clay minerals in forming the regolith-hosted heavy rare earth element deposits. Am. Mineral. 2020, 105, 92–108. [Google Scholar] [CrossRef]
- Banfield, J.F. The Mineralogy and Chemistry of Granite Weathering. Master’s Thesis, The Australian National University, Canberra, Australia, 1985. [Google Scholar]
- Chi, R.; Xu, J.; He, P.; Zhu, Y. REE geochemistry of granitoid weathering crust and properties of ores in southern China. Geochimica 1995, 24, 261–269. (In Chinese) [Google Scholar]
- Yamaguchi, A.; Honda, T.; Tanaka, M.; Tanaka, K.; Takahashi, Y. Discovery of ion-adsorption type deposits of rare earth elements (REE) in Southwest Japan with speciation of REE by extended X-ray absorption fine structure spectroscopy. Geochem. J. 2018, 52, 415–425. [Google Scholar] [CrossRef]
- Mukai, H.; Kon, Y.; Sanematsu, K.; Takahashi, Y.; Ito, M. Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jiangxi Province, China. Sci. Rep. 2020, 10, 20194. [Google Scholar] [CrossRef]
- Kosmulski, M. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface 2009, 337, 439–448. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Geraki, K. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Yan, H. First-Principles Study on the Adsorption of Hydrated Rare Earth Ions on the Surface of Kaolinite. Ph.D. Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2019. [Google Scholar]
- Lee, J.H.; Byrne, R.H. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochim. Cosmochim. Acta 1993, 57, 295–302. [Google Scholar]
- Luo, X.; Wen, C.; Xu, J.; Ma, P.; Tang, X.; Chi, R. Research Progress on and Development Trend of Exploitation Technique of Ion-absorbed Type Rare Earth Ore. Met. Mine 2014, 43, 83–90. (In Chinese) [Google Scholar]
- Tang, X.; Li, M.; Yang, D. T The problem of reabsorption of ion-absorbed rare earth mineral in situ leaching mining and the measure to overcome it. J. Cent. South Univ. Technol. Sci. Technol. 1998, 29, 13–16. (In Chinese) [Google Scholar]
- Tian, J.; Tang, X.; Yin, J.; Luo, X.; Rao, G.; Jiang, M. Process opitimisation on leaching of a lean weathered crust elution-deposited rare earth ores. Int. J. Miner. Process. 2013, 119, 83–88. [Google Scholar] [CrossRef]
- Tian, J.; Tang, X.; Yin, J.; Chen, J.; Luo, X.; Rao, G. Enhanced leachability of a lean weathered crust elution-deposited rare-earth ore: Effects of Sesbania Gum Filter-Aid Reagent. Metall. Mater. Trans. B 2013, 44, 1070–1077. [Google Scholar] [CrossRef]
- Tian, J.; Chi, R.; Yin, J. Leaching process of rare earths from weathered crust elution-deposited rare earth ore. Trans. Nonferrous Met. Soc. China 2010, 20, 892–896. [Google Scholar] [CrossRef]
- Tian, J.; Tang, X.; Yin, J.; Luo, X. Present situation of fundamental theoretical research on leaching process of weathered crust elution-deposited rare earth ore. Nonferrous Met. Sci. Eng. 2012, 3, 48–52. (In Chinese) [Google Scholar]
- Wang, X.; Li, Y. Experimental study on permeability characteristics of rare earth ore body under seepage and chemical coupling action. In Proceedings of the 2017 Annual Conference of China Rare Earth Society, Beijing, China, 11–13 May 2017. (In Chinese). [Google Scholar]
- Nie, W.; Zhang, R.; He, Z.; Zhou, J.; Wu, M.; Xu, Z.; Chi, R.; Yang, H. Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy 2020, 193, 105295. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Y.; Chen, J. Analysis on the Changes of Permeability of Rare Earth and Its Causes under Different Concentrations of Ore. Min. Res. Dev. 2018, 12, 117–120. (In Chinese) [Google Scholar]
- Tian, J.; Yin, J.; Chen, K.; Rao, G.; Jiang, M.; Chi, R. Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore. Hydrometallurgy 2010, 103, 211–214. [Google Scholar]
- Chi, R.; Li, Z.; Peng, C. Partitioning properties of rare earth ores in China. Rare Met. 2005, 24, 205–210. [Google Scholar]
- Tang, X. Optimization of Mass Transfer Process of Leached Rare Earth Ore with Low Grade Weathering Crust. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2013. [Google Scholar]
- Tian, J.; Yin, J.; Chi, R.; Rao, G.; Jiang, M.; Ouyang, K. Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution. Hydrometallurgy 2010, 101, 166–170. [Google Scholar]
- Hu, S.; Cao, X.; Wang, G.; Long, P.; Zhou, X. An Ion Exchange Model for Leaching Process of Weathered Crust Elution-deposited Rare Earth. Min. Metall. Eng. 2018, 38, 1–5. (In Chinese) [Google Scholar]
- Long, P.; Wang, G.; Tian, J.; Hu, S.; Luo, S. Simulation of one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Trans. Nonferrous Met. Soc. China 2019, 29, 625–633. [Google Scholar] [CrossRef]
- Zhao, B.; She, Z.; Kang, Q. Applicability Evaluation and Classification of In-situ Leaching Mining for Ion-absorbed-type Rare Earth Deposit. Min. Metall. Eng. 2017, 37, 6–10. (In Chinese) [Google Scholar]
- Judge, W.D.; Azimi, G. Recent progress in impurity removal during rare earth element processing: A review. Hydrometallurgy 2020, 196, 105435. [Google Scholar] [CrossRef]
- Hu, P.; Jiao, X.; He, X.; Gu, Z.; Li, M.; Li, Y. Effect of Impurity Ions on the Crystallization of Yttrium-Base-Heavy Rare Earth Carbonate. Chin. Rare Earths 2000, 21, 1–4. (In Chinese) [Google Scholar]
- Qian, Y. Precipitation and Crystallization of Ammonium Bicarbonate in Low Concentration Rare Earth Solution. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2013. [Google Scholar]
- Chi, R.; Li, X.; Xu, J.; He, P.; Zhu, Y. Theoretical analysis of ammonium bicarbonate used to separate rare earth from aluminum-containing solution. Multipurp. Util. Miner. Resour. 1993, 4, 39–42. (In Chinese) [Google Scholar]
- Luo, X.; Zou, L.; Ma, P.; Luo, C.; Xu, J.; Tang, X. Removing aluminum from a low-concentration lixivium of weathered crust elution-deposited rare earth ore with neutralizing hydrolysis. Rare Met. 2017, 36, 685–690. [Google Scholar] [CrossRef]
- Li, X.; Chi, R. Study on removing impurities in the exchanged liquor of rare earth ores. Multipurp. Util. Miner. Resour. 1997, 2, 10–13. (In Chinese) [Google Scholar]
- Li, J.; Chen, Z.; Wang, G. The Invention Relates to a Complexation Precipitation Method for Removing Aluminum from Rare Earth Solution. CN. Patent CN105624440B, 3 October 2017. (In Chinese). [Google Scholar]
- Wang, Y.; Ren, Y.; Liu, J.; Zhang, C.; Xia, S.; Tao, X. Crystal growth, structure and optical properties of solvated crystalline Tris(8-hydroxyquinoline)aluminum(III)(Alq3). Dye. Pigment. 2016, 133, 9–15. [Google Scholar] [CrossRef]
- Brinkmann, M.; Gadret, G.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 2000, 122, 5147. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, C.; Wu, N.; Zeng, L. Study on elimination of aluminum in ion adsorption type rare earth ore. Shanghai Met. (Nonferrous Fasclcule) 1993, 14, 16–19. (In Chinese) [Google Scholar]
- Ge, X. Method for Removing Aluminum from Rare Earth Solution by Benzoate Precipitation. CN. Patent ZL201210542546.0, 14 December 2012. (In Chinese). [Google Scholar]
- Han, Q.; Liu, Z.; Yan, J.; Li, J. A new technology of aluminum removal from rare earth feed liquid with naphthenic acid. Chin. Rare Earths 2013, 34, 74–77. (In Chinese) [Google Scholar]
- Luo, X.; He, K.; Zhou, H.; Zhang, Y.; Xie, F. Enhanced impurity removal of ionic rare earth leaching solution through the use of lauryl glucoside. Miner. Eng. 2022, 181, 107551. [Google Scholar] [CrossRef]
- Chi, R.; Xu, Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metall. Mater. Trans. B 1999, 30, 189–195. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; He, X.; Hu, P.; Gu, Z. Precipitation and crystallization process of rare earth carbonate. Chin. J. Nonferrous Metals. 1999, 9, 165–170. (In Chinese) [Google Scholar]
- Li, Y.; Li, M.; Hu, P.; He, X. Study on the precipitation and crystallization process of rare earth carbonate. In Proceedings of the International Symposium on Industrial Crystallization, Tianjin, China, 21–25 September 1998; Volume 9, pp. 85–90. [Google Scholar]
- Luo, X.; Qian, Y.; Chen, X.; Liang, C. Crystallization of Rare earth solution by Ammonium bicarbonate. In Proceedings of the 52nd Conference of Metallurgists, Rare Earth Elements, Montreal, QC, Canada, 27–31 October 2013; pp. 289–297. [Google Scholar]
- Liu, Y. Precipitation Crystals Technology and Mechanism Research on Ion-Absorbed Rare Earth Ore. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2014. [Google Scholar]
- Chi, R.A.; Xu, J.M.; He, P.J.; Zhu, Y.J. Recovering re From Leaching Liquor of Rare Earth Ore by Extraction. Trans. Nonferrous Met. Soc. China 1995, 4, 36–40. [Google Scholar]
- Xu, D.; Zeb, S.; Yu, C.; Jin, L.; Peng, X.; Hao, Z.; Sun, G. Recovery of rare earths from nitric acid leach solutions of phosphate ores using solvent extraction with a new amide extractant (TODGA). Hydrometallurgy 2018, 180, 132–138. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, Z.; Huang, X.; Huang, L.; Chen, Y.; Wang, L.; Long, Z. Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonia-nitrogen pollution: I. leaching with magnesium sulfate. Hydrometallurgy 2015, 153, 58–65. [Google Scholar]
- Yang, L.; Li, C.; Wang, D.; Li, F.; Liu, Y.; Zhou, X.; Liu, M.; Wang, X.; Li, Y. Leaching ion adsorption rare earth by aluminum sulfate for increasing efficiency and lowering the environmental impact. J. Rare Earths 2019, 37, 429–436. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, Z.; Guhua, H.U.; Huang, L.; Huang, X.; Chen, Y.; Long, Z. Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate. J. Rare Earths 2016, 34, 917–923. [Google Scholar] [CrossRef]
- Luo, X.; Ma, P.; Luo, C.; Chen, X.; Feng, B.; Yan, Q. The effect of LPF on the leaching process of a weathered crust elution-deposited rare earth ore. In Proceedings of the 53rd Conference of Metallurgists, Vancouver, BC, Canada, 27 September–1 October 2014. [Google Scholar]
- Yanfei, X.; Fuguo, L.; Li, H.; Zongyu, F.; Zhiqi, L. Reduction leaching of rare earth from ion-adsorption type rare earths ore: II. Compound leaching. Hydrometallurgy 2017, 173, 1–8. [Google Scholar] [CrossRef]
- Nagashima, K.; Wakita, H.; Mochizuki, A. The Synthesis of Crystalline Rare Earth Carbonates. Bull. Chem. Soc. Jpn. 1973, 46, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Meng, X. No-Ammonia Precipitation Enrichment Technology and Process Control of Low Concentration Rare Earth Sulfate Leaching Solution. Master’s Thesis, General Research Institute for Nonferrous Metals, Beijing, China, 2017. [Google Scholar]
- Zhu, D. Behavior and Process of Ion-Type Rare Earth Ore Leaching Liquor Coprecipitation and Aluminum Selective Removal with No-Ammonium. Ph.D. Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2019. [Google Scholar]
- Zhang, Y.; Zhang, B.; Yang, S.; Zhong, Z.; Zhou, H.; Luo, X. Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant. Int. J. Min. Sci. Technol. 2021, 31, 995–1002. [Google Scholar] [CrossRef]
- Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y. A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits. Hydrometallurgy 2014, 150, 99–106. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, L.; Wang, H.; Cui, J.; Hao, J. Surfactant-assistant atmospheric acid leaching of laterite ore for the improvement of leaching efficiency of nickel and cobalt. J. Clean. Prod. 2019, 228, 1–7. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, Y.; Zhou, H.; He, K.; Zhang, B.; Zhang, D.; Xiao, W. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images. Int. J. Min. Sci. Technol. 2022, 32, 411–421. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Z.; Zhou, F.; Zhong, C.; Sun, N.; Chi, R. Swelling of clay minerals in ammonium leaching of weathered crust elution-deposited rare earth ores. Rare Metals. 2018, 37, 72–78. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Liu, D.; Chi, X.; Chi, R. Swelling of clay minerals during the leaching process of weathered crust elution-deposited rare earth ores by magnesium salts. Powder Technol. 2020, 367, 889–900. [Google Scholar] [CrossRef]
- Chai, X.; Li, G.; Zhang, Z.; Chi, R.; Chen, Z. Leaching Kinetics of Weathered Crust Elution-Deposited Rare Earth Ore with Compound Ammonium Carboxylate. Minerals 2020, 10, 516. [Google Scholar] [CrossRef]
- He, Z.; Zhang, R.; Sha, A.; Zuo, Q.; Xu, Z.; Wu, M. Anti-swelling mechanism of DMDACC on weathered crust elution-deposited rare earth ore. J. Rare Earths 2022, in press. [Google Scholar] [CrossRef]
- Yin, S.; Chen, X.; Yan, R.; Wang, L. Pore structure characterization of undisturbed weathered crust elution-deposited rare earth ore based on X-ray micro-CT scanning. Minerals 2021, 11, 236. [Google Scholar] [CrossRef]
- Luo, X.; Feng, B.; Wang, P.; Zhou, H.; Chen, X. The Effect of Fulvic Acid on the Leaching of a Weathered Rare-Earth Ore. Metall. Mater. Trans. B 2015, 46, 2405–2407. [Google Scholar] [CrossRef]
- Xu, S.; Wang, H.; Zhang, S.; Wu, K. Biosorption of lanthanum and Cerium ions by Soil bacterium R strain. In Proceedings of the 10th National Symposium on Environmental Microbiology, Guangzhou, China, 30 November–4 December 2007. (In Chinese). [Google Scholar]
- Yin, J. Study on Microbe Adsorption of Rare Earth from the Leach Liquid of the Weathered Crust Elution-Deposited Rare Earth Ore. Master’s Thesis, Nanchang University, Nanchang, China, 2012. [Google Scholar]
- Xiao, Y.; Long, Z.; Huang, X.; Feng, Z.; Cui, D.; Wang, L. Study on non-saponification extractionprocess for rare earth separation. J. Rare Earths 2013, 31, 512–516. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, X.; Dong, Y.; Wang, Y. Synergistic effect of acid−basecoupling bifunctional ionic liquids in impregnated resin for rare earth adsorption. ACS Sustain. Chem. Eng. 2016, 4, 616–624. [Google Scholar] [CrossRef]
Country | Area | Climate | Precipitation (mm) | Rock Type | Mineral Character | REE (×10−6) | Thickness of Weathering Crust (m) | Crust of WeatheringREE (×10−6) | IREE (%) | Literatures |
---|---|---|---|---|---|---|---|---|---|---|
United States | South Carolina | Subtropics | 1150 | Medium-coarse-fine-grained biotite hornblende granite | Monazite-zircon-sphene-epanite-apatite-bastnaesite | 123~451 | 10~20 | 93~757 | 3~77 | [24] |
Myanmar | Tanintharyi | Tropic | 3000 | Biotite granite-binary mica granite-garnet granite | Epinde-sphene-apatite zircon; Apatite-zircon-garnet-monazite-yttrium-rare earth fluorocarbons | 130~328 | 1.5~5 | 30~364 | 1.5~59 | [25] |
Viet Nam | Nui Phao | Tropic | 1800 | / | / | 155 | 10 | / | 18~67 | [22] |
Thailand | Phuket Island | Tropic | 2200 | Biotite granite | Rare earth fluorocarbon minerals-epinite-sphene-apatite-zircon | 592 | 2~12 | 174~1084 | 34~85 | [26] |
Thailand | North Thai granitic pluton | Tropic | 1200 | Black cloud hornblende granodiorite-biotite granite-binary mica granite | Epinite-sphene-monazite-xenotime-apatite-zircon | 152~450 | 4~7 | 53~726 | 0.1~61 | [27] |
Thailand | Western Province granitic pluton | Tropic | 1600 | Biotite granite-binary mica granite | Epinite-sphene-monazite-xenotime-apatite-zircon-rare earth fluorocarbonate-thorium | 171~634 | 3~12 | 85~1430 | 0.4~94 | [27] |
Laos | Attapu, Boneng, Nape, Xaisomboum | Tropic | 1834 | Black cloud hornblende granodiorite-biotite granite-porphyry | Apatite-zircon-monazite-xenotime-epinite-sphene-thorium-garnet | 36~339 | 1~10 | 38~817 | 14~73 | [28] |
Philippines | Palawan | Tropic | 2200 | Biotite granodiorite-biotite granite | Allanite-monazite-xenotime-zircon-apatite | 77~243 | 1~5 | 26~94 | 53~74 | [29] |
Indonesia | Sulawesi | Tropic | 2500 | Mamasa and palu granite | Sphene-apatite-zircon-epinite | 204~285 | 1~6 | 81~533 | [30] | |
Madagascar | Antsirabe | Tropic | 1200 | Tonalite | Allanite-yttrite-monazite-yttrite fluoride | 299~363 | 2~3 | 286~2194 | [31] |
Weathering Crust Type | Deposit Type | Parent Rock Type | Main Rare Earth Minerals in Parent Rock | Approximate Proportion of Ionic Phase Rare Earth in the Deposit/% |
---|---|---|---|---|
Plutonic weathering crust | Heavy rare earth type of yttrium rich | Fine grained muscovite granite | Fluorocarbon calcium yttrium ore | 88 |
Yttrium rich heavy rare earth type | Medium fine grained biotite granite | Fluorocarbon calcium yttrium ore | 80 | |
Heavy rare earth type of medium yttrium content | Medium fine grained biotite granite | Fluorocarbon calcium yttrium ore | 78 | |
Light rare earth type of europium rich and medium yttrium content | Medium fine grained biotite granite | Bastnaesite | 85 | |
Light rare earth type of medium yttrium and low europium content | Medium fine grained biotite granite | Bastnaesite | 80 | |
Non selective distribution type | Medium fine grained binary-mica granite | Fluorocarbon calcium yttrium ore | 90 | |
Light rare earth type of cerium rich | Fine grained biotite granite | Bastnaesite | 83 | |
Hypabyssal weathering crust | Light rare earth type of lanthanum and europium rich | Granite porphyry | Bastnaesite | 90 |
Non selective distribution type | Lamprophyre | Bastnaesite | 85 | |
Extrusive rock weathering crust | Light rare earth type of lanthanum and europium rich | Rhyolite | Bastnaesite | 92 |
Light rare earth type of lanthanum and europium rich | Tuff | Bastnaesite | 97 |
Deposit Conditions | Applicability Evaluation | Remarks | ||
---|---|---|---|---|
Geological conditions of deposit | Metallogenic parent rock | Granite weathering crust | Excellent | Successful production and Application |
Weathering crust of complex | Not applicable | Small scale production test but unsuccessful | ||
Tuff weathering crust | Not applicable | No mines use this technology for mining | ||
Deposit permeability | Fine (1~3 m/d) | Excellent | Granite weathering crust | |
Barely good (0.5~1 m/d) | Good | Granite weathering crust | ||
Poor (0.25~0.5 m/d) | Good | Weathering crust of complex | ||
Extremely poor (<0.25 m/d) | Commonly | Tuff weathering crust | ||
Hydrogeological conditions | The groundwater level coincides with the baseplate | Excellent | Latent deposit | |
The groundwater level is below the baseplate | Commonly | Outcrop deposit | ||
The groundwater level is above the baseplate | Commonly | Deep buried deposit | ||
Engineering geological conditions | Occurrence of baseplate | Barefoot | Excellent | |
Full cover | Good | |||
Dip angle of ore bed | horizontal | Excellent | ||
Gentle tilt | Excellent | |||
Tilt | Commonly | |||
Thickness of ore bed | Thin | Commonly | ||
Relatively thick | Good | |||
Thick | Excellent | |||
Extremely thick | Excellent |
Compound Composition | LG + Al(OH)3 | LG + La3+ | LG + La(OH)3 |
---|---|---|---|
Adsorption energy (KJ·mol−1) | −114.82 | −45.94 | −70.58 |
Reaction band | Al1-O3 | La1-O3 | La1-O3 |
Band population | 0.26 | 0.01 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Zhang, Y.; Zhou, H.; He, K.; Luo, C.; Liu, Z.; Tang, X. Review on the Development and Utilization of Ionic Rare Earth Ore. Minerals 2022, 12, 554. https://doi.org/10.3390/min12050554
Luo X, Zhang Y, Zhou H, He K, Luo C, Liu Z, Tang X. Review on the Development and Utilization of Ionic Rare Earth Ore. Minerals. 2022; 12(5):554. https://doi.org/10.3390/min12050554
Chicago/Turabian StyleLuo, Xianping, Yongbing Zhang, Hepeng Zhou, Kunzhong He, Caigui Luo, Zishuai Liu, and Xuekun Tang. 2022. "Review on the Development and Utilization of Ionic Rare Earth Ore" Minerals 12, no. 5: 554. https://doi.org/10.3390/min12050554
APA StyleLuo, X., Zhang, Y., Zhou, H., He, K., Luo, C., Liu, Z., & Tang, X. (2022). Review on the Development and Utilization of Ionic Rare Earth Ore. Minerals, 12(5), 554. https://doi.org/10.3390/min12050554