Microplastic Extraction from the Sediment Using Potassium Formate Water Solution (H2O/KCOOH)
"> Figure 1
<p>Grain size distribution of the sediment used for the experiment.</p> "> Figure 2
<p>XRD pattern of the pure sediment used to prepare the experimental mixtures (Qz-quartz, Kfs-potassium feldspar, Pl-plagioclase, Mic-mica).</p> "> Figure 3
<p>The ATR-FTIR spectra of polyethylene (PE): Extracted from sediment with water, the potassium formate water solution and clean PE and potassium formate as references.</p> "> Figure 4
<p>The ATR-FTIR spectra of PUR, PS, PET, PE and residuum from the blank sample.</p> "> Figure 5
<p>TG-DTG-DTA curves recorded for the initial and extracted MP samples: (<b>a</b>) PUR, (<b>b</b>) PS, (<b>c</b>) PE, (<b>d</b>) PET.</p> "> Figure 6
<p>SEM images of the sediment without polymers after mixing (<b>A</b>); SEM image and EDS analysis of pure sediment surface after mixing (<b>B</b>).</p> "> Figure 7
<p>SEM images of polyethylene terephthalate particles before they were added to the sediment (PET) and extracted from the sediment (extracted PET).</p> "> Figure 8
<p>SEM images of polyethylene particles before they were added to the sediment (PE) and extracted from the sediment (extracted PE).</p> "> Figure 9
<p>SEM images of polystyrene particles before they were added to the sediment (PS) and extracted from the sediment (extracted PS).</p> "> Figure 10
<p>SEM images of polyurethane particles before they were added to the sediment (PUR) and extracted from the sediment (extracted PUR).</p> "> Figure 11
<p>SEM images of the surface of the PET particle extracted from the sediment (with positions and the results of the EDS analysis).</p> ">
Abstract
:1. Introduction
1.1. Microplastics in Sediments
1.2. Density Separation Methods
1.3. Density Separation with Potassium Formate Solution (H2O/KCOOH)
2. Materials and Methods
2.1. Sediment with Microplastic
2.2. Potassium Formate Solution Preparation
2.3. Density Separation Protocol
2.4. Instrumental Methods
2.5. QA/QC
3. Results and Discussion
3.1. Microplastic Recovery and Identification
3.1.1. Density Separation with Deionized Water
3.1.2. Density Separation with H2O/KCOOH and Analysis of Extracted Microplastics
3.2. Microplastic–Sediment Interaction
3.3. Areas of Further Development of the Method
3.4. Study and Method Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, H. Life & death in the Anthropocene: A short history of plastic. In Art in the Anthropocene: Encounters Among Aesthetics, Politics, Environments and Epistemologies; Andrews McMeel Publishing: Kansas City, MO, USA, 2015; pp. 347–358. [Google Scholar]
- Zalasiewicz, J.; Williams, M.; Waters, C.N. Can an Anthropocene series be defined and recognized? Geol. Soc. Lond. Spec. Pub. 2014, 395, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Zalasiewicz, J.; Waters, C.N.; Ivar do Sul, J.A.; Corcoran, P.L.; Barnosky, A.D.; Cearreta, A.; Edgeworth, M.; Gałuszka, A.; Jeandel, C.; Leinfelder, R.; et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene 2016, 13, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Bandsch, J.; Piringer, O. Characteristics of plastic materials. In Plastic Packaging Materials for Food: Barrier Function, Mass Transport, Quality Assurance, and Legislation; Wiley-VCH: Hoboken, NJ, USA, 2000; pp. 9–45. [Google Scholar]
- Thompson, R.C.Y.; Olsen, R.P.; Mitchell, A.; Davis, S.J.; Rowland, J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Brandsma, S.H.; Van Velzen, M.J.M.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Thompson, R.C. Plastic debris in the marine environment: Consequences and solutions. Mar. Nat. Conserv. Eur. 2006, 193, 107–115. [Google Scholar]
- Erni-Cassola, G.; Gibson, M.I.; Thompson, R.C.; Christie-Oleza, J.A. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ. Sci. Technol. 2017, 51, 13641–13648. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, J.R.; Swarzenski, P.W. A microplastic size classification scheme aligned with universal plankton survey methods. MethodsX 2021, 8, 101516. [Google Scholar] [CrossRef]
- Shi, W.; Cui, T.; Wu, H.; LeBlanc, G.A.; Wang, F.; An, L. A proposed nomenclature for microplastic contaminants. Mar. Pollut. Bull. 2021, 172, 112960. [Google Scholar] [CrossRef]
- Rozman, U.; Kalčíková, G. Seeking for a perfect (non-spherical) microplastic particle—The most comprehensive review on microplastic laboratory research. J. Hazard. Mater. 2022, 424, 127529. [Google Scholar] [CrossRef]
- Sousa, F.D.B. Plastic and its consequences during the COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021, 28, 1–12. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Duarte, A.C.; Ouyang, W.; Barcelò, D.; Rocha-Santos, T. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem. Eng. J. 2020, 405, 126683. [Google Scholar] [CrossRef]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Reusable masks for COVID-19: A missing piece of the microplastic problem during the global health crisis. Mar. Pollut. Bull. 2020, 161, 111777. [Google Scholar] [CrossRef]
- Provencher, J.F.; Covernton, G.A.; Moore, R.C.; Horn, D.A.; Conkle, J.L.; Lusher, A.L. Proceed with caution: The need to raise the publication bar for microplastics research. Sci. Total Environ. 2020, 748, 141426. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Liu, C.; He, D.; Xu, J.; Sun, J.; Li, J.; Pan, X. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. J. Hazard. Mater. 2021, 423, 126915. [Google Scholar] [CrossRef]
- Yin, L.; Wen, X.; Huang, D.; Zeng, G.; Deng, R.; Liu, R.; Pan, H. Microplastics retention by reeds in freshwater environment. Sci. Total. Environ. 2021, 790, 148200. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, F.K.S.; He, J.; Johnson, M.; Gibbins, C.; Kay, P.; Zhu, Y.G. A critical review of microplastic pollution in urban freshwater environments and legislative progress in China: Recommendations and insights. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1–44. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Wang, J.; Bassi, A. Current research trends on microplastic pollution from wastewater systems: A critical review. Rev. Environ. Sci. Biotechnol. 2019, 18, 207–230. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef]
- Barrows, A.P.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.A.; Holman, L.; Murphy, M.; Vermaire, J.C. Citizen science sampling programs as a technique for monitoring microplastic pollution: Results, lessons learned and recommendations for working with volunteers for monitoring plastic pollution in freshwater ecosystems. Environ. Monit. Assess. 2019, 191, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nel, H.A.; Smith, G.H.S.; Harmer, R.; Sykes, R.; Schneidewind, U.; Lynch, I.; Krause, S. Citizen science reveals microplastic hotspots within tidal estuaries and the remote Scilly Islands, United Kingdom. Mar. Pollut. Bull. 2020, 161, 111776. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, A. A roadmap for a Plastisphere. Mar. Pollut. Bull. 2021, 167, 112322. [Google Scholar] [CrossRef]
- Yang, L.; Zhanga, Y.; Kanga, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V. A critical review of extraction and identification methods of microplastics in wastewater and drinking water. Environ. Sci. Technol. 2020, 54, 7037–7049. [Google Scholar] [CrossRef]
- He, D.; Zhang, X.; Hu, J. Methods for separating microplastics from complex solid matrices: Comparative analysis. J. Hazard. Mater. 2021, 409, 124640. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Hellsten, P.P.; Salminen, J.M.; Jorgensen, K.S.; Nysten, T.H. Use of potassium formate in road winter deicing can reduce groundwater deterioration. Environ. Sci. Technol. 2005, 39, 5095–5100. [Google Scholar] [CrossRef]
- Simpson, M.A.; Al-Reda, S.; Foreman, D.; Guzman, J.; Al-Fawzy, M.; Vice, P. Application and recycling of sodium and potassium formate brine drilling fluids for ghawar field HTHP gas wells. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 4–7 May 2009. [Google Scholar]
- Svendsen, O.; Toften, J.K.; Marshall, D.S.; Hermansson, C.L. Use of a novel drill-in/completion fluid based on potassium formate brine on the first open hole completioninthe gullfaks field. In Proceedings of the SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference, Houston, TX, USA, 27–29 March 1995. [Google Scholar]
- Howard, S.K. Formate brines for drilling and completion: State of the art. In Proceedings of the SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference, Houston, TX, USA, 27–29 March 1995. [Google Scholar]
- Downs, J.D.; Killie, S.; Whale, G.F.; Inglesfield, C.H. Development of environmentally benign format-based drilling and completion fluids. In Proceedings of the SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference, Jakarta, Indonesia, 25–27 January 1994. [Google Scholar]
- Liu, X.; Gao, Y.; Hou, W.; Ma, Y.; Zhang, Y. Non-toxic high temperature polymer drilling fluid significantly improving marine environmental acceptabiiity and reducing cost for offshore drilling. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2019. [Google Scholar]
- Ayyagari, V.; Hwang, Y.; Kim, J. Design and development of potassium formate based atmospheric water harvester. Energy 2021, 221, 119726. [Google Scholar]
- Zhang, K.; Su, J.; Xiong, X.; Wu, X.; Wu, C.; Liu, J. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 2016, 219, 450–455. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, K.; Chen, X.; Shi, H.; Luo, Z.; Wu, C. Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environ. Pollut. 2018, 235, 899–906. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Vogt, R.D. An optimized density-based approach for extracting microplastics from soil and sediment samples. Environ. Pollut. 2019, 254, 113009. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Rahman, M.S.; Alom, J.; Hasan, M.S.; Johir, M.A.H.; Mondal, M.I.H.; Lee, D.Y.; Park, J.; Zhou, J.L.; Yoon, M.H. Microplastic particles in the aquatic environment: A systematic review. Sci. Total Environ. 2021, 775, 145793. [Google Scholar] [CrossRef]
- Zhang, K.; Xiong, X.; Hu, H.; Wu, C.; Bi, Y.; Wu, Y.; Zhou, B.; Lam, P.K.; Liu, J. Occurrence and characteristics of microplastic pollution in Xiangxi bay of three gorges reservoir, China. Environ. Sci. Technol. 2017, 51, 3794–3801. [Google Scholar] [CrossRef]
- Karlsson, T.M.; Vethaak, A.D.; Almroth, B.C.; Ariese, F.; van Velzen, M.; Hassellöv, M.; Leslie, H.A. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 2017, 122, 403–408. [Google Scholar] [CrossRef]
- Waldschlager, K.; Schuttrumpf, H. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ. Sci. Technol. 2019, 53, 1958–1966. [Google Scholar] [CrossRef]
- Gaczoł, M. Influence of ionic hydration inhibitors on triple inhibition system mud properties—Technological parameters. AGH Drill. Oil Gas 2017, 34, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Wysocki, S. Influence of ionic hydration inhibitors on triple inhibition system mud properties—Clay rock swelling. AGH Drill. Oil Gas 2017, 34, 629. [Google Scholar] [CrossRef] [Green Version]
- Asensio, R.C.; Moya, M.S.A.; de la Roja, J.M.; Gómez, M. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Anal. Bioanal. Chem. 2020, 395, 2081–2096. [Google Scholar] [CrossRef] [PubMed]
- Barszczewska-Rybarek, I.; Jaszcz, K.; Chladek, G.; Grabowska, P.; Okseniuk, A.; Szpot, M.; Zawadzka, M.; Sokołowska, A.; Tarkiewicz, A. Characterization of changes in structural, physicochemical and mechanical properties of rigid polyurethane building insulation after thermal aging in air and seawater. Polym. Bull. 2021, 75, 1–23. [Google Scholar] [CrossRef]
- Noda, I.; Dowrey, A.E.; Haynes, J.L.; Marcott, C. Group frequency assignments for major infrared bands observed in common synthetic polymers. In Physical Properties of Polymers Handbook; Mark, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Piane, C.D.; Raven, M.; Mizaikoff, B. Infrared attenuated total reflectance spectroscopy: An innovative strategy for analyzing mineral components in energy relevant systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.P.; Prakash, D. Adsorption of potassium as influenced by concentration and pH of the solution. Clay Miner. Bull. 1957, 3, 151–153. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Li, C.; Cui, Q.; Zhang, M.; Vogt, R.D.; Lu, X. A commonly available and easily assembled device for extraction of bio/non-degradable microplastics from soil by flotation in NaBr solution. Sci. Total Environ. 2021, 759, 143482. [Google Scholar] [CrossRef]
- Corcoran, P.L. Degradation of microplastics in the environment. In Handbook of Microplastics in the Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–12. [Google Scholar]
- Liu, X.; Xu, J.; Zhao, Y.; Shi, H.; Huang, C.-H. Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere 2019, 226, 726–735. [Google Scholar] [CrossRef]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial degradation and other environmental aspects ofmicroplastics/plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef]
- Bacha, A.U.R.; Nabi, I.; Zhang, L. Mechanisms and the engineering approaches for the degradation of microplastics. ACS ES&T Eng. 2021, 1, 1481–1501. [Google Scholar]
Polymer Type | Extraction Fluid | Total Extracted Material Mass (g) | MP Retained from Initial 1 g of Polymer Mass (g) * | Polymer Specific Density (g/cm3) [53] |
---|---|---|---|---|
PE | H2O | 0.860 | N/A | 0.92 |
PE | H2O/KCOOH | 0.975 | 0.953 | 0.92 |
PS | H2O/KCOOH | 0.995 | 0.959 | 1.04 |
PUR | H2O/KCOOH | 0.698 | 0.681 | 1.20 |
PET | H2O/KCOOH | 0.452 | 0.312 | 1.38–1.40 |
blank | H2O/KCOOH | 0.008 | - | - |
Compound | m/m% | Standard Error | Element | m/m% | Standard Error |
---|---|---|---|---|---|
SiO2 | 21.16 | 0.41 | Si | 9.89 | 0.19 |
K2O | 15.71 | 0.29 | K | 13.04 | 0.24 |
Al2O3 | 8.36 | 0.11 | Al | 4.42 | 0.06 |
Fe2O3 | 2.98 | 0.09 | Fe | 2.09 | 0.07 |
MgO | 0.50 | 0.12 | Mg | 0.304 | 0.070 |
TiO2 | 0.231 | 0.011 | Ti | 0.128 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosz, K.; Natkański, P.; Michalik, M. Microplastic Extraction from the Sediment Using Potassium Formate Water Solution (H2O/KCOOH). Minerals 2022, 12, 269. https://doi.org/10.3390/min12020269
Jarosz K, Natkański P, Michalik M. Microplastic Extraction from the Sediment Using Potassium Formate Water Solution (H2O/KCOOH). Minerals. 2022; 12(2):269. https://doi.org/10.3390/min12020269
Chicago/Turabian StyleJarosz, Kinga, Piotr Natkański, and Marek Michalik. 2022. "Microplastic Extraction from the Sediment Using Potassium Formate Water Solution (H2O/KCOOH)" Minerals 12, no. 2: 269. https://doi.org/10.3390/min12020269