Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens
<p>Indoleacetic acid (IAA) activities of endophytic fungi isolated from <span class="html-italic">S. flavescens</span> by agar plate assay. The PDA+Trp group produced IAA only in the presence of Trp; the potato dextrose agar (PDA) group produced IAA only without Trp; the PDA/PDA+Trp group showed IAA production in both cultivation conditions.</p> "> Figure 2
<p>Phosphate solubilization (white bars) and siderophore production (black bars) of <span class="html-italic">S. flavescens</span> endophytes examined by agar plate assays.</p> "> Figure 3
<p>IAA content of mycelia (<b>A</b>) and ferment broth (<b>B</b>) of <span class="html-italic">S. flavescens</span> endophytes cultivated in PDB media (black bars) or PDB supplemented with Trp (white bars) measured by HPLC-MS/MS.</p> "> Figure 4
<p>Primary root growth of 6- (<b>A</b>), 7- (<b>B</b>), 8- (<b>C</b>), and 9-day-old (<b>D</b>) <span class="html-italic">A. thaliana</span> plants after treatment with standard solutions and endophyte extracts at different IAA concentration levels. Significance is assessed based on <span class="html-italic">p</span>-values: * <span class="html-italic">p</span> ≤ 0.05; ** <span class="html-italic">p</span> ≤ 0.01; *** <span class="html-italic">p</span> ≤ 0.001 and **** <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 5
<p>Effects of a selected fungal extract on the growth of <span class="html-italic">Arabidopsis</span> seedlings. Untreated control (<b>A</b>), 0.01 µL/mL of IAA standard (<b>B</b>) and the extract of SZMC 26648 broth containing 0.01 µL/mL of IAA (<b>C</b>).</p> "> Figure 6
<p>Biomass of 15-day-old <span class="html-italic">Arabidopsis thaliana</span> plants after treatment with the ferment broth extracts of selected endophytes diluted to five concentration levels based on their IAA content. The IAA standard was used for the control plants. Significance is assessed based on <span class="html-italic">p</span>-values: * <span class="html-italic">p</span> ≤ 0.05; ** <span class="html-italic">p</span> ≤ 0.01; *** <span class="html-italic">p</span> ≤ 0.001 and **** <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 7
<p>Pigment content of 15-day-old <span class="html-italic">A. thaliana</span> plants after treatment with ferment broth extracts of selected endophytes diluted to five concentration levels based on their IAA content: chlorophyll-a (<b>A</b>), chlorophyll-b (<b>B</b>), total chlorophylls (<b>C</b>) and carotenoids (<b>D</b>). IAA standard was used for the control plants. Significance is assessed based on <span class="html-italic">p</span>-values: * <span class="html-italic">p</span> ≤ 0.05; ** <span class="html-italic">p</span> ≤ 0.01; *** <span class="html-italic">p</span> ≤ 0.001 and **** <span class="html-italic">p</span> ≤ 0.0001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Endophytes from Sophora flavescens
2.2. Identification of the Isolates
2.3. Phosphate Solubilization Assay
2.4. Siderophore Production Assay
2.5. IAA Production Assay
2.6. HPLC-MS/MS Measurement of IAA Production
2.7. Bioactivity Test of Extracts on Arabidopsis thaliana
2.8. Statistical Analysis
3. Results
3.1. Isolation and Identification of Endophytic Fungi
3.2. Plant Growth-Promoting Traits of the Endophytes
3.3. IAA Production Confirmation of the Endophytes
3.4. Bioactivities of Endophyte Extracts on Arabidopsis thaliana Plants
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.-S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, B.; Boyle, C.; Draeger, S.; Römmert, A.-K.; Krohn, K. Endophytic fungi: A source of novel biologically active secondary metabolites. Mycol. Res. 2002, 106, 996–1004. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusari, S.; Spiteller, M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: Progress, challenges and opportunities. In Metabolomics, 1st ed.; Roessner, U., Ed.; InTech Europe: Rijeka, Croatia, 2012; Volume 10, pp. 241–266. ISBN 978-953-51-0046-1. [Google Scholar]
- Kaul, S.; Ahmed, M.; Zargar, K.; Sharma, P.; Dhar, M.K. Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: A cardiac glycoside. 3 Biotech. 2013, 3, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Yi, D.; Bai, X.; Sun, B.; Zhao, Y.; Zhang, Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012, 83, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Vigneshwari, A.; Rakk, D.; Németh, A.; Kocsubé, S.; Kiss, N.; Csupor, D.; Papp, T.; Škrbić, B.; Vágvölgyi, C.; Szekeres, A. Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE 2019, 14, e0217060. [Google Scholar] [CrossRef]
- Kusari, S.; Lamshöft, M.; Spiteller, M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Microbiol. 2009, 107, 1019–1030. [Google Scholar] [CrossRef]
- Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 2014, 32, 304–311. [Google Scholar] [CrossRef]
- He, X.; Fang, J.; Huang, L.; Wang, J.; Huang, X. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2015, 172, 10–29. [Google Scholar] [CrossRef]
- Chen, X.; Yi, C.; Yang, X.; Wang, X. Liquid chromatography of active principles in Sophora flavescens root. J. Chrom. B 2004, 812, 149–163. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; Xiao, S.-S.; Liao, Q.-F.; Li, Q.; Liang, J.; Chen, X.-H.; Bi, K.-S. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. J. Pharma. Biomed. Anal. 2007, 44, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.Q.; Lan, F.; Qiao, Y.M.; Wei, J.G.; Huang, R.S.; Li, L.B. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens. MicrobiologyOpen 2017, 6, e00437. [Google Scholar] [CrossRef]
- He, L.; Liu, N.; Wang, Y.; Xu, H.B.; Yu, N. Isolation an antimicrobial action of endophytic fungi from Sophora flavescens and effects on microorganism circumstances in soil. Proc. Environ. Sci. 2013, 18, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; He, L.; Liu, N.; Wang, Y.; Xu, H.; Liu, D. Antimicrobial action of an endophytic fungi from Sophora flavescens and structure identification of its active constituent. Biotechnol. Biotechnol. Equip. 2014, 28, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Li, Y.; Xu, F.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Optimization of submerged fermentation medium for matrine production by Aspergillus terreus, an endophytic fungus harboring seeds of Sophora flavescens, using response surface methodology. Mycobiology 2017, 45, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Saikkonen, K.; Saari, S.; Helander, M. Defensive mutualism between plants and endophytic fungi? Fungal Divers. 2010, 41, 101–113. [Google Scholar] [CrossRef]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Huckelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.J.; Woodward, C.J.; Redman, R.S. Fungal influence on plant tolerance to stress. In Biocomplexity of Plant-Fungal Interactions; Southworth, D., Ed.; Wiley-Blackwell: Oxford, UK, 2012; pp. 155–163. ISBN 978-1-118-31436-4. [Google Scholar]
- Berg, G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef]
- Jia, M.; Chen, L.; Xin, H.-L.; Zheng, C.-J.; Rahman, K.; Han, T.; Qin, L.-P. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front. Microbiol. 2016, 7, 906. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 2006, 23, 753. [Google Scholar] [CrossRef] [PubMed]
- Hartley, S.E.; Gange, A.C. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Annu. Rev. Entomol. 2009, 54, 323–342. [Google Scholar] [CrossRef]
- Kajula, M.; Tejesvi, M.V.; Kolehmainen, S.; Mäkinen, A.; Hokkanen, J.; Mattila, S.; Pirttilä, A.M. The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biol. 2010, 114, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Hamayun, M.; Kim, Y.-H.; Kang, S.-M.; Lee, J.-H.; Lee, I.-J. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Proc. Biochem. 2011, 46, 440–447. [Google Scholar] [CrossRef]
- Khan, A.L.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H.; Lee, I.-J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiol. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Hamayun, M.; Yoon, H.; Kim, H.-Y.; Suh, S.-J.; Hwang, S.-K.; Kim, J.-M.; Lee, I.-J.; Choo, Y.-S.; Yoon, U.-H.; et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 2008, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Nath, R.; Sharma, G.D.; Barooah, M. Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of assam, India. AEER 2015, 13, 877–891. [Google Scholar]
- Cao, Y.; Fu, D.; Liu, T.; Guo, G.; Hu, Z. Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland. Water 2018, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Niewolak, S. Occurrence of microorganisms in fertilized lakes. II. Lecithin-mineralizing microorganisms. Pol. Arch. Hydrobiol. 1980, 27, 53–71. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Bric, J.M.; Bostock, R.M.; Silverstonet, S.E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.; Shrestha, R.; Maharjan, S.; Selosse, M.-A.; Pant, B. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horváth, E.; Brunner, S.; Bela, K.; Papdi, C.; Szabados, L.; Tari, I.; Csiszár, J. Exogenous salicylic acid-triggered changes in the glutathione transferases and peroxidases are key factors in the successful salt stress acclimation of Arabidopsis thaliana. Funct. Plant. Biol. 2015, 42, 1129. [Google Scholar] [CrossRef] [Green Version]
- Marik, T.; Tyagi, C.; Balázs, D.; Urbán, P.; Szepesi, Á.; Bakacsy, L.; Endre, G.; Rakk, D.; Szekeres, A.; Andersson, M.A.; et al. Structural diversity and bioactivities of peptaibol compounds from the Longibrachiatum clade of the filamentous fungal genus Trichoderma. Front. Microbiol. 2019, 10, 1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faragó, D.; Sass, L.; Valkai, I.; Andrási, N.; Szabados, L. Plant size offers an affordable, non-destructive method to measure plant size and color in vitro. Front. Plant. Sci. 2018, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant. Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Bannigan, A.; Sulaman, W.; Pechter, P.; Blancaflor, E.B.; Baskin, T.I. Auxin, actin and growth of the Arabidopsis thaliana primary root: Auxin and actin interaction. Plant. J. 2007, 50, 514–528. [Google Scholar] [CrossRef]
- Jimtha, J.C.; Smitha, P.V.; Anisha, C.; Deepthi, T.; Meekha, G.; Radhakrishnan, E.K.; Gayatri, G.P.; Remakanthan, A. Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant. Cell Tiss. Organ. Cult. 2014, 118, 57–66. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Lee, I.-J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef]
- Khan, A.L.; Al-Harrasi, A.; Al-Rawahi, A.; Al-Farsi, Z.; Al-Mamari, A.; Waqas, M.; Asaf, S.; Elyassi, A.; Mabood, F.; Shin, J.-H.; et al. Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE 2016, 11, e0158207. [Google Scholar] [CrossRef]
- Al-Hosni, K.; Shahzad, R.; Latif Khan, A.; Muhammad Imran, Q.; Al Harrasi, A.; Al Rawahi, A.; Asaf, S.; Kang, S.-M.; Yun, B.-W.; Lee, I.-J. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J. Plant. Inter. 2018, 13, 112–118. [Google Scholar]
- Ismail; Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.-J. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Res. Inter. 2018, 2018, 7696831. [Google Scholar] [CrossRef] [PubMed]
- Numponsak, T.; Kumla, J.; Suwannarach, N.; Matsui, K.; Lumyong, S. Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE 2018, 13, e0205070. [Google Scholar] [CrossRef] [PubMed]
- Dovana, F.; Mucciarelli, M.; Mascarello, M.; Fusconi, A. In vitro morphogenesis of Arabidopsis to search for novel endophytic fungi modulating plant growth. PLoS ONE 2015, 10, e0143353. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, A.; Khan, N.; Irshad, M.; Hamayun, M.; Husna, I.; Javed, A.; Hussain, A. IAA producing endopytic fungus Fusariun oxysporum wlw colonize maize roots and promoted maize growth under hydroponic condition. Eur. J. Exp. Biol. 2018, 8. [Google Scholar] [CrossRef]
Fungal Species | Culture Collection ID | Plant Part | Genbank Accession Number |
---|---|---|---|
ITS | |||
Alternaria sp. | SZMC 26651 | Plant 1, Stem | MT218406 |
Alternaria sp. | SZMC 26652 | Plant 2, Leaf | MT218412 |
Alternaria sp. | SZMC 26653 | Plant 4, Leaf | MT218411 |
Didymella sp. | SZMC 26647 | Plant 1, Leaf | MT218409 |
Didymella sp. | SZMC 26648 | Plant 3, Leaf | MT218408 |
Didymella sp. | SZMC 26649 | Plant 1, Root | MT218413 |
Didymella sp. | SZMC 26650 | Plant 2, Stem | MT218407 |
Didymella sp. | SZMC 26655 | Plant 4, Root | MT218401 |
Fusarium sp. | SZMC 26656 | Plant 3, Root | MT218405 |
Fusarium sp. | SZMC 26657 | Plant 3, Stem | MT218404 |
Fusarium sp. | SZMC 26658 | Plant 2, Stem | MT218403 |
Fusarium sp. | SZMC 26660 | Plant 4, Stem | MT218399 |
Fusarium sp. | SZMC 26654 | Plant 4, Root | MT218410 |
Fusarium sp. | SZMC 26659 | Plant 2, Stem | MT218402 |
Xylogone sphaerospora | SZMC 26661 | Plant 3, Root | MT218400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turbat, A.; Rakk, D.; Vigneshwari, A.; Kocsubé, S.; Thu, H.; Szepesi, Á.; Bakacsy, L.; D. Škrbić, B.; Jigjiddorj, E.-A.; Vágvölgyi, C.; et al. Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms 2020, 8, 683. https://doi.org/10.3390/microorganisms8050683
Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L, D. Škrbić B, Jigjiddorj E-A, Vágvölgyi C, et al. Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms. 2020; 8(5):683. https://doi.org/10.3390/microorganisms8050683
Chicago/Turabian StyleTurbat, Adiyadolgor, Dávid Rakk, Aruna Vigneshwari, Sándor Kocsubé, Huynh Thu, Ágnes Szepesi, László Bakacsy, Biljana D. Škrbić, Enkh-Amgalan Jigjiddorj, Csaba Vágvölgyi, and et al. 2020. "Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens" Microorganisms 8, no. 5: 683. https://doi.org/10.3390/microorganisms8050683
APA StyleTurbat, A., Rakk, D., Vigneshwari, A., Kocsubé, S., Thu, H., Szepesi, Á., Bakacsy, L., D. Škrbić, B., Jigjiddorj, E.-A., Vágvölgyi, C., & Szekeres, A. (2020). Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms, 8(5), 683. https://doi.org/10.3390/microorganisms8050683