Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators
<p>Schematic diagram of the differential common-based MEMS resonator system.</p> "> Figure 2
<p>Spring-mass model of two-DOF micromechanical resonator system.</p> "> Figure 3
<p>Schematic diagram of amplitude-frequency response curves for the two resonators.</p> "> Figure 4
<p>Schematic diagram of SRA structure.</p> "> Figure 5
<p>(<b>a</b>) Three-dimensional model of SRA-V1. (<b>b</b>) Mesh of SRA-V1. (<b>c</b>) Three-dimensional model of SRA-V2. (<b>d</b>) Mesh of SRA-V2.</p> "> Figure 6
<p>Simulation cloud diagrams of resonator vibrations under applied forces: (<b>a</b>) SRA-V1; (<b>b</b>) SRA-V2.</p> "> Figure 7
<p>Displacement amplitude–frequency curves of the accelerometer under simulation: (<b>a</b>) SRA-V1; (<b>b</b>) SRA-V2.</p> "> Figure 7 Cont.
<p>Displacement amplitude–frequency curves of the accelerometer under simulation: (<b>a</b>) SRA-V1; (<b>b</b>) SRA-V2.</p> "> Figure 8
<p>Schematic diagram of driving and detection test system for DCMR.</p> "> Figure 9
<p>Test instruments and experimental environment.</p> "> Figure 10
<p>Experimental voltage amplitude-frequency curves of the accelerometer: (<b>a</b>) SRA-V1; (<b>b</b>) SRA-V2.</p> ">
Abstract
:1. Introduction
2. Modeling of Differential Common-Based MEMS Resonator System
2.1. Two-Degree-of-Freedom Mechanical Model for DCMR
2.2. Vibration Coupling Characteristics of DCMR
3. Vibration Coupling Simulation Analysis of DCMR in Accelerometers
4. Experimental Testing of Accelerometer with DCMR
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Betta, G.; Capriglione, D.; Carratu, M.; Catelani, M.; Ciani, L.; Patrizi, G.; Pietrosanto, A.; Sommella, P. Stress Testing for Performance Analysis of Orientation Estimation Algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Capriglione, D.; Carratu, M.; Catelani, M.; Ciani, L.; Patrizi, G.; Pietrosanto, A.; Singuaroli, R.; Sommella, P. Performance Analysis of MEMS-based Inertial Measurement Units in Terrestrial Vehicles. Measurement 2021, 186, 110237. [Google Scholar] [CrossRef]
- Chowdhury, D.; Chattopadhyay, M. Development of a Low-power Microcontroller-based Wrist-worn Device with Resource-constrained Activity Detection Algorithm. IEEE Trans. Instrum. Meas. 2020, 69, 7522–7529. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, S.; Chen, Y.; Bo, Y. Research on a Chip Scale Atomic Clock Driven GNSS/SINS Deeply Coupled Navigation System for Augmented Performance. IET Radar Sonar Navig. 2019, 13, 326–331. [Google Scholar] [CrossRef]
- Marra, C.R.; Ferrari, F.M.; Kaman, S.; Tocchio, A.; Rizzini, F.; Langfelder, G. Single-resonator, Time Switched FM Mems Accelerometer with Theoretical Offset Drift Complete Cancellation. In Proceedings of the 31st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Belfast, Ireland, 21–25 January 2018; pp. 117–120. [Google Scholar]
- Pandit, M.; Mustafazade, A.; Zhao, C.; Sobreviela, G.; Zou, X.D.; Steinmann, P.; Seshia, A. An Ultra-high Resolution Resonant MEMS Accelerometer. In Proceedings of the 32nd IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 664–667. [Google Scholar]
- Yin, Y.G.; Fang, Z.X.; Liu, Y.F.; Han, F.T. Temperature-insensitive Structure Design of Micromachined Resonant Accelerometers. Sensors 2019, 19, 1544. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.B.; Li, Q.K.; Qin, Y.; Ding, X.K.; Zhang, M.M.; Zhao, L.Y. Structural Design and Optimization of a Resonant Micro-accelerometer Based on Electrostatic Stiffness by an Improved Differential Evolution Algorithm. Micromachines 2022, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Gao, Y.; Zhang, D.P. Structure Design of a High-performance Aluminum Nitride Differential Resonant Accelerometer. In Proceedings of the Conference on LIDAR Imaging Detection and Target Recognition, Changchun, China, 23–25 July 2017. [Google Scholar]
- Fang, Z.X.; Yin, Y.G.; He, X.F.; Han, F.T.; Liu, Y.F. Temperature-drift Characterization of a Micromachined Resonant Accelerometer with a Low-noise Frequency Readout. Sens. Actuators A Phys. 2019, 300, 111665. [Google Scholar] [CrossRef]
- Li, C.; Wen, Y.; Fan, S.C.; Kan, B.X.; Wang, C. Design of a New Differential Silicon Resonant Accelerometer with Dual Proofmasses Using Two-stage Microlever. In Proceedings of the 2015 IEEE Sensors, Busan, Republic of Korea, 1–4 November 2015; pp. 116–119. [Google Scholar]
- Xia, G.M.; Zhao, Y.; Zhao, J.; Shi, Q.; Qiu, A.P. Silicon Vibrating Beam Accelerometer with ppm Grade Scale Factor Stability and Tens-ppm Grade Full-range Nonlinearity. In Proceedings of the 3rd IEEE International Symposium on Inertial Sensors and Systems, Laguna Beach, CA, USA, 22–25 February 2016; pp. 117–118. [Google Scholar]
- Zhao, Y.; Xia, G.M.; Shi, Q.; Qiu, A.P. Expanding Bias-instability of MEMS Silicon Oscillating Accelerometer Utilizing AC Polarization and Self-compensation. Sensors 2020, 20, 1455. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.D.; Thiruvenkatanathan, P.; Seshia, A.A. A Seismic-grade Resonant MEMS Accelerometer. J. Microelectromech. Syst. 2014, 23, 768–770. [Google Scholar] [CrossRef]
- Moreira, E.E.; Kuhlmann, B.; Alves, F.S.; Dias, R.A.; Cabral, J.; Gaspar, J.; Rocha, L.A. Influence of Mechanical Stress in a Packaged Frequency-Modulated MEMS Accelerometer. In Proceedings of the 7th IEEE International Symposium on Inertial Sensors and Systems (IEEE INERTIAL), Hiroshima, Japan, 23–26 March 2020. [Google Scholar]
- Trusov, A.A.; Zotov, S.A.; Simon, B.R.; Shkel, A.M. Silicon Accelerometer with Differential Frequency Modulation and Continuous Self-calibration. In Proceedings of the 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 29–32. [Google Scholar]
- Zotov, S.A.; Simon, B.R.; Trusov, A.A.; Shkel, A.M. High Quality Factor Resonant MEMS Accelerometer with Continuous Thermal Compensation. IEEE Sens. J. 2015, 15, 5045–5052. [Google Scholar] [CrossRef]
- Pandit, M.; Zhao, C.; Sobreviela, G.; Zou, X.D.; Seshia, A. A High Resolution Differential Mode-localized MEMS Accelerometer. J. Microelectromech. Syst. 2019, 28, 782–789. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, X.Y.; Wang, K.F.; Yang, W.H.; Li, Z.T.; Zon, X.D. Enhancing Sensitivity Using Electrostatic Spring in Coupling Mode-localized MEMS Accelerometer. In Proceedings of the 16th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS), Xiamen, China, 25–29 April 2021; pp. 311–314. [Google Scholar]
- Zhang, H.M.; Pandit, M.; Sun, J.K.; Chen, D.Y.; Sobreviela, G.; Zhao, C.; Seshia, A. Ultra-sensitive Force Transduction in Weakly Coupled Resonators. In Proceedings of the 33rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 795–798. [Google Scholar]
- Zheng, W.; Xiong, X.Y.; Li, Z.T.; Wang, K.F.; Yang, W.H.; Zou, X.D. Enhancing Parametric Sensitivity Using Micro-lever Coupler in Mechanical Coupling Mode-localized MEMS Accelerometer. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII (TRANSDUCERS and EUROSENSORS), Berlin, Germany, 23–27 June 2019; pp. 1846–1849. [Google Scholar]
- Zhang, C.X.; Zhang, S.B.; Pan, X.; Jin, J. Six-state Phase Modulation for Reduced Crosstalk in a Fiber Optic Gyroscope. Opt. Express 2018, 26, 10535–10549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Zhang, C.X.; Pan, X.; Song, N.F. High-performance Fully Differential Photodiode Amplifier for Miniature Fiber-optic Gyroscopes. Opt. Express 2019, 27, 2125–2141. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J. Interferometric Fiber Optic Gyroscope Dead Band Suppression. Appl. Phys. Express 2008, 1, 072501. [Google Scholar] [CrossRef]
- Choi, W.S.; Shim, K.M.; Chong, K.H.; An, J.E.; Kim, C.J.; Park, B.Y. Sagnac Effect Compensations and Locked States in a Ring Laser Gyroscope. Sensors 2023, 23, 1718. [Google Scholar] [CrossRef] [PubMed]
Material | Density (kg/m3) | Young’s Modulus (Pa) | Poisson’s Ratio |
---|---|---|---|
Si | 2330 | 1.690 × 1011 | 0.270 |
SiO2 | 2200 | 7 × 1010 | 0.170 |
Dimension (μm) | Structure | SRA-V1 | SRA-V2 |
---|---|---|---|
Thickness | Structure layer | 80 | 50 |
Anchor layer | 15 | ||
Oxide layer | 2 | ||
Basement layer | 380 | ||
Length | Resonant beam | 820 | 770 |
Width | Resonant beam of resonator 1 | 4.472 | 6.262 |
Resonant beam of resonator 2 | 4.478 | 6.267 |
Object | Meshing Scheme | Maximum Unit Size (μm) | Minimum Unit Size (μm) |
---|---|---|---|
Resonator | Sweep | 3.700 | 0.500 |
Frame, Anchor and Proof mass | Free regular tetrahedral mesh | 200 | 2 |
Oxide layer and Basement layer | Sweep | 150 | 10 |
Accelerometer | SRA-V1 | SRA-V2 | ||
---|---|---|---|---|
Result Source | Simulation | Experiment | Simulation | Experiment |
f1 (Frequency 1) | 19,015.775 Hz | 19,016.387 Hz | 25,011.480 Hz | 25,016.012 Hz |
f2 (Frequency 2) | 19,052.320 Hz | 19,052.834 Hz | 25,039.900 Hz | 25,037.333 Hz |
X1(f2) (Resonator 1’s Amplitude at f1) | 0.317 nm | 0.160 nm | 6.468 nm | 0.604 nm |
X2(f2) (Resonator 2’s Amplitude at f2) | 422.483 nm | 71.005 nm | 274.202 nm | 24.653 nm |
kc (Coupling Stiffness) | 2.361 × 10−4 N/m | 7.073 × 10−4; N/m | 1.370 × 10−2 N/m | 1.068 × 10−2 N/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, Z.; Wu, T.; Yao, Z.; Lin, C.; Su, Y. Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators. Micromachines 2025, 16, 169. https://doi.org/10.3390/mi16020169
Zhang J, Yang Z, Wu T, Yao Z, Lin C, Su Y. Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators. Micromachines. 2025; 16(2):169. https://doi.org/10.3390/mi16020169
Chicago/Turabian StyleZhang, Jing, Zhuo Yang, Tianhao Wu, Zhichao Yao, Chen Lin, and Yan Su. 2025. "Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators" Micromachines 16, no. 2: 169. https://doi.org/10.3390/mi16020169
APA StyleZhang, J., Yang, Z., Wu, T., Yao, Z., Lin, C., & Su, Y. (2025). Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators. Micromachines, 16(2), 169. https://doi.org/10.3390/mi16020169