Structural Analysis of Disk Resonance Gyroscope
<p>Schematic diagram of disk resonator gyroscope (DRG) in Silicon-On-Insulator (SOI) packaging.</p> "> Figure 2
<p>The different modes of DRG.</p> "> Figure 3
<p>The offset angle locations in DRGs with different spoke number.</p> "> Figure 4
<p>Relationship between the frequency splits and different length and width of spokes: (<b>a</b>) <100> DRG in <span class="html-italic">n</span> = 2, (<b>b</b>) From left to right: <111> DRG in <span class="html-italic">n</span> = 2, <100> DRG in <span class="html-italic">n</span> = 3, <111> DRG in <span class="html-italic">n</span> = 3.</p> "> Figure 5
<p>Relationship between the frequency splits and the varying spoke positions (<b>a</b>) DRG made by <100> silicon and work in <span class="html-italic">n</span> = 2 mode, (<b>b</b>) DRG made by <100> silicon and work in <span class="html-italic">n</span> = 3 mode; <111> silicon, work in <span class="html-italic">n</span> = 2 and <span class="html-italic">n</span> = 3 mode.</p> "> Figure 6
<p>Relationship between the frequency splits and ring width (<b>a</b>) DRG made by <100> silicon and work in <span class="html-italic">n</span> = 2 mode, (<b>b</b>) DRG made by <100> silicon and work in <span class="html-italic">n</span> = 3 mode; <111> silicon, work in <span class="html-italic">n</span> = 2 and <span class="html-italic">n</span> = 3 mode.</p> "> Figure 7
<p>Simulation results in COMSOL Multiphysics. (<b>a</b>) Temperature departure of DRG in drive and sense modes (<span class="html-italic">n</span> = 2), (<b>b</b>) Simulation results of <span class="html-italic">Q<sub>TED</sub></span> in DRG, and (<b>c</b>) Simulation results of <span class="html-italic">I<sub>Qf</sub></span> in DRG.</p> "> Figure 7 Cont.
<p>Simulation results in COMSOL Multiphysics. (<b>a</b>) Temperature departure of DRG in drive and sense modes (<span class="html-italic">n</span> = 2), (<b>b</b>) Simulation results of <span class="html-italic">Q<sub>TED</sub></span> in DRG, and (<b>c</b>) Simulation results of <span class="html-italic">I<sub>Qf</sub></span> in DRG.</p> "> Figure 8
<p>Simulation results of <span class="html-italic">Q</span><sub>support</sub> in COMSOL Multiphysics: (<b>a</b>) The mesh result of DRG for simulation of support loss, (<b>b</b>) Simulation results of <span class="html-italic">Q</span><sub>support</sub> in DRG, and (<b>c</b>) Simulation results of <span class="html-italic">I<sub>Qf</sub></span> in DRG.</p> "> Figure 8 Cont.
<p>Simulation results of <span class="html-italic">Q</span><sub>support</sub> in COMSOL Multiphysics: (<b>a</b>) The mesh result of DRG for simulation of support loss, (<b>b</b>) Simulation results of <span class="html-italic">Q</span><sub>support</sub> in DRG, and (<b>c</b>) Simulation results of <span class="html-italic">I<sub>Qf</sub></span> in DRG.</p> "> Figure 9
<p>Main process flow of fabrication of DRG.</p> "> Figure 10
<p>The photo of the fabricated DRG. (<b>a</b>) Bird eye view of fabrication disk resonator; (<b>b</b>) Zoomed-in the view of rings, spokes and disk; (<b>c</b>) Zoomed-in view of rings and spokes; (<b>d</b>) Zoomed-in the view of electrodes</p> "> Figure 11
<p>Parameters selection process for DRG.</p> "> Figure 12
<p>Experimental setup and results: (<b>a</b>) Experimental setup for testing the frequency and <span class="html-italic">Q</span> of DRG; (<b>b</b>) Comparison of experiment results of DRG with different parameters; and, (<b>c</b>) The frequency sweeping data of the selected DRG.</p> ">
Abstract
:1. Introduction
2. The Effect of DRG Structure on Frequency Split
2.1. The Small Offset Angle of Spokes Placement
2.2. The Varying Width and Length of Spokes
2.3. The Varying Number of Spokes
2.4. The Varying Width of Rings
3. Analysis of Energy Dissipation
3.1. Thermoelastic Dissipation
3.2. Support Loss
4. Fabrication
5. Experimental Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sung, W.; Dalal, M.; Ayazi, F. A 3MHz spoke gyroscope with wide bandwidth and large dynamic range. In Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, China, 24–28 January 2010; pp. 104–107. [Google Scholar]
- Challoner, A.D.; Ge, H.H.; Liu, J.Y. Boeing Disc Resonator Gyroscope. In Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS, Monterey, CA, USA, 5–8 May 2014; pp. 504–514. [Google Scholar]
- Xia, D.; Kong, L.; Hu, Y.; Ni, P. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method. Meas. Sci. Technol. 2015, 26, 25101. [Google Scholar] [CrossRef]
- Zhang, L.; You, W.L.; Yang, H.; Xin, L.I. Research on Electrostatic Tuning Technology of MEMS Oscillator; Electronic Design Engineering: Norco, CA, USA, 2016. [Google Scholar]
- Nitzan, S.; Ahn, C.H.; Su, T.H. Epitaxially-encapsulated polysilicon disk resonator gyroscope. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taiwan, China, 20–24 January 2013; pp. 625–628. [Google Scholar]
- Senkal, D.; Askari, S.; Ahamed, M.J. 100K Q-Factor toroidal ring gyroscope implemented in wafer-level epitaxial silicon encapsulation process. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 504–514. [Google Scholar]
- Ren, J.; Liu, C.Y.; Li, M.H. A mode-matching 130-kHz ring-coupled gyroscope with 225 ppm initial driving/sensing mode frequency splitting. In Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1057–1060. [Google Scholar]
- Mirjalili, R.; Wen, H.; Serrano, D.E. Substrate-decoupled silicon disk resonators having degenerate gyroscopic modes with Q in excess of 1-million. In Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 15–18. [Google Scholar]
- Ahn, C.H.; Ng, E.J.; Hong, V.A.; Yang, Y.; Lee, B.J.; Ward, M.W.; Kenny, T.W. Geometric compensation of <100> single crystal silicon disk resonating gyroscope for mode-matching. In Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII) Transducers & Eurosensors XXVII, Barcelona, Spain, 16–20 June 2013; pp. 1723–1726. [Google Scholar]
- Michael, L.; David, E. On the quality-factor of micro-resonators. Procedia Eng. 2010, 5, 95–98. [Google Scholar]
- Mcwilliam, S.; Eley, R.; Fox, C.H.J. Anisotropy effects on the vibration of circular rings made from crystalline silicon. J. Sound Vib. 1999, 1, 11–35. [Google Scholar]
- Chang, C.; Chang, G.; Chou, C.; Chien, W.C.; Chen, P. In-plane free vibration of a single-crystal silicon ring. Int. J. Solids Struct. 2008, 45, 6114–6132. [Google Scholar] [CrossRef]
- He, G.; Najafi, K. A single-crystal silicon vibrating ring gyroscope. In Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266) Technical Digest, MEMS 2002 IEEE International Conference, Las Vegas, NV, USA, 24 January 2002; pp. 718–721. [Google Scholar]
- Houri, J.; Ayazi, F. High-frequency capacitive disk gyroscopes in <100> and <111> silicon. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 47–50. [Google Scholar]
- Ayazi, F.; Najafi, K. A HARPSS Polysilicon Vibrating Ring Gyroscope. J. Microelectromech. Syst. 2001, 2, 169–179. [Google Scholar] [CrossRef]
- Shirazi, A.N.; Casinovi, G.; Dalal, M.; Ayazi, F. Combined Phase-Readout and Self-Calibration of MEMS Gyroscopes. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuatocrs and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 960–963. [Google Scholar]
- Ahn, C.H.; Ng, E.J.; Hong, V.A.; Yang, Y.; Lee, B.J.; Flader, I.; Kenny, T.W. Mode-Matching of Wineglass Mode Disk Resonator Gyroscope in <100> Single Crystal Silicon. J. Microelectromech. Syst. 2015, 24, 343–350. [Google Scholar] [CrossRef]
- Hao, Z.; Xu, Y.; Durgam, S.K. A thermal-energy method for calculating thermoelastic damping in micromechanical resonators. J. Sound Vib. 2009, 322, 870–882. [Google Scholar] [CrossRef]
- Hao, Z. Thermoelastic damping in the contour-mode vibrations of micro- and nano-electromechanical circular thin-plate resonators. J. Sound Vib. 2008, 313, 77–96. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Xiao, D.; Hou, Z.; Li, Q.; Yu, D.; Wu, X. An investigation on the ring thickness distribution of disk resonator gyroscope with high mechanical sensitivity. Int. J. Mech. Sci. 2016, 117, 174–181. [Google Scholar] [CrossRef]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst 2010, 19, 229–238. [Google Scholar] [CrossRef]
- Ayazi, F.; Sorenson, L.; Tabrizian, R. Energy dissipation in micromechanical resonators. In Proceedings of the SPIE Defense, Security, and Sensing, Orlando, FL, USA, 25–29 April 2011; pp. 2133–2134. [Google Scholar]
- Ghaffari, S.; Ng, E.J.; Ahn, C.H.; Yang, Y.; Wang, S.; Hong, V.A.; Kenny, T.W. Accurate Modeling of Quality Factor Behavior of Complex Silicon MEMS Resonators. J. Microelectromech. Syst. 2015, 24, 276–288. [Google Scholar] [CrossRef]
- Abdolvand, R.; Johari, H.; Ho, G.K.; Erbil, A.; Ayazi, F. Quality factor in trench-refilled polysilicon beam resonators. J. Microelectromech. Syst. 2006, 15, 471–478. [Google Scholar] [CrossRef]
- Shao, P.; Tavassoli, V.; Mayberry, C.; Ayazi, F. A 3D-HARPSS Polysilicon Micro-hemispherical Shell Resonating Gyroscope: Design, Fabrication and Characterization. IEEE Sens. J. 2015, 15, 4974–4985. [Google Scholar] [CrossRef]
- Bao, M.; Yang, H. Squeeze film air damping in MEMS. Sens. Actuators A Phys. 2007, 136, 3–27. [Google Scholar] [CrossRef]
- Chouvion, B. Vibration Transmission and Support Loss in MEMS Sensors; University of Nottingham: Nottingham, UK, 2010. [Google Scholar]
- Hao, Z.; Ayazi, F. Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sens. Actuators A Phys. 2007, 134, 582–593. [Google Scholar] [CrossRef]
- Lake, J.; Ng, E.; Ahn, C.H.; Hong, V.; Yang, Y.; Wong, J.; Candler, R. Particle swarm optimization for design of MEMS resonators with low thermoelastic dissipation. In Proceedings of the the 2013 International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), Barcelona, Spain, 16–20 June 2013; pp. 1456–1459. [Google Scholar]
- Hao, Z.; Ayazi, F. Support loss in micromechanical disk resonators. In Proceedings of the 18th MEMS 2005 IEEE International Conference on Micro Electro Mechanical Systems, Miami Beach, FL, USA, 30 January–3 February 2005; pp. 137–141. [Google Scholar]
Number of Spokes | Offset Angle of Spokes (°) | Frequency Splits | |||
---|---|---|---|---|---|
<100>Si, n = 2 | <100>Si, n = 3 | <111>Si, n = 2 | <111>Si, n = 3 | ||
16 | +0.7 | 1229.6 | 1.2 | 0.9 | 0.8 |
+0.6 | 1108.5 | 1.1 | 1.2 | 0.9 | |
+0.5 | 985.2 | 1.4 | 1.6 | 0.6 | |
+0.4 | 864.8 | 1.6 | 1.9 | 0.3 | |
+0.3 | 741.2 | 0.8 | 1.4 | 1.2 | |
+0.2 | 618.4 | 2.3 | 1.1 | 1.3 | |
+0.1 | 497 | 2.2 | 0.8 | 0.7 | |
0 | 375.1 | 1.8 | 0.4 | 0.2 | |
−0.1 | 252.3 | 1.3 | 1.2 | 0.5 | |
−0.2 | 128.3 | 1.5 | 2.3 | 0.9 | |
−0.3 | 6.8 | 2.1 | 1.2 | 0.8 | |
−0.4 | −113.7 | 1.2 | 0.9 | 0.2 | |
−0.5 | −236.7 | 1.2 | 0.7 | 1.1 | |
−0.6 | −358.9 | 1.3 | 0.8 | 2.3 | |
24 | −0.1 | 566.5 | 1.8 | 2.1 | 1.6 |
−0.2 | 493.3 | 2.2 | 2.6 | 2.3 | |
−0.3 | 413.4 | 1.9 | 2.4 | 1.6 | |
−0.4 | 338 | 1.7 | 1.3 | 3.1 | |
−0.5 | 254 | 2.3 | 0.9 | 1.3 | |
−0.6 | 163 | 2.5 | 2 | 2.6 | |
−0.7 | 78 | 3.2 | 3.5 | 3.7 | |
−0.78 | 2 | 1.8 | 1.2 | 2.1 | |
−0.8 | −17 | 2.1 | 2 | 3 | |
−0.9 | −116 | 1.6 | 2.3 | 1.2 | |
32 | 0 | 1039 | 2.1 | 1.6 | 1.9 |
−0.2 | 867 | 2.3 | 2.7 | 2.7 | |
−0.3 | 789 | 2.1 | 2.4 | 1.3 | |
−0.6 | 541 | 2.5 | 5.9 | 2 | |
−0.8 | 368 | 2.3 | 3.4 | 3.4 | |
−1 | 197 | 1.2 | 2.8 | 2.3 | |
−1.2 | 41 | 1.8 | 4.6 | 1.1 | |
−1.24 | 3 | 2.7 | 3.2 | 1.7 | |
−1.3 | −48 | 2.3 | 5.3 | 3 |
Prosperity | <100> Silicon | BF33 Glass |
---|---|---|
Density | 2329 kg/m3 | 2200 kg/m3 |
Young’s modulus | 130 GPa | 64 GPa |
Poisson ratio | 0.28 | 0.2 |
Thermal conductivity | 148 W/(m·K) | 1.2 W/(m·K) |
Coefficient of thermal expansion | 2.6 × 10−6 K−1 | 3.25 × 10−6 K−1 |
Specific heat capacity | 700 J/(kg·K) | 830 J/(kg·K) |
Parameter | Value |
---|---|
Spoke number | 16 |
Ring number | 60 |
Spoke width | 20 µm |
Spoke length | 10 µm |
Ring width | 20 µm |
Offset Angle | −0.3° |
Electrode gap | 1.5 µm |
Support pillar height | 20 µm |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, D.; Huang, L.; Xu, L.; Gao, H. Structural Analysis of Disk Resonance Gyroscope. Micromachines 2017, 8, 296. https://doi.org/10.3390/mi8100296
Xia D, Huang L, Xu L, Gao H. Structural Analysis of Disk Resonance Gyroscope. Micromachines. 2017; 8(10):296. https://doi.org/10.3390/mi8100296
Chicago/Turabian StyleXia, Dunzhu, Lingchao Huang, Lei Xu, and Haiyu Gao. 2017. "Structural Analysis of Disk Resonance Gyroscope" Micromachines 8, no. 10: 296. https://doi.org/10.3390/mi8100296
APA StyleXia, D., Huang, L., Xu, L., & Gao, H. (2017). Structural Analysis of Disk Resonance Gyroscope. Micromachines, 8(10), 296. https://doi.org/10.3390/mi8100296