Magnetic Particle Plug-Based Assays for Biomarker Analysis
"> Figure 1
<p>Principle of magnetic particle plug-based assays: (<b>a</b>) functionalised magnetic particles are introduced into a microchannel and trapped between two magnets, forming a plug; (<b>b</b>) a fluorescently labelled reagent or sample solution is flushed over the particle plug, with the reagent or target analyte binding to the particles; and (<b>c</b>) the microchannel is washed with buffer solution, allowing fluorescence detection of the trapped particle plug.</p> "> Figure 2
<p>Setup of the microfluidic device: (<b>a</b>) photograph of a fused silica capillary located in the 1 mm gap between two 4 × 4 × 6 mm<sup>3</sup> NdFeB magnets that were fixed to a glass microscope slide; and (<b>b</b>) photograph of the glass microscope slide, holding the capillary and magnets, on the sample stage of an inverted fluorescence microscope. Samples, reagents and buffer solutions were introduced into the capillary from reservoirs via a syringe pump in withdrawal mode.</p> "> Figure 3
<p>(<b>a</b>) Photograph of a plug of magnetic particles trapped between two NdFeB magnets in a capillary. (<b>b</b>) Simulation of the magnetic flux density (<b>B</b>) across the microfluidic channel, modelled using FEMM software. (<b>c</b>) Plot of the magnetic flux density along the length of the capillary (<span class="html-italic">x</span>-direction) between the two magnets.</p> "> Figure 4
<p>The effect of flow rate on magnetic particle plug formation. (<b>a</b>–<b>c</b>) Photographs of plug formation at time points of 1, 5 and 10 min for flow rates of: (<b>a</b>) 180 µL·h<sup>−1</sup>; (<b>b</b>) 240 µL·h<sup>−1</sup>; and (<b>c</b>) 300 µL·h<sup>−1</sup>. (<b>d</b>) Plot of measured plug sizes over time at the three different flow rates. Each pixel was approximately equivalent to an area of 5.6 µm<sup>2</sup>.</p> "> Figure 5
<p>The effect of particle concentration on plug formation. (<b>a</b>–<b>c</b>) Photographs of plug formation at time points of 1, 5 and 10 min for particle concentrations of: (<b>a</b>) 5 × 10<sup>6</sup> particles·mL<sup>−1</sup>; (<b>b</b>) 1 × 10<sup>7</sup> particles·mL<sup>−1</sup>; and (<b>c</b>) 2 × 10<sup>7</sup> particles·mL<sup>−1</sup>. (<b>d</b>) Plot of measured plug sizes over time at the three different particle concentrations. Each pixel was approximately equivalent to an area of 5.6 µm<sup>2</sup>.</p> "> Figure 6
<p>Streptavidin-biotin assays performed by flushing a solution of fluorescently labelled biotin over a trapped plug of streptavidin functionalised magnetic particles. (<b>a</b>) Bright-field image of the trapped particle plug. (<b>b</b>–<b>e</b>) Fluorescence images of streptavidin particle plugs exposed to varying concentrations of biotin: (<b>b</b>) 0.1 µg·mL<sup>−1</sup>; (<b>c</b>) 0.5 µg·mL<sup>−1</sup>; (<b>d</b>) 1 µg·mL<sup>−1</sup>; and (<b>e</b>) 5 µg·mL<sup>−1</sup>. (<b>f</b>) Calibration graph of particle plug fluorescence intensities exposed to a range of fluorescently labelled biotin concentrations.</p> "> Figure 7
<p>Results obtained via a magnetic particle plug-based sandwich assay for C-reactive protein (CRP). (<b>a</b>) Fluorescence image of a particle plug prior to the CRP assay, demonstrating the auto-fluorescence of the polystyrene-based particles. Magnetic particles were functionalised with primary CRP antibodies (1° anti-CRP). (<b>b</b>) Fluorescence exhibited by a particle plug after exposure to 1 µg·mL<sup>−1</sup> CRP and subsequent labelling with fluorescently tagged secondary CRP antibody (2° anti-CRP-FITC; 100 µg·mL<sup>−1</sup>); and (<b>c</b>) after exposure to 10 µg·mL<sup>−1</sup> CRP and labelling with 2° anti-CRP-FITC (100 µg·mL<sup>−1</sup>). (<b>d</b>) Plot of fluorescence intensities of the particle plugs at varying concentrations of CRP.</p> "> Figure 8
<p>Results obtained for a progesterone (P4) assay, achieved by flushing P4-FITC over a trapped plug of anti-P4 functionalised magnetic particles. (<b>a</b>–<b>e</b>). Fluorescence images of particle plugs with increasing P4-FITC concentrations. (<b>f</b>) Plot of background-corrected particle plug fluorescence intensities at different concentrations (shown on a logarithmic scale) of P4-FITC.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Particles
2.2. Preparation of Solutions
2.3. Preparation of Anti-CRP Functionalised Magnetic Particles
2.4. Preparation of Anti-P4 Functionalised Magnetic Particles
2.5. Instrumental Setup
2.6. Experimental Procedures
2.6.1. Capillary-Based Particle Trapping and Reactions
2.6.2. Formation and Characterisation of Magnetic Particle Plugs
2.6.3. Streptavidin-Biotin Assay
2.6.4. C-Reactive Protein (CRP) Assay
2.6.5. Progesterone (P4) Assay
3. Results and Discussion
3.1. Formation and Characterisation of Magnetic Particle Plugs
3.1.1. Effect of Flow Rate
3.1.2. Effect of Particle Concentration
3.2. Streptavidin-Biotin Assay
3.3. C-Reactive Protein (CRP) Assay
3.4. Progesterone (P4) Assay
4. Outlook
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wild, D. The Immunoassay Handbook, 3rd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Manz, A.; Dittrich, P.S.; Pamme, N.; Iossifidis, D. Bioanalytical Chemistr, 2nd ed.; Imperial College Press: London, UK, 2015. [Google Scholar]
- Ruffert, C. Magnetic bead—Magic bullet. Micromachines 2016, 7, 21. [Google Scholar] [CrossRef]
- Rios, A.; Zougagh, M.; Bouri, M. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review. Anal. Methods 2013, 5, 4558–4573. [Google Scholar] [CrossRef]
- Tarn, M.D.; Pamme, N. Microfluidics. In Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Waltham, MA, USA, 2013. [Google Scholar]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [PubMed]
- Reyes, D.R.; Iossifidis, D.; Auroux, P.A.; Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 2002, 74, 2623–2636. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.T.; Zhang, Y. Bead-based microfluidic immunoassays: The next generation. Biosens. Bioelectron. 2007, 22, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Wang, J.H.; Wu, H.W.; Lee, G.B. Microfluidic immunoassays. J. Lab. Autom. 2010, 15, 253–274. [Google Scholar] [CrossRef]
- Ng, A.H.C.; Uddayasankar, U.; Wheeler, A.R. Immunoassays in microfluidic systems. Anal. Bioanal. Chem. 2010, 397, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Gao, X.; Jiang, L.; Qin, J. Microfluidic platform towards point-of-care diagnostics in infectious diseases. J. Chromatogr. A 2015, 1377, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Pamme, N. Microfluidic platforms for performing surface-based clinical assays. Expert Rev. Mol. Diagn. 2011, 11, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Gijs, M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluid. 2004, 1, 22–40. [Google Scholar] [CrossRef]
- Gijs, M.A.M.; Lacharme, F.; Lehmann, U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 2010, 110, 1518–1563. [Google Scholar] [CrossRef] [PubMed]
- Pamme, N. On-chip bioanalysis with magnetic particles. Curr. Opin. Chem. Biol. 2012, 16, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Evander, M.; Hammarstrom, B.; Laurell, T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Yazdi, S.; Ardekani, A.M. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 2013, 7, 021501. [Google Scholar] [CrossRef] [PubMed]
- Rashkovetsky, L.G.; Lyubarskaya, Y.V.; Foret, F.; Hughes, D.E.; Karger, B.L. Automated microanalysis using magnetic beads with commercial capillary electrophoretic instrumentation. J. Chromatogr. A 1997, 781, 197–204. [Google Scholar] [CrossRef]
- Abonnenc, M.; Gassner, A.L.; Morandini, J.; Josserand, J.; Girault, H.H. Magnetic track array for efficient bead capture in microchannels. Anal. Bioanal. Chem. 2009, 395, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.; Mayer, M.; Hartmann, J.; Posnicek, T.; Fabian, C.; Falkenhagen, D. Theoretical analysis of ferromagnetic microparticles in streaming liquid under the influence of external magnetic forces. J. Magn. Magn. Mater. 2010, 322, 2454–2464. [Google Scholar] [CrossRef]
- Chang, W.S.; Shang, H.; Perera, R.M.; Lok, S.M.; Sedlak, D.; Kuhn, R.J.; Lee, G.U. Rapid detection of dengue virus in serum using magnetic separation and fluorescence detection. Analyst 2008, 133, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Gassner, A.-L.; Abonnenc, M.; Chen, H.-X.; Morandini, J.; Josserand, J.; Rossier, J.S.; Busnel, J.-M.; Girault, H.H. Magnetic forces produced by rectangular permanent magnets in static microsystems. Lab Chip 2009, 9, 2356–2363. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.N.; Kim, C.; Park, H.J.; Kang, J.Y.; Kim, T.S.; Kim, S.K. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 2009, 30, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Smistrup, K.; Bu, M.Q.; Wolff, A.; Bruus, H.; Hansen, M.F. Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales. Microfluid. Nanofluid. 2008, 4, 565–573. [Google Scholar] [CrossRef]
- Lacharme, F.; Vandevyver, C.; Gijs, M.A.M. Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal. Chem. 2008, 80, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Gassner, A.-L.; Morandini, J.; Josserand, J.; Girault, H.H. Ring magnets for magnetic beads trapping in a capillary. Anal. Methods 2011, 3, 614–621. [Google Scholar] [CrossRef]
- Le Nel, A.; Minc, N.; Smadja, C.; Slovakova, M.; Bilkova, Z.; Peyrin, J.M.; Viovy, J.L.; Taverna, M. Controlled proteolysis of normal and pathological prion protein in a microfluidic chip. Lab Chip 2008, 8, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Tabnaoui, S.; Malaquin, L.; Descroix, S.; Viovy, J.L. Integrated microfluidic fluidized bed for sample preconcentration and immunoextraction. In Proceedings of the MicroTAS 2012 Conference, Okinawa, Japan, 28 October–1 November 2012; pp. 1408–1410.
- Mohamadi, R.M.; Svobodova, Z.; Bilkova, Z.; Otto, M.; Taverna, M.; Descroix, S.; Viovy, J.-L. An integrated microfluidic chip for immunocapture, preconcentration and separation of beta-amyloid peptides. Biomicrofluidics 2015, 9, 054117. [Google Scholar] [CrossRef] [PubMed]
- Degre, G.; Brunet, E.; Dodge, A.; Tabeling, P. Improving agglutination tests by working in microfluidic channels. Lab Chip 2005, 5, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi, M.R.; Svobodova, Z.; Verpillot, R.; Esselmann, H.; Wiltfang, J.; Otto, M.; Taverna, M.; Bilkova, Z.; Viovy, J.-L. Microchip electrophoresis profiling of Aβ peptides in the cerebrospinal fluid of patients with Alzheimer's disease. Anal. Chem. 2010, 82, 7611–7617. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Liakopoulos, T.M.; Ahn, C.H. An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosens. Bioelectron. 2001, 16, 409–416. [Google Scholar] [CrossRef]
- Ramadan, Q.; Samper, V.; Poenar, D.; Yu, C. On-chip micro-electromagnets for magnetic-based bio-molecules separation. J. Magn. Magn. Mater. 2004, 281, 150–172. [Google Scholar] [CrossRef]
- Smistrup, K.; Hansen, O.; Bruus, H.; Hansen, M.F. Magnetic separation in microfluidic systems using microfabricated electromagnets-experiments and simulations. J. Magn. Magn. Mater. 2005, 293, 597–604. [Google Scholar] [CrossRef]
- Smistrup, K.; Tang, P.T.; Hansen, O.; Hansen, M.F. Micro electromagnet for magnetic manipulation in lab-on-a-chip systems. J. Magn. Magn. Mater. 2006, 300, 418–426. [Google Scholar] [CrossRef]
- Ramadan, Q.; Samper, V.; Poenar, D.; Yu, C. Magnetic-based microfluidic platform for biomolecular separation. Biomed. Microdevices 2006, 8, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, Q.; Lau Ting, T. Reconfigurable translocation of microbeads using micro-engineered locally controlled magnetic fields. J. Microelectromech. Syst. 2011, 20, 1310–1323. [Google Scholar] [CrossRef]
- Sinha, A.; Ganguly, R.; Puri, I.K. Magnetic separation from superparamagnetic particle suspensions. J. Magn. Magn. Mater. 2009, 321, 2251–2256. [Google Scholar] [CrossRef]
- Smistrup, K.; Lund-Olesen, T.; Hansen, M.F.; Tang, P.T. Microfluidic magnetic separator using an array of soft magnetic elements. J. Appl. Phys. 2006, 99, 08P102. [Google Scholar] [CrossRef] [Green Version]
- Teste, B.; Malloggi, F.; Gassner, A.-L.; Georgelin, T.; Siaugue, J.-M.; Varenne, A.; Girault, H.; Descroix, S. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient. Lab Chip 2011, 11, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Moser, Y.; Lehnert, T.; Gijs, M.A.M. On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads. Lab Chip 2009, 9, 3261–3267. [Google Scholar] [CrossRef] [PubMed]
- Rida, A.; Gijs, M.A.M. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal. Chem. 2004, 76, 6239–6246. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.T.; Kaminski, M.D.; Caviness, P.L.; Liu, X.Q.; Dhar, P.; Torno, M.; Rosengart, A.J. Magnetic separation of micro-spheres from viscous biological fluids. Phys. Med. Biol. 2007, 52, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Prentiss, M.; Whitesides, G.M. Fabrication of magnetic microfiltration systems using soft lithography. Appl. Phys. Lett. 2002, 80, 461–463. [Google Scholar] [CrossRef]
- Deng, T.; Whitesides, G.M.; Radhakrishnan, M.; Zabow, G.; Prentiss, M. Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl. Phys. Lett. 2001, 78, 1775–1777. [Google Scholar] [CrossRef]
- Nawarathna, D.; Norouzi, N.; McLane, J.; Sharma, H.; Sharac, N.; Grant, T.; Chen, A.; Strayer, S.; Ragan, R.; Khine, M. Shrink-induced sorting using integrated nanoscale magnetic traps. Appl. Phys. Lett. 2013, 102, 063504. [Google Scholar] [CrossRef] [PubMed]
- Armbrecht, L.; Dincer, C.; Kling, A.; Horak, J.; Kieninger, J.; Urban, G. Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms. Lab Chip 2015, 15, 4314–4321. [Google Scholar] [CrossRef] [PubMed]
- Saliba, A.-E.; Saias, L.; Psychari, E.; Minc, N.; Simon, D.; Bidard, F.-C.; Mathiot, C.; Pierga, J.-Y.; Fraisier, V.; Salamero, J.; et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl. Acad. Sci. USA 2010, 107, 14524–14529. [Google Scholar] [CrossRef] [PubMed]
- Bronzeau, S.; Pamme, N. Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles. Anal. Chim. Acta 2008, 609, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.W.; Oh, K.W.; Thomas, J.H.; Heineman, W.R.; Halsall, H.B.; Nevin, J.H.; Helmicki, A.J.; Henderson, H.T.; Ahn, C.H. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2002, 2, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.A.; Polson, N.A.; Phayre, A.N.; Garcia, A.A. Flow-based microimmunoassay. Anal. Chem. 2001, 73, 5896–5902. [Google Scholar] [CrossRef] [PubMed]
- Teste, B.; Ali-Cherif, A.; Viovy, J.L.; Malaquin, L. A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab Chip 2013, 13, 2344–2349. [Google Scholar] [CrossRef] [PubMed]
- Lien, K.Y.; Lin, J.L.; Liu, C.Y.; Lei, H.Y.; Lee, G.B. Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 2007, 7, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.F.; Harrison, D.J. mRNA isolation in a microfluidic device for eventual integration of cDNA library construction. Analyst 2000, 125, 2176–2179. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.H.; Mangru, S.; Granzow, R.; Heaney, P.; Ho, W.; Dong, Q.P.; Kumar, R. Dynamic DNA hybridization on a chip using paramagnetic beads. Anal. Chem. 1999, 71, 4851–4859. [Google Scholar] [CrossRef] [PubMed]
- Smistrup, K.; Kjeldsen, B.G.; Reimers, J.L.; Dufva, M.; Petersen, J.; Hansen, M.F. On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator. Lab Chip 2005, 5, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Lund-Olesen, T.; Dufva, M.; Hansen, M.F. Capture of DNA in microfluidic channel using magnetic beads: Increasing capture efficiency with integrated microfluidic mixer. J. Magn. Magn. Mater. 2007, 311, 396–400. [Google Scholar] [CrossRef]
- Doyle, P.S.; Bibette, J.; Bancaud, A.; Viovy, J.L. Self-assembled magnetic matrices for DNA separation chips. Science 2002, 295, 2237–2237. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Ye, H.; Kuan, Y.K.; Li, M.H.; Ying, J.Y. Integrated two-step gene synthesis in a microfluidic device. Lab Chip 2009, 9, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H.; Yang, J.N.; Lenigk, R.; Bonanno, J.; Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 2004, 76, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Furdui, V.I.; Harrison, D.J. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 2004, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Caulum, M.M.; Henry, C.S. Measuring reaction rates on single particles in a microfluidic device. Lab Chip 2008, 8, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Lin, S.; Qi, D.W.; Deng, C.H.; Yang, P.Y.; Zhang, X.M. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. J. Chromatogr. A 2007, 1176, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Slovakova, M.; Minc, N.; Bilkova, Z.; Smadja, C.; Faigle, W.; Futterer, C.; Taverna, M.; Viovy, J.L. Use of self assembled magnetic beads for on-chip protein digestion. Lab Chip 2005, 5, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Bilkova, Z.; Slovakova, M.; Minc, N.; Futterer, C.; Cecal, R.; Horak, D.; Benes, M.; le Potier, I.; Krenkova, J.; Przybylski, M.; et al. Functionalized magnetic micro-and nanoparticles: Optimization and application to μ-chip tryptic digestion. Electrophoresis 2006, 27, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Peyman, S.A.; Kwan, E.Y.; Margarson, O.; Iles, A.; Pamme, N. Diamagnetic repulsion—A versatile tool for label-free particle handling in microfluidic devices. J. Chromatogr. A 2009, 1216, 9055–9062. [Google Scholar] [CrossRef] [PubMed]
- Tarn, M.D.; Peyman, S.A.; Pamme, N. Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv. 2013, 3, 7209–7214. [Google Scholar] [CrossRef]
- Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of C-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014, 86, 10552–10559. [Google Scholar] [CrossRef] [PubMed]
- Phurimsak, C.; Yildirim, E.; Tarn, M.D.; Trietsch, S.J.; Hankemeier, T.; Pamme, N.; Vulto, P. Phaseguide assisted liquid lamination for magnetic particle-based assays. Lab Chip 2014, 14, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Dynabeads® M-270 Carboxylic Acid. 2012. Available online: https://tools.thermofisher.com/content/sfs/manuals/dynabeads_m270carboxylicacid_man.pdf (accessed on 26 April 2012).
- Black, S.; Kushner, I.; Samols, D. C-reactive protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef] [PubMed]
- Clyne, B.; Olshaker, J.S. The C-reactive protein. J. Emerg. Med. 1999, 17, 1019–1025. [Google Scholar] [CrossRef]
- Agassandian, M.; Shurin, G.V.; Ma, Y.; Shurin, M.R. C-reactive protein and lung diseases. Int. J. Biochem. Cell Biol. 2014, 53, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.K.; Venkatesh, A.G.; Marion Schneider, E.; Beaudoin, C.; Luppa, P.B.; Luong, J.H.T. Bioanalytical advances in assays for C-reactive protein. Biotechnol. Adv. 2016, 34, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; Alpert, J.S.; Beller, G.A.; Benjamin, E.J.; Budoff, M.J.; Fayad, Z.A.; Foster, E.; Hlatky, M.A.; Hodgson, J.M.; Kushner, F.G.; et al. 2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults: Executive Summary. Circulation 2010, 122, 2748–2764. [Google Scholar] [CrossRef] [PubMed]
- Lagrand, W.K.; Visser, C.A.; Hermens, W.T.; Niessen, H.W.M.; Verheugt, F.W.A.; Wolbink, G.J.; Hack, C.E. C-reactive protein as a cardiovascular risk factor—More than an epiphenomenon? Circulation 1999, 100, 96–102. [Google Scholar] [CrossRef] [PubMed]
- MedlinePlus. C-Reactive Protein. Available online: http://www.nlm.nih.gov/medlineplus/ency/article/003356.htm (accessed on 13 February 2016).
- Arévalo, F.J.; Messina, G.A.; Molina, P.G.; Zón, M.A.; Raba, J.; Fernández, H. Determination of progesterone (P4) from bovine serum samples using a microfluidic immunosensor system. Talanta 2010, 80, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Monerris, M.J.; Arévalo, F.J.; Fernández, H.; Zon, M.A.; Molina, P.G. Integrated electrochemical immunosensor with gold nanoparticles for the determination of progesterone. Sens. Actuators B 2012, 166–167, 586–592. [Google Scholar] [CrossRef]
- Ehrentreich-Förster, E.; Scheller, F.W.; Bier, F.F. Detection of progesterone in whole blood samples. Biosens. Bioelectron. 2003, 18, 375–380. [Google Scholar] [CrossRef]
- MedlinePlus. Serum progesterone. Available online: https://www.nlm.nih.gov/medlineplus/ency/article/003714.htm (accessed on 13 February 2016).
- Sanghavi, B.J.; Moore, J.A.; Chávez, J.L.; Hagen, J.A.; Kelley-Loughnane, N.; Chou, C.-F.; Swami, N.S. Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens. Bioelectron. 2016, 78, 244–252. [Google Scholar] [CrossRef] [PubMed]
- IDEX Health & Science. V-240-Selection Valve, 6 Position-7 Port, .040 Black. Available online: https://www.idex-hs.com/valves/flow-regulating-valves/selection-valves/selection-valve-6-position-7-port-040-black.html (accessed on 13 February 2016).
- He, Q.-H.; Fang, Q.; Du, W.-B.; Huang, Y.-Z.; Fang, Z.-L. An automated electrokinetic continuous sample introduction system for microfluidic chip-based capillary electrophoresis. Analyst 2005, 130, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Ahrberg, C.D.; Ilic, B.R.; Manz, A.; Neuzil, P. Handheld real-time PCR device. Lab Chip 2016, 16, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Novak, L.; Neuzil, P.; Pipper, J.; Zhang, Y.; Lee, S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 2007, 7, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phurimsak, C.; Tarn, M.D.; Pamme, N. Magnetic Particle Plug-Based Assays for Biomarker Analysis. Micromachines 2016, 7, 77. https://doi.org/10.3390/mi7050077
Phurimsak C, Tarn MD, Pamme N. Magnetic Particle Plug-Based Assays for Biomarker Analysis. Micromachines. 2016; 7(5):77. https://doi.org/10.3390/mi7050077
Chicago/Turabian StylePhurimsak, Chayakom, Mark D. Tarn, and Nicole Pamme. 2016. "Magnetic Particle Plug-Based Assays for Biomarker Analysis" Micromachines 7, no. 5: 77. https://doi.org/10.3390/mi7050077