Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process
<p>Schematic of the laser shock punching process.</p> "> Figure 2
<p>(<b>a</b>) Top view and details of the punching die; (<b>b</b>) sectional view of the punching die; and (<b>c</b>) dimension of designed tooth profile.</p> "> Figure 3
<p>Effect of the laser energy on quality of micro-gears: (<b>a</b>) punched by lighter blank-holder and (<b>b</b>) heavier blank-holder. Error bar: Standard deviation.</p> "> Figure 4
<p>The detailed top-view picture of the gears and holes.</p> "> Figure 5
<p>Top view of micro-gears punched by different thickness of silica gel: (<b>a</b>) 100 µm; (<b>b</b>) 200 µm; and (<b>c</b>) 300 µm.</p> "> Figure 6
<p>Schematic propagation of elastic waves: <span class="html-italic">C</span><sub>p</sub> is the velocity of elastic wave; <span class="html-italic">C</span><sub>off</sub> is the velocity of unloading wave.</p> "> Figure 7
<p>Top view of micro-gears punched by different thickness of polyurethane films: (<b>a</b>) 100 µm; (<b>b</b>) 200 µm; and (<b>c</b>) 300 µm.</p> "> Figure 8
<p>Reflection and transmission of elastic waves.</p> "> Figure 9
<p>Comparision of dimensional accuracy with different blank-holders: (<b>a</b>) addendum circle; (<b>b</b>) dedendum circle; and (<b>c</b>) hole. Error bar: Standard deviation.</p> "> Figure 10
<p>The deformation behavior in laser shock punching process.</p> "> Figure 11
<p>The curve of load <span class="html-italic">versus</span> time.</p> "> Figure 12
<p>Typical stages of material deformation in laser shock punching process.</p> "> Figure 13
<p>Differences in material deformation between high and low laser energy in the cross section (<b>a</b>) high energy and (<b>b</b>) low energy.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Principal of the Laser Shock Punching Process
2.2. Experimental Preparation
Parameters | Values |
---|---|
Single pulse energy | 80~1900 mJ |
Pulse width | 8 ns |
Wave length | 1064 nm |
Energy stability | <±1% |
Spot diameter | 2~5 mm |
Parameters | Values |
---|---|
Module (m) | 0.1 mm |
Gear number (z) | 12 |
Addendum circle diameter | 1367.88 µm |
Dedendum circle diameter | 1041.73 µm |
Hole diameter | 404.20 µm |
Parameters | Values |
---|---|
K9 class (thickness) | 2 mm |
Ablative layer (thickness) | 10 µm |
Soft punch (hardness) | 55°, 70° |
Soft punch (thickness) | 100, 200, 300 µm |
Al foil (thickness) | 20 µm |
Blank-holding force | 4 N, 12 N |
3. Experimental Results and Discussions
3.1. Effect of the Laser Energy
3.2. Effect of Soft Punch Properties
3.2.1. Soft Punch Thickness
3.2.2. Soft Punch Hardness
3.3. Effect of Blanking-Holding Force
4. Numerical Simulation
4.1. Loading
4.2. Constitutive Model and the Failure Model
Material | A (MPa) | B (MPa) | C | n | ε0 (s–1) |
---|---|---|---|---|---|
Aluminum | 369 | 684 | 0.0083 | 1.7 | 1.0 |
Material | d1 | d2 | d3 | d4 | d5 |
---|---|---|---|---|---|
Aluminum | 0.112 | 0.123 | 1.500 | 0.007 | 0.000 |
Material | Hardness Shore A (°) | M–R Constant C10 (MPa) | M–R Constant C01 (MPa) | Poisson’s Ratio |
---|---|---|---|---|
Silica gel | 55 | 0.382 | 0.096 | 0.49997 |
4.3. Simulation Results and Discussions
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Geiger, M.; Kleiner, M. Microforming. CIRP Ann-Manuf. Technol. 2001, 50, 445–462. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B. Micro-punching process of stainless steel foil with micro-die fabricated by micro-EDM. Microsyst. Technol. 2014, 20, 83–89. [Google Scholar] [CrossRef]
- Yi, S.M.; Joo, B.Y. Mechanical punching of 15 μm size hole. Microsyst. Technol. 2006, 12, 877–882. [Google Scholar] [CrossRef]
- Ghassemali, E.; Tan, M.J. Progressive microforming process: Towards the mass production of micro-parts using sheet metal. Int. J. Adv. Manuf. Technol. 2013, 66, 611–621. [Google Scholar] [CrossRef]
- Masuzawa, T.; Tönshoff, H.K. Three-dimensional micromachining by machine tools. CIRP Ann-Manuf. Technol. 1997, 46, 621–628. [Google Scholar] [CrossRef]
- Joo, B.Y.; Rhim, S.H. Micro-hole fabrication by mechanical punching process. J. Mater. Process. Technol. 2005, 170, 593–601. [Google Scholar] [CrossRef]
- Rhim, S.H.; Son, Y.K. Punching of ultra small size hole array. CIRP Ann-Manuf. Technol. 2005, 54, 261–264. [Google Scholar] [CrossRef]
- Liu, H.X.; Shen, Z.B. Numerical simulation and experimentation of a novel micro scale laser high speed punching. Int. J. Mach. Tools Manuf. 2010, 50, 491–494. [Google Scholar] [CrossRef]
- Liu, H.X.; Lu, M.M. Micro-punching of aluminum foil by laser dynamic flexible punching process. Int. J. Mater. Form. 2013, 8, 183–196. [Google Scholar] [CrossRef]
- Watari, H.; Ona, H. Flexible punching method using an elastic tool instead of a metal punch. J. Mater. Process. Technol. 2003, 137, 151–155. [Google Scholar] [CrossRef]
- Peng, L.; Hu, P.; Lai, X.; Mei, D.; Ni, J. Investigation of micro/meso sheet soft punch stamping process—Simulation and experiments. Mater. Des. 2009, 30, 783–790. [Google Scholar] [CrossRef]
- Wang, X.; Du, D. Investigation of microscale laser dynamic flexible forming process—Simulation and experiments. Int. J. Mach. Tools Manuf. 2013, 67, 8–17. [Google Scholar] [CrossRef]
- Guo, W.G.; Li, Y.L. Stress Wave Basis Concise Course; Northwestern Polytechnical University Press: Xi’an, China, 2007; pp. 52–55. [Google Scholar]
- Lee, T.C.; Chan, L.C. Straining behavior in blanking process-fine blanking vs. conventional blanking. J. Mater. Process. Technol. 1995, 48, 105–111. [Google Scholar] [CrossRef]
- Kwak, T.S.; Kim, Y.J. The effect of V-ring indenter on the sheared surface in the fine-blanking process of pawl. J. Mater. Process. Technol. 2003, 143, 656–661. [Google Scholar] [CrossRef]
- Fabbro, R.; Fournier, J. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 1990, 68, 775–784. [Google Scholar] [CrossRef]
- Peyre, P.; Fabbro, R. Laser shock processing: A review of the physics and applications. Opt. Quantum Electron. 1995, 27, 1213–1229. [Google Scholar]
- Dirikolu, M.H.; Akdemir, E. Computer aided modelling of flexible forming process. J. Mater. Process. Technol. 2004, 148, 376–381. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, J.; Shen, Z.; Qian, Q.; Zhang, H.; Wang, X. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process. Micromachines 2015, 6, 969-983. https://doi.org/10.3390/mi6080969
Liu H, Li J, Shen Z, Qian Q, Zhang H, Wang X. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process. Micromachines. 2015; 6(8):969-983. https://doi.org/10.3390/mi6080969
Chicago/Turabian StyleLiu, Huixia, Jianwen Li, Zongbao Shen, Qing Qian, Hongfeng Zhang, and Xiao Wang. 2015. "Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process" Micromachines 6, no. 8: 969-983. https://doi.org/10.3390/mi6080969
APA StyleLiu, H., Li, J., Shen, Z., Qian, Q., Zhang, H., & Wang, X. (2015). Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process. Micromachines, 6(8), 969-983. https://doi.org/10.3390/mi6080969