Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons
<p>XRD patterns of as-spun Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0.0, 0.5, 1.0, and 1.5) alloy ribbons.</p> "> Figure 2
<p>Hysteresis loops of as-spun Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0.0, 0.5, 1.0, and 1.5) alloy ribbons. Insert shows the saturation magnetization part measured by VSM.</p> "> Figure 3
<p>Enlarged B-H loop near coercivity (H<sub>C</sub>), measured by the DC B-H tracer.</p> "> Figure 4
<p>DSC curves of as-spun Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0.0, 0.5, 1.0, and 1.5) alloy ribbons.</p> "> Figure 5
<p>XRD patterns of the Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0.0, 0.5, 1.0, and 1.5) ribbons annealed at 420 °C and 460 °C for 10 min and the grain size calculated by the Scherrer formula.</p> "> Figure 6
<p>Mösbauer spectroscopy spectra of amorphous and nanocrystalline ribbons of Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0.0, 0.5, 1.0): (<b>a</b>–<b>c</b>) as-spun state; (<b>d</b>–<b>f</b>) annealed at 420 °C or 460 °C.</p> "> Figure 7
<p>Trends of B<sub>S</sub> and H<sub>C</sub> on the annealing temperature of the composition Fe<sub>85-<span class="html-italic">x</span></sub>Si<sub>2</sub>B<sub>8</sub>P<sub>4</sub>Cu<sub>1</sub>Nb<span class="html-italic"><sub>x</sub></span> (<span class="html-italic">x</span> = 0. 0, 0.5, 1.0, 1.5) after annealing at 380 °C to 480 °C for 10 min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2005; ISBN 0471680575. [Google Scholar]
- Enomoto, Y.; Deguchi, K.; Imagawa, T. Development of an Ultimate-High-Efficiency Motor by Utilizing High-Bs Nanocrystalline Alloy. IEEJ J. Ind. Appl. 2020, 9, 102–108. [Google Scholar] [CrossRef]
- Yoshizawa, Y.a.; Oguma, S.; Yamauchi, K. New Fe-based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Suzuki, K.; Kataoka, N.; Inoue, A.; Makino, A.; Masumoto, T. High Saturation Magnetization and Soft Magnetic Properties of Bcc Fe–Zr–B Alloys with Ultrafine Grain Structure. Mater. Trans. JIM 1990, 31, 743–746. [Google Scholar] [CrossRef]
- Willard, M.A.; Laughlin, D.E.; McHenry, M.E.; Thoma, D.; Sickafus, K.; Cross, J.O.; Harris, V.G. Structure and Magnetic Properties of (Fe 0.5 Co 0.5) 88 Zr 7 B 4 Cu 1 Nanocrystalline Alloys. J. Appl. Phys. 1998, 84, 6773–6777. [Google Scholar] [CrossRef]
- Makino, A. Nanocrystalline Soft Magnetic Fe-Si-BP-Cu Alloys with High $ B $ of 1.8–1.9 T Contributable to Energy Saving. IEEE Trans. Magn. 2012, 48, 1331–1335. [Google Scholar] [CrossRef]
- Kubota, T.; Makino, A.; Inoue, A. Low Core Loss of Fe85Si2B8P4Cu1 Nanocrystalline Alloys with High Bs and B800. J. Alloys Compd. 2011, 509, S416–S419. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, S.; Yim, H.; Kang, K.H.; Yoon, C.S. High Saturation Magnetic Flux Density of Novel Nanocrystalline Core Annealed under Magnetic Field. J. Alloys Compd. 2020, 826, 154136. [Google Scholar] [CrossRef]
- Jia, P.; Wang, E.; Han, K. The Effects of a High Magnetic Field on the Annealing of [(Fe0. 5Co0. 5) 0.75 B0. 2Si0. 05] 96Nb4 Bulk Metallic Glass. Materials 2016, 9, 899. [Google Scholar] [CrossRef]
- Willard, M.A.; Daniil, M.; Kniping, K.E. Nanocrystalline Soft Magnetic Materials at High Temperatures: A Perspective. Scr. Mater. 2012, 67, 554–559. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Flohrer, S.; Schäfer, R.; Polak, C.; Herzer, G. Interplay of Uniform and Random Anisotropy in Nanocrystalline Soft Magnetic Alloys. Acta Mater. 2005, 53, 2937–2942. [Google Scholar] [CrossRef]
- Makino, A.; Men, H.; Yubuta, K.; Kubota, T. Soft Magnetic FeSiBPCu Heteroamorphous Alloys with High Fe Content. J. Appl. Phys. 2009, 105, 013922. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Klencsár, Z.; Semionkin, V.A.; Kuzmann, E.; Homonnay, Z.; Varga, L.K. Annealed FINEMET Ribbons: Structure and Magnetic Anisotropy as Revealed by the High Velocity Resolution Mössbauer Spectroscopy. Mater. Chem. Phys. 2016, 180, 66–74. [Google Scholar] [CrossRef]
- Kuzmann, E.; Stichleutner, S.; Machala, L.; Pechoušek, J.; Vondrášek, R.; Smrčka, D.; Kouřil, L.; Homonnay, Z.; Oshtrakh, M.I.; Mozzolai, A. Change in Magnetic Anisotropy at the Surface and in the Bulk of FINEMET Induced by Swift Heavy Ion Irradiation. Nanomaterials 2022, 12, 1962. [Google Scholar] [CrossRef]
- Kuzmann, E.; Stichleutner, S.; Sápi, A.; Klencsár, Z.; Oshtrakh, M.I.; Semionkin, V.A.; Kubuki, S.; Homonnay, Z.; Varga, L.K. Mössbauer Study of FINEMET with Different Permeability. Hyperfine Interact. 2013, 219, 63–67. [Google Scholar] [CrossRef]
- Herzer, G. Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402. [Google Scholar] [CrossRef]
- Makino, A.; Men, H.; Kubota, T.; Yubuta, K.; Inoue, A. FeSiBPCu Nanocrystalline Soft Magnetic Alloys with High Bs of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase. Mater. Trans. 2009, 50, 204–209. [Google Scholar] [CrossRef]
- Kong, F.; Wang, A.; Fan, X.; Men, H.; Shen, B.; Xie, G.; Makino, A.; Inoue, A. High B s Fe84− x Si4B8P4Cu x (X= 0–1.5) Nanocrystalline Alloys with Excellent Magnetic Softness. J. Appl. Phys. 2011, 109, 07A303. [Google Scholar] [CrossRef]
- Sitek, J.; Holková, D.; Dekan, J.; Novák, P.; Sojak, S.; Dobrovodský, J. Influence of Cu Ion Implantation on Nanocrystalline Alloy of NANOMET. AIP Conf. Proc. 2019, 2131, 020042. [Google Scholar]
- Luborsky, F.; Becker, J.; McCary, R. Magnetic Annealing of Amorphous Alloys. IEEE Trans. Magn. 1975, 11, 1644–1649. [Google Scholar] [CrossRef]
- Kronmüller, H.; Fähnle, M.; Domann, M.; Grimm, H.; Grimm, R.; Gröger, B. Magnetic Properties of Amorphous Ferromagnetic Alloys. J. Magn. Magn. Mater. 1979, 13, 53–70. [Google Scholar] [CrossRef]
- Kulik, T. The Influence of Copper, Niobium and Tantalum Additions on the Crystallization of Fe Si B-Based Glasses. Mater. Sci. Eng. A 1992, 159, 95–101. [Google Scholar] [CrossRef]
- Hono, K.; Hiraga, K.; Wang, Q.; Inoue, A.; Sakurai, T. The Microstructure Evolution of a Fe73. 5Si13. 5B9Nb3Cu1 Nanocrystalline Soft Magnetic Material. Acta Metall. Et Mater. 1992, 40, 2137–2147. [Google Scholar] [CrossRef]
- Hosseini-Nasb, F.; Beitollahi, A.; Moravvej-Farshi, M.K. Effect of Crystallization on Soft Magnetic Properties of Nanocrystalline Fe80B10Si8Nb1Cu1 Alloy. J. Magn. Magn. Mater. 2015, 373, 255–258. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Illeková, E.; Coïsson, M.; Celegato, F.; Vinai, F.; Tiberto, P.; Moya, J.A.; Cremaschi, V.J. High Performance of Low Cost Soft Magnetic Materials. Bull. Mater. Sci. 2011, 34, 1407–1413. [Google Scholar] [CrossRef]
- Kuzmann, E.; Stichleutner, S.; Sápi, A.; Varga, L.K.; Havancsák, K.; Skuratov, V.; Homonnay, Z.; Vértes, A. Mössbauer Study of FINEMET Type Nanocrystalline Ribbons Irradiated with Swift Heavy Ions. In Proceedings of the ICAME 2011: Proceedings of the 31st International Conference on the Applications of the Mössbauer Effect (ICAME 2011), Tokyo, Japan, 25–30 September 2011; Springer: Berlin/Heidelberg, Germany, 2013; pp. 509–515. [Google Scholar]
- Grey, D.G.; Cesnek, M.; Bujdoš, M.; Miglierini, M.B. Effect of Cobalt on the Microstructure of Fe-B-Sn Amorphous Metallic Alloys. Metals 2024, 14, 712. [Google Scholar] [CrossRef]
- Lashgari, H.R.; Chu, D.; Xie, S.; Sun, H.; Ferry, M.; Li, S. Composition Dependence of the Microstructure and Soft Magnetic Properties of Fe-Based Amorphous/Nanocrystalline Alloys: A Review Study. J. Non Cryst. Solids 2014, 391, 61–82. [Google Scholar] [CrossRef]
- Meng, Y.; Pang, S.; Chang, C.; Luan, J.; Inoue, A.; Zhang, T. Effects of Si on the Microstructure, Soft Magnetic Properties and Bendability of Rapidly-Annealed Nanocrystalline Fe–Si–B–P–Cu Alloy Ribbons. J. Alloys Compd. 2023, 940, 168799. [Google Scholar] [CrossRef]
- Yao, B.; Si, L.; Tan, H.; Zhang, Y.; Li, Y. Effects of High Boron Content on Crystallization, Forming Ability and Magnetic Properties of Amorphous Fe91− XZr5BxNb4 Alloy. J. Non Cryst. Solids 2003, 332, 43–52. [Google Scholar] [CrossRef]
- Kong, F.; Men, H.; Liu, T.; Shen, B. Effect of P to B Concentration Ratio on Soft Magnetic Properties in FeSiBPCu Nanocrystalline Alloys. J. Appl. Phys. 2012, 111, 07A311. [Google Scholar] [CrossRef]
- Panahi, S.L.; Ramasamy, P.; Masdeu, F.; Stoica, M.; Torrens-Serra, J.; Bruna, P. Evaluation of the Effect of Minor Additions in the Crystallization Path of [(Fe0. 5Co0. 5) 0.75 B0. 2Si0. 05] 100-XMx Metallic Glasses by Means of Mössbauer Spectroscopy. Metals 2021, 11, 1293. [Google Scholar] [CrossRef]
- Sitek, J.; Holková, D.; Dekan, J.; Novák, P. Change of Magnetic Properties of Nanocrystalline Alloys under Influence of External Factors. AIP Conf. Proc. 2016, 1781, 020003. [Google Scholar]
- Klencsár, Z.; Kuzmann, E.; Vértes, A. User-Friendly Software for Mössbauer Spectrum Analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [Google Scholar] [CrossRef]
- Carter, C.B. Ceramic Materials: Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Li, Z.; Wang, A.; Chang, C.; Wang, Y.; Dong, B.; Zhou, S. Synthesis of FeSiBPNbCu Nanocrystalline Soft-Magnetic Alloys with High Saturation Magnetization. J. Alloys Compd. 2014, 611, 197–201. [Google Scholar] [CrossRef]
- Dou, Z.X.; Li, Y.L.; Lv, K.; Wang, T.; Li, F.S.; Hui, X.D. Improving the Glass Formation Ability and Magnetic Properties by Nb in Fe-Si-BP-Cu-Nb Nanocrystalline Alloys. Mater. Sci. Eng. B 2021, 264, 114942. [Google Scholar] [CrossRef]
- Mattern, N.; Danzig, A.; Müller, M. Effect of Cu and Nb on Crystallization and Magnetic Properties of Amorphous Fe77. 5Si15. 5B7 Alloys. Mater. Sci. Eng. A 1995, 194, 77–85. [Google Scholar] [CrossRef]
- Uhm, Y.R.; Rhee, C.K.; Lee, H.M.; Kim, C.S. Magnetic Properties and Dispersion Stability of Carbon Encapsulated Fe Nano Particles. J. Korean Phys. Soc. 2010, 57, 1609–1613. [Google Scholar]
- Eibschütz, M.; Lines, M.E. Observation of Linewidth Asymmetry in the Mössbauer Zeeman Spectrum of Amorphous Yttrium Iron Garnet. Phys. Rev. B 1982, 26, 2288. [Google Scholar] [CrossRef]
- Raj, P. Correlations among Hyperfine Parameters in Amorphous Metal Systems: Mössbauer Linewidth Asymmetries and Fluctuation Hyperfine Correlation Functions. Hyperfine Interact. 1990, 52, 373–378. [Google Scholar] [CrossRef]
- Gupta, A.; Kane, S.N.; Bhagat, N.; Kulik, T. Effect of Cu, Nb and Ta Addition on the Structural and Magnetic Properties of Amorphous Fe–Si–B Alloys. J. Magn. Magn. Mater. 2003, 254, 492–494. [Google Scholar] [CrossRef]
- Xia, G.T.; Wang, Y.G.; Dai, J.; Dai, Y.D. Effects of Cu Cluster Evolution on Soft Magnetic Properties of Fe83B10C6Cu1 Metallic Glass in Two-Step Annealing. J. Alloys Compd. 2017, 690, 281–286. [Google Scholar] [CrossRef]
- Stearns, M.B. Internal Magnetic Fields, Isomer Shifts, and Relative Abundances of the Various Fe Sites in FeSi Alloys. Phys. Rev. 1963, 129, 1136. [Google Scholar] [CrossRef]
As-Spun | Thermal Properties | Magnetic Properties | ||
---|---|---|---|---|
Tx1, [°C] | ΔT [°C] = Tx2 − Tx1, | BS, [T] | HC, [A/m] | |
Fe85.0 Si2 B8 P4 Cu1 (x = 0.0) | 374 | 153 | 1.74 | 18.2 |
Fe84.5 Si2 B8 P4 Cu1 Nb0.5 (x = 0.5) | 380 | 173 | 1.67 | 7.5 |
Fe84.0 Si2 B8 P4 Cu1 Nb1.0 (x = 1.0) | 385 | 185 | 1.66 | 9.1 |
Fe83.5 Si2 B8 P4 Cu1 Nb1.5 (x = 1.5) | 391 | 191 | 1.55 | 9.7 |
Sample | Amorphous | |||
---|---|---|---|---|
Beff (T) | QS, Δ (mm/s) | IS, δ (mm/s) | A (%) | |
Fe85.0 Si2 B8 P4 Cu1 (x = 0.0) | 25.7 | 0.0 | 0.04 | 100 |
Fe84.5 Si2 B8 P4 Cu1 Nb0.5 (x = 0.5) | 25.3 | 0.0 | 0.04 | 100 |
Fe84.0 Si2 B8 P4 Cu1 Nb1.0 (x = 1.0) | 24.7 | 0.0 | 0.02 | 100 |
Sample | Fe85.0 Si2 B8 P4 Cu1 (x = 0.0) | Fe84.5 Si2 B8 P4 Cu1 Nb0.5 (x = 0.5) | Fe84.0 Si2 B8 P4 Cu1 Nb1.0 (x = 1.0) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nanocrystalline | Beff (T) | QS, Δ (mm/s) | IS, δ (mm/s) | A (%) | Beff (T) | QS, Δ (mm/s) | IS, δ (mm/s) | A (%) | Beff (T) | QS, Δ (mm/s) | IS, δ (mm/s) | A (%) |
α-Fe | 33.0 | 0.0 | −0.11 | 34.8 | 33.0 | 0.0 | −0.11 | 33.6 | 33.0 | 0.0 | −0.11 | 35.1 |
Fe(Si) crystallites | 30.6 | 0.0 | 0.01 | 13.2 | 30.6 | 0.0 | 0.01 | 16.6 | 30.6 | 0.0 | 0.01 | 16.7 |
Amorphous lower hyperfine field | 23.6 | 0.0 | 0.04 | 31.8 | 23.1 | 0.0 | 0.04 | 30.3 | 22.4 | 0.0 | 0.03 | 29.1 |
Amorphous higher hyperfine field | 28.0 | 0.0 | 0.02 | 20.2 | 27.3 | 0.0 | 0.02 | 19.5 | 26.4 | 0.0 | 0.01 | 19.1 |
Annealed | Annealing Temperature | |||
---|---|---|---|---|
420 °C | 460 °C | |||
BS, [T] | HC, [A/m] | BS, [T] | HC, [A/m] | |
Fe85.0 Si2 B8 P4 Cu1 (x = 0.0) | 1.90 | 39.0 | 1.87 | 29.3 |
Fe84.5 Si2 B8 P4 Cu1 Nb0.5 (x = 0.5) | 1.79 | 34.5 | 1.94 | 27.7 |
Fe84.0 Si2 B8 P4 Cu1 Nb1.0 (x = 1.0) | 1.78 | 48.9 | 1.84 | 26.5 |
Fe83.5 Si2 B8 P4 Cu1 Nb1.5 (x = 1.5) | 1.78 | 27.1 | 1.82 | 23.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, H.; Uhm, Y.R.; Choi-Yim, H. Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons. Metals 2024, 14, 1381. https://doi.org/10.3390/met14121381
Lee H, Choi H, Uhm YR, Choi-Yim H. Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons. Metals. 2024; 14(12):1381. https://doi.org/10.3390/met14121381
Chicago/Turabian StyleLee, Hyunkyung, Hyunkyung Choi, Young Rang Uhm, and Haein Choi-Yim. 2024. "Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons" Metals 14, no. 12: 1381. https://doi.org/10.3390/met14121381
APA StyleLee, H., Choi, H., Uhm, Y. R., & Choi-Yim, H. (2024). Structural, Magnetic, and Mössbauer Study on Nb and Heat Treatment of Fe-Si-B-P-Cu-Nb Ribbons. Metals, 14(12), 1381. https://doi.org/10.3390/met14121381