High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser
<p>Microstructural characteristics of enhanced phase (γ′-Ni<sub>3</sub>Al) morphology.</p> "> Figure 2
<p>(<b>a</b>) Structural morphology of pore walls in aerogel; (<b>b</b>) morphological characteristics of pore edge structure.</p> "> Figure 3
<p>(<b>a</b>) Geometrical dimensions of high-cycle fatigue specimens (all dimensions are in mm); (<b>b</b>) schematic diagram of the vibration excitation system; (<b>c</b>) monitoring position (red dot) and strain gauge position (yellow square) of the laser displacement sensor.</p> "> Figure 4
<p>High-cycle fatigue life of specimens with perforations compared to those without perforations (specimens marked in yellow for stress prediction analysis).</p> "> Figure 5
<p>(<b>a</b>) Microstructural characteristics of cross-section of M9; (<b>b</b>) Microstructural characteristics of cross-section of M1; (<b>c</b>) Microstructural characteristics of cross-section of M4.</p> "> Figure 6
<p>(<b>a</b>) Microstructural characteristics of the cross-section of M9; (<b>b</b>) Microstructural characteristics of the cross-section of M1; (<b>c</b>) Microstructural characteristics of the cross-section of M4.</p> "> Figure 7
<p>(<b>a</b>) Analysis of the morphologies of oxidized particles (The yellow box shows the EDS analysis area); (<b>b</b>) Euler angle results of oxidized particles (Different colors represent different grain orientations).</p> "> Figure 8
<p>(<b>a</b>) Back to bottom plot of HAADF elemental analysis; (<b>b</b>) Elemental distribution map.</p> "> Figure 9
<p>Characteristics of dislocation morphology.</p> "> Figure 10
<p>Schematic representation of the plastic deformation zone at the crack tip.</p> "> Figure 11
<p>Schematic representation of the EBSD sample preparation procedure.</p> "> Figure 12
<p>Results and data analysis of the KAM experiment.</p> "> Figure 13
<p>(<b>a</b>) Schematic representation of the elliptical corner crack model; (<b>b</b>) crack extension direction versus θ angle definition plot; (<b>c</b>) the cross-section of a high-cycle simulation specimen.</p> "> Figure 14
<p>Meshing and convergence study of M4 specimens.</p> "> Figure 15
<p>Finite element analysis of stress distribution at the chip placement interface of the M4 specimen (red marked positions).</p> "> Figure 16
<p>Stress along the crack propagation path for the M4 specimen.</p> ">
Abstract
:1. Introduction
2. Experimental Materials and Protocols
3. Results and Analysis
3.1. High-Cycle Fatigue Life
3.2. Fracture Behavior and Morphological Characteristics of High-Cycle Fatigue
3.3. Stress Intensity Factor and Plastic Zone at Crack Tip
3.4. Characterization and Determination of Dimensions of Plastic Zone at Crack Tip
3.5. Crack Shape Factor
3.6. Prediction of Stress
3.7. Finite Element Analysis and Error Assessment
4. Conclusions
- (1)
- The fatigue strength σmax of the specimen without pores is approximately 300 MPa, whereas, for the specimen with pores, it is around 250 MPa. The presence of pores disrupts the stress distribution within the working section of the specimen and induces stress concentration at the edges of the pores, significantly reducing its fatigue strength.
- (2)
- The cross-section reveals a distinct oxidation layer accompanied by layering phenomena. The surface predominantly comprises NiO, with minor amounts of CoO. A significant quantity of Al2O3 is interspersed between the matrix and the oxide layer. Near the oxide layer and the matrix, cut-in dislocations within the γ′ phase are observed alongside the original dislocations in both the γ and γ′ phases. These dislocations are short and linear, measuring approximately 100–200 nm. The configuration of these dislocations suggests that the slip mechanism in this single-crystal alloy is predominantly governed by dislocation multiplication and planar slip.
- (3)
- During the crack propagation stage, no typical fatigue stripe features were observed in the simulated specimens of the high-cycle fatigue air film. Theoretical derivations suggest a correlation between the size of the plastic zone at the crack tip and the fatigue stress. The experimental results indicate that, in single-crystal alloys, it is relatively straightforward to determine the size of the plastic zone due to the absence of grain boundaries and other influencing factors. Given these favorable prediction outcomes, the size of the plastic zone at the crack tip can be effectively employed as a parameter for the analysis of fatigue stress.
- (4)
- The high-cycle-fatigue air-film porous specimen exhibited cracking in the form of an angular crack at the pore edges. The crack shape factor, termed the “pore edge elliptical corner crack”, was employed to predict the fatigue stress at the fracture surface, yielding relatively accurate results with an error range of 1.00 to 1.21.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.W.; Wang, C.; Wen, Z.; Yuan, Y.; Pei, H.Q.; He, P.F.; Yue, Z.F. Investigation on high temperature fatigue-oxidation behavior of Ni-based single crystal with film cooling holes considering arrangement effect. Eng. Fract. Mech. 2024, 307, 110326. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zeng, W.; Bian, X.D.; Zhang, X.D. Failure analysis of a first stage turbine blade made of directionally solidiffed GTD111 superalloy and repaired by welding process. Eng. Fail. Anal. 2023, 153, 107570. [Google Scholar]
- Wang, J.; Guo, T.; Gao, K.; Pang, X. Fatigue behavior of Pt-modified aluminum coated single crystal superalloy at 900 °C. Int. J. Fatigue 2023, 72, 107596. [Google Scholar] [CrossRef]
- Xiao, Q.F.; Xu, Y.M.; Liu, X.L.; Sun, R.J. Anisotropic creep behavior of Ni-based single crystal superalloy with film cooling hole drilled by a femtosecond laser along different crystal orientations. Opt. Laser Technol. 2023, 163, 109258. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Jiang, R.; Kim, C.; Tian, W.; Xiong, Y.; Zhang, X.; Mao, Z.; Lee, M.G. Tensile behavior of single-crystal superalloy with different structured cooling holes. Int. J. Mech. Sci. 2022, 229, 107514. [Google Scholar] [CrossRef]
- Li, Z.W.; Wen, Z.; Li, M.; Pei, H.Q.; Li, F.; Wang, J.D.; He, P.F.; Yue, Z.F. Research on low-cycle fatigue behavior of Ni-based single crystal superalloy with shaped film cooling holes at high temperature. Fatigue Fract. Eng. Mater. Struct. 2024, 472, 532–548. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Wang, L.; Wen, J.L.; Luo, L.H.; Zhang, J. Effect of skew angle of holes on the tensile behavior of a Ni-base single crystal superalloy. J. Alloys Compd. 2015, 628, 185–192. [Google Scholar] [CrossRef]
- Li, M.; Wen, Z.; Li, Z.; Lu, G.; Liu, Y.; Yue, Z.; Wang, P. Size effect of femtosecond laser helical drilling on nickel-based single crystal superalloy. J. Manuf. Process. 2024, 116, 77–91. [Google Scholar] [CrossRef]
- Tao, X.P.; Wang, X.G.; Meng, J.; Zhou, Y.Z.; Yang, Y.H.; Liu, J.L.; Liu, J.D.; Li, J.G.; Sun, X.F. Creep failure and deformation mechanism investigation on a novel single crystal superalloy with various primary ageing temperatures. Eng. Fail. Anal. 2022, 133, 105963. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, Z.; Tao, C.H. Quantitative Analysis of Fatigue Fracture; National Defense Industry Press: Beijing, China, 2010; pp. 158–182. [Google Scholar]
- Zhao, Z.H.; Zhang, Z.; Wu, S.J.; Zhong, Q.P. A Comprehensive Review of Quantitative Inverse Analysis of Metal Fatigue Fracture Surfaces. Mech. Strength Prop. 2008, 30, 45–50. [Google Scholar]
- Luo, L.; Ru, Y.; Ma, Y.; Li, S.; Gong, S. Design for 1200 °C creep properties of Ni-based single crystal superalloys: Effect of g0—Forming elements and its microscopic mechanism. Mater. Sci. Eng. A 2022, 832, 142494. [Google Scholar] [CrossRef]
- Li, Z.; Xu, H.; Shi, D.; Huang, J.; Xu, G.; Yang, X. Combined tensile and bending fatigue behavior and failure mechanism of a blade-like specimen at elevated temperature. Int. J. Fatigue 2022, 164, 107163. [Google Scholar] [CrossRef]
- Yan, H.J.; Tian, S.G.; Zhao, G.Q.; Tian, N.; Zhang, S.K. Creep and damage of a Re/Ru-containing single crystal nickel-based alloy at high temperature, Mater. Sci. Eng. A 2021, 808, 140870. [Google Scholar] [CrossRef]
- Han, Q.-N.; Rui, S.-S.; Qiu, W.; Su, Y.; Ma, X.; Su, Z.; Cui, H.T.; Shi, H.J. Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy. Mater. Sci. Eng. A 2020, 773, 138893. [Google Scholar] [CrossRef]
- Li, J.; Jing, J.; He, J.; Chen, H.; Guo, H.B. Microstructure evolution and element diffusion behaviour near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures. Mater. Des. 2020, 193, 108776. [Google Scholar] [CrossRef]
- Liang, J.W.; Peng, Y.; Wang, J. Creep Behavior of Nickel-Based Single Crystal Superalloy under Gradient Loading. Eng. Fail. Anal. 2022, 131, 105861. [Google Scholar] [CrossRef]
- Xue, X.; Li, W.; Jia, J.; Liu, J.; Di, L. The whole fatigue life prediction of Ni-based single crystal super-alloy specimen with single hole based on EIFS and ‘Fish-eye’ theory. Eng. Fail. Anal. 2021, 550, 105550. [Google Scholar] [CrossRef]
- Palumbo, D.; De, R.F.; Ancona, F.; Galietti, U. Damage monitoring in fracture mechanics by evaluation of the heat dissipated in the cyclic plastic zone ahead of the crack tip with thermal measurements. Eng. Fract. Mech. 2017, 181, 65–76. [Google Scholar] [CrossRef]
- Bharadwaj, P.; Gupta, S.K.; Chattopadhyay, J. Study of cyclic plastic zone ahead of the fatigue crack tip using Digital Image Correlation system. Procedia Struct. Integr. 2024, 60, 655–664. [Google Scholar] [CrossRef]
- Toribio, J.; Matos, J.C.; Gonzalez, B. Stress Intensity Factor (SIF) Solutions and Fatigue Crack Paths in Eccentric Circumferentially Cracked Round Bar (CCRB) in Tension. Materials 2023, 16, 1728. [Google Scholar] [CrossRef]
- China Aeronautics Research Institute. Stress Intensity Factor Handbook; Scientific Publishing House: Beijing, China, 1993; pp. 786–789. [Google Scholar]
- Newman, J.C.; Raju, I.S. Stress-intensity factor equations for cracks in three dimensional finite bodies subjected to tension and bending loads. In Computational Methods in the Mechanics of Fracture; Elsevier: Amsterdam, The Netherlands, 1986; Volume 2, pp. 312–334. [Google Scholar]
- Li, Z. Applied Fracture Mechanics; Beijing University of Aeronautics and Astronautics Press: Beijing, China, 2012; pp. 89–91. [Google Scholar]
- Sozańska, M.; Francesco, I.; Jan, C.; Michel, J.; Jaroslav, S.; Jacques, G. Quantitative analysis of fatigue fracture surface in the duplex steel. Image Anal. Stereol. 2002, 21, 55–59. [Google Scholar] [CrossRef]
- De Santis, A.; Iacoviello, D.; Di Cocco, V.B.O. An innovative approach for quantitative analysis of fatigue fracture in ductile cast iron surfaces using image processing. Frat. Ed. Integrita Struturale 2008, 5, 27–38. [Google Scholar] [CrossRef]
- Yang, D.Y.; Zhou, L.; Wen, Y.; Xu, W. Quantitative Analysis on Fatigue Fracture of Spray Formed GH738 Alloy. Mater. Sci. Forum 2013, 23, 747–748. [Google Scholar] [CrossRef]
- Zhang, D.; Zhong, P.D.; Tao, C.H. Failure Analysis; National Defense Industry Publishing House: Beijing, China, 2004; pp. 55–61. [Google Scholar]
- Tarpani, J.R.; Ruckert, C.; Milan, M.T.; Silva, R.V.; Rosato, A.; Pereira, R.N.; Bose, W.W.; Spinelli, D. Estimating fatigue life under variable amplitude loading through quantitative fractography—A case study. Eng. Fail. Anal. 2004, 11, 547–559. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Lai, J.; Zhao, Q.; Lin, Z. Analysis on corrosion fatigue cracking mechanism of 17-4PH blade of low pressure rotor of steam turbine. Eng. Fail. Anal. 2020, 118, 104925. [Google Scholar] [CrossRef]
- Zhang, W.F.; Tao, C.H.; Xi, N.S.; Liu, G.Y. Fracture backthrust fatigue stress and its application in blade fracture analysis. Mater. Eng. 2003, 01, 38–41. [Google Scholar]
- Zhang, W.F.; Gao, W.; Zhao, A.G.; Liu, G.Y.; Tao, C.H. A Study on the Experimental and Engineering Applications of Fatigue Stress Inferred from Titanium Alloy Fracture Surfaces. Mech. Strength Prop. 2003, 25, 5. [Google Scholar]
- Levkovitch, V.; Sievert, R.; Svendsen, B. Simulation of deformation and lifetime behavior of a fee single crystal superalloy at high temperature under low-cycle fatigue loading. Int. J. Fatigue 2006, 28, 1791–1802. [Google Scholar] [CrossRef]
- Wang, R.Q.; Jing, F.L.; Hu, D.Y. Fatigue life prediction model based on critical plane of nickel-based single crystal superalloy. J. Aerosp. Power 2013, 28, 2587–2592. [Google Scholar]
- Leidermark, D.; Moverare, J.; Simonsson, K.; Sjoestroem, S. A combined critical plane and critical distance approach for predicting fatigue crack initiation in notched single-crystal superalloy components. Int. J. Fatigue 2011, 33, 1351–1359. [Google Scholar] [CrossRef]
- Cheng, L.; Yuan, H. Life assessment of anisotropic low cycle fatigue of nickel-base single crystal superalloy. Int. J. Fatigue 2023, 167, 107310−1–107310−15. [Google Scholar]
- Karolczuk, A.; Macha, E. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract. 2005, 134, 267–304. [Google Scholar] [CrossRef]
- Wang, R.Q.; Li, Y.Y.; Jiang, K.H.; Hu, D.Y. A high-cycle fatigue life model for nickel-based single-crystal superalloy based on the critical plane method. J. Aerosp. Power 2017, 32, 677–682. [Google Scholar]
- Sha, Y.; Zhang, J.Z.; Bai, S.G.; Zhou, Z.G. Study on the effect of compression loading on fatigue crack growth of aluminium under tension-compression cycle. Eng. Mech. 2012, 29, 327–335. [Google Scholar]
- Silva, F. Fatigue crack propagation after overloading and underloading at negative stress ratios. Int. J. Fatigue 2007, 29, 1757–1771. [Google Scholar] [CrossRef]
- Dong, Q.; Shi, X.; Tong, D.; Liu, F.; Wang, L.; Zhao, L. Crack initiation life model for compression-compression low cycle fatigue based on damage mechanics. Int. J. Fatigue 2023, 169, 107495. [Google Scholar] [CrossRef]
- Alshoaibi, A.M.; Fageehi, Y.A. Numerical Analysis on Fatigue Crack Growth at Negative and Positive Stress Ratios. Materials 2023, 16, 3669. [Google Scholar] [CrossRef]
- Xie, L.Q.; Zhang, P.; He, X.H.; Zhou, C.Y. Effect of single tensile overload on fatigue crack growth behavior of CP-Ti at negative load ratio. Int. J. Fatigue 2020, 145, 106129. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Z.W.; Hu, C.J. Analysis of the causes of rivet fatigue fracture and fatigue stress estimation. Fail. Anal. Prev. 2016, 11, 010. [Google Scholar]
- Zhang, W.F.; Gao, W.; Zhao, A.G.; Liu, G.Y.; Tao, C.H. Experimental and engineering applications of back thrusting fatigue stresses in titanium alloy fracture. Mech. Strength 2003, 4, 436–440. [Google Scholar]
Element | C | Cr | Co | W | Mo |
---|---|---|---|---|---|
wt% | 0.01~0.04 | 3.8~4.8 | 8.5~9.5 | 7.0~9.0 | 1.5–2.5 |
Element | Al | Ta | Hf | Re | Ni |
wt% | 5.2–6.2 | 6.0~8.5 | 0.05~0.15 | 1.6~2.4 | Allowance |
Phase | Spatial Structure of Phase | Lattice Constant | Space Group |
---|---|---|---|
Ni3Al | Face-centered cubic structure | 4.157 Å | 225 |
NiO | Face-centered cubic structure | 3.52 Å | 225 |
Element | Molar Mass | Density | Molar Volume | Volume Ratio |
---|---|---|---|---|
Ni | 58.7 g/mol | 8.902 g/cm³ | 6.59 dm3/mol | 0.58 |
NiO | 74.7 g/mol | 6.6 g/cm³ | 11.21 dm3/mol |
Sample Identification Number | Length of the Crack a/mm | Dimensions of the Plastic Zone/μm | Revised Dimensions of the Plastic Zone/μm |
---|---|---|---|
M9 | 0.02 | 18.56 | 18.43 |
0.05 | 8.84 | 8.84 | |
0.10 | 9.18 | 9.18 | |
0.15 | 11.48 | 11.48 | |
0.20 | 8.78 | 8.78 | |
0.25 | 8.74 | 8.74 | |
0.50 | 9.11 | 9.11 | |
0.80 | 8.11 | 7.90 | |
M1 | 0.035 | 13.18 | 13.09 |
0.07 | 9.08 | 9.08 | |
0.10 | 13.59 | 13.59 | |
0.15 | 5.67 | 5.67 | |
0.20 | 10.44 | 10.44 | |
0.25 | 8.99 | 8.99 | |
0.40 | 7.45 | 7.45 | |
0.70 | 8.41 | 8.41 | |
0.90 | 9.25 | 9.25 | |
M4 | 0.037 | 7.38 | 7.29 |
0.208 | 8.115 | 8.01 | |
0.40 | 5.33 | 4.95 | |
0.80 | 10.05 | 9.84 | |
1.20 | 12.97 | 12.64 |
Sample Identification Number | Crack Length a/mm | c/b | θ/° | b/mm | r/mm | t/mm | w/mm | r/mm | Y |
---|---|---|---|---|---|---|---|---|---|
M9 | 0.02 | 1.00 | 30 | 0.02 | 0.20 | 2.71 | 5.00 | 0.20 | 1.31 |
0.05 | 1.00 | 45 | 0.05 | 0.20 | 2.71 | 5.00 | 0.20 | 1.08 | |
0.10 | 1.00 | 45 | 0.10 | 0.20 | 2.71 | 5.00 | 0.20 | 0.85 | |
0.15 | 1.00 | 45 | 0.15 | 0.20 | 2.71 | 5.00 | 0.20 | 0.97 | |
0.20 | 1.00 | 45 | 0.20 | 0.20 | 2.71 | 5.00 | 0.20 | 0.86 | |
0.25 | 1.00 | 45 | 0.25 | 0.20 | 2.71 | 5.00 | 0.20 | 0.77 | |
0.50 | 0.65 | 50 | 0.77 | 0.20 | 2.71 | 5.00 | 0.20 | 0.60 | |
0.80 | 0.50 | 70 | 1.61 | 0.20 | 2.71 | 5.00 | 0.20 | 0.58 | |
M1 | 0.035 | 1.00 | 30 | 0.035 | 0.20 | 2.71 | 5.00 | 0.20 | 1.18 |
0.07 | 1.00 | 45 | 0.07 | 0.20 | 2.71 | 5.00 | 0.20 | 1.32 | |
0.10 | 1.00 | 45 | 0.1 | 0.20 | 2.71 | 5.00 | 0.20 | 1.15 | |
0.15 | 1.00 | 45 | 0.15 | 0.20 | 2.71 | 5.00 | 0.20 | 0.97 | |
0.20 | 1.00 | 45 | 0.2 | 0.20 | 2.71 | 5.00 | 0.20 | 0.86 | |
0.25 | 1.00 | 45 | 0.25 | 0.20 | 2.71 | 5.00 | 0.20 | 0.77 | |
0.40 | 1.00 | 45 | 0.4 | 0.20 | 2.71 | 5.00 | 0.20 | 0.61 | |
0.70 | 0.79 | 50 | 0.88 | 0.20 | 2.71 | 5.00 | 0.20 | 0.48 | |
0.80 | 0.65 | 60 | 1.23 | 0.20 | 2.71 | 5.00 | 0.20 | 0.49 | |
0.90 | 0.55 | 70 | 1.64 | 0.20 | 2.71 | 5.00 | 0.20 | 0.51 | |
M4 | 0.037 | 1.00 | 45 | 0.25 | 0.22 | 2.53 | 5.00 | 0.20 | 0.78 |
0.208 | 1.00 | 45 | 0.34 | 0.22 | 2.53 | 5.00 | 0.20 | 0.67 | |
0.40 | 1.00 | 45 | 0.44 | 0.22 | 2.53 | 5.00 | 0.20 | 0.58 | |
0.80 | 0.56 | 70 | 0.48 | 0.22 | 2.53 | 5.00 | 0.20 | 0.68 | |
1.20 | 0.51 | 80 | 0.90 | 0.22 | 2.53 | 5.00 | 0.20 | 0.53 |
Sample Identification Number | a/mm Length of the Crack | Dimensions of the Plastic Zone/μm | Shape Factor of Cracks Y | Prediction of the Stress Range Δσ/MPa |
---|---|---|---|---|
M9 | 0.02 | 18.43 | 1.31 | 1675.50 |
0.05 | 8.84 | 1.08 | 1615.02 | |
0.10 | 9.18 | 0.85 | 1475.17 | |
0.15 | 11.48 | 0.97 | 1180.50 | |
0.20 | 8.78 | 0.86 | 1017.79 | |
0.25 | 8.74 | 0.77 | 1008.93 | |
0.50 | 9.11 | 0.60 | 939.45 | |
0.80 | 7.90 | 0.58 | 718.25 | |
M1 | 0.035 | 13.09 | 1.18 | 1189.69 |
0.07 | 9.08 | 1.32 | 1137.73 | |
0.10 | 13.59 | 1.15 | 1328.20 | |
0.15 | 5.67 | 0.97 | 829.64 | |
0.20 | 10.44 | 0.86 | 1109.85 | |
0.25 | 8.99 | 0.77 | 1023.26 | |
0.40 | 7.45 | 0.61 | 931.25 | |
0.70 | 8.41 | 0.48 | 950.94 | |
0.90 | 9.25 | 0.51 | 825.09 | |
M4 | 0.037 | 7.29 | 0.78 | 1303.53 |
0.208 | 8.01 | 0.67 | 1224.62 | |
0.40 | 4.95 | 0.58 | 797.96 | |
0.80 | 9.84 | 0.68 | 682.22 | |
1.20 | 12.64 | 0.53 | 798.57 | |
Material Properties | 850 °C: Poisson’s ratio ν = 0.383, yield strength σys = 978 Mpa |
Sample Identification Number | Length of the Crack a/mm | Prediction of the Stress Range Δσ/MPa | Predicted Maximum Stress Value σmax/MPa | Finite Element Analysis of the Maximum Stress σmax/MPa | Error Magnitude |
---|---|---|---|---|---|
M9 | 0.02 | 1675.50 | 837.75 | 915.20 | 1.09 |
0.05 | 1615.02 | 807.51 | 739.20 | 1.09 | |
0.10 | 1475.17 | 737.59 | 640.00 | 1.15 | |
0.15 | 1180.50 | 590.25 | 588.80 | 1.00 | |
0.20 | 1017.79 | 508.90 | 553.60 | 1.09 | |
0.25 | 1008.93 | 504.47 | 528.00 | 1.05 | |
0.50 | 939.45 | 469.73 | 457.60 | 1.03 | |
0.80 | 718.25 | 359.13 | 416.00 | 1.16 | |
M1 | 0.035 | 1189.69 | 594.85 | 691.20 | 1.16 |
0.07 | 1137.73 | 568.87 | 611.20 | 1.07 | |
0.10 | 1328.20 | 664.10 | 572.80 | 1.16 | |
0.15 | 829.64 | 414.82 | 534.40 | 1.29 | |
0.20 | 1109.85 | 554.93 | 508.80 | 1.09 | |
0.25 | 1023.26 | 511.63 | 486.40 | 1.05 | |
0.40 | 931.25 | 465.63 | 448.00 | 1.04 | |
0.70 | 950.94 | 475.47 | 406.40 | 1.17 | |
0.90 | 825.09 | 412.55 | 390.40 | 1.06 | |
M4 | 0.037 | 1303.53 | 651.77 | 756.00 | 1.16 |
0.208 | 1224.62 | 612.31 | 505.60 | 1.21 | |
0.40 | 797.96 | 398.98 | 364.50 | 1.09 | |
0.80 | 682.22 | 341.11 | 327.50 | 1.04 | |
1.20 | 798.57 | 399.29 | 323.70 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Xu, Y.; Liu, X.; Liu, C.; Tao, C. High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser. Metals 2024, 14, 1354. https://doi.org/10.3390/met14121354
Li Z, Xu Y, Liu X, Liu C, Tao C. High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser. Metals. 2024; 14(12):1354. https://doi.org/10.3390/met14121354
Chicago/Turabian StyleLi, Zhen, Yuanming Xu, Xinling Liu, Changkui Liu, and Chunhu Tao. 2024. "High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser" Metals 14, no. 12: 1354. https://doi.org/10.3390/met14121354
APA StyleLi, Z., Xu, Y., Liu, X., Liu, C., & Tao, C. (2024). High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser. Metals, 14(12), 1354. https://doi.org/10.3390/met14121354