Surface Quality and Free Energy Evaluation of s275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing
<p>Measurement process and evaluation of contact angle on textured surfaces: (<b>a</b>) equipment used for contact angle measurement; (<b>b</b>) Drop deposition procedure on textured surfaces; (<b>c</b>) Contact angle measurement by image processing software.</p> "> Figure 2
<p>Metallography at 10x of the surfaces obtained for: (<b>a</b>) Shot blasting (Corundum particles); (<b>b</b>) Non-textured; (<b>c</b>) AWJT; (<b>d</b>) Laser Power 5 W; (<b>e</b>) Laser Power 20 W.</p> "> Figure 3
<p>Remains of abrasive particles adhered to the surface after texturing.</p> "> Figure 4
<p>SEM images of abrasive waterjet textured surfaces at 60× for: (<b>a</b>) 0.1 mm and 5000 mm/min; (<b>b</b>) 0.1 mm and 7000 mm/min; (<b>c</b>) 0.1 mm and 9000 mm/min; (<b>d</b>) 0.3 mm and 5000 mm/min; (<b>e</b>) 0.3 mm and 7000 mm/min; (<b>f</b>) 0.3 mm and 9000 mm/min; (<b>g</b>) 0.45 mm and 5000 mm/min; (<b>h</b>) 0.45 mm and 7000 mm/min; (<b>i</b>) 0.45 mm and 9000 mm/min.</p> "> Figure 5
<p>SEM imaging of laser-textured surfaces at 500× for: (<b>a</b>) 5 W and 250 mm/s; (<b>b</b>) 20 W and 10 mm/s.</p> "> Figure 6
<p>Rt values obtained in blasting tests.</p> "> Figure 7
<p>Rt values obtained in abrasive water jet textured tests.</p> "> Figure 8
<p>Rt values obtained in laser textured tests.</p> "> Figure 9
<p>Roughness profiles obtained for: (<b>a</b>) 5 W and 10 mm/s; (<b>b</b>) 5 W and 250 mm/s.</p> "> Figure 10
<p>Surface free energy values for water jet texturing tests.</p> "> Figure 11
<p>Increase of the contact angle for a separation of 0.3 mm and: (<b>a</b>) 5000 mm/min; (<b>b</b>) 7000 mm/min; (<b>c</b>) 9000 mm/min.</p> "> Figure 12
<p>Contact angle reduction for a traverse speed of 7000 mm/min and: (<b>a</b>) 0.1 mm; (<b>b</b>) 0.3 mm; (<b>c</b>) 0.45 mm.</p> "> Figure 13
<p>Surface free energy values for laser texturing tests.</p> "> Figure 14
<p>Surface differences obtained by laser texturing at 20×: (<b>a</b>) 5 W and 250 mm/s; (<b>b</b>) 20 W and 10 mm/s.</p> "> Figure 15
<p>Contact angles obtained in laser texturing for: (<b>a</b>) 5 W and 250 mm/s; (<b>b</b>) 20 W and 10 mm/s.</p> "> Figure 16
<p>Contour diagrams of the surface free energy values obtained for: (<b>a</b>) Abrasive water jet texturing; (<b>b</b>) Laser texturing.</p> "> Figure 17
<p>Contour diagrams of the surface quality obtained for: (<b>a</b>) Abrasive water jet texturing; (<b>b</b>) Laser surface texturing.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shot Blasting
2.2. Abrasive Water Jet Texturing
2.3. Laser Surface Texturing
2.4. Evaluation of Surface Quality and Surface Free Energy
3. Results
3.1. Visual Evaluation of Textured Surfaces
3.2. Surface Quality
3.3. Surface Free Energy
3.4. Contouring Diagrams
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vazquez-Martinez, J.M.; Gomez, J.S.; Ares, P.F.M.; Fernandez-Vidal, S.R.; Ponce, M.B. Effects of laser microtexturing on the wetting behavior of Ti6Al4V alloy. Coatings 2018, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, X.S.; Zhang, Y.S.; Ma, M.T.; Li, G.Y.; Senkara, J. Current Research and Challenges in Innovative Technology of Joining Dissimilar Materials for Electric Vehicles. In Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), Hefei, China, 20–22 August 2018; pp. 363–380. [Google Scholar]
- Almagro, S.C. Thermoplastic/Metal Composite Bonding in the Field of Transport. Available online: https://e-archivo.uc3m.es/handle/10016/16395 (accessed on 21 February 2020).
- Pramanik, A.; Basak, A.K.; Dong, Y.; Sarker, P.K.; Uddin, M.S.; Littlefair, G.; Dixit, A.R.; Chattopadhyaya, S. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. [Google Scholar] [CrossRef] [Green Version]
- McCombe, G.P.; Etches, J.A.; Mellor, P.H.; Bond, I.P. Development of a ferromagnetic fibre metal laminate. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1380–1389. [Google Scholar] [CrossRef]
- Xu, J.; El Mansori, M. Experimental study on drilling mechanisms and strategies of hybrid CFRP/Ti stacks. Compos. Struct. 2016, 157, 461–482. [Google Scholar] [CrossRef] [Green Version]
- Reincke, T.; Hartwig, S.; Dilger, K. High-tensile joints of continuously fusion bonded hybrid structures. Compos. Struct. 2017, 202, 111–118. [Google Scholar] [CrossRef]
- Pahuja, R.; Ramulu, M. Abrasive water jet machining of Titanium (Ti6Al4V)—CFRP stacks—A semi-analytical modeling approach in the prediction of kerf geometry Abrasive water jet machining of Titanium (Ti6Al4V)—CFRP stacks—A semi-analytical modeling approach in the pre. J. Manuf. Process. 2019, 39, 327–337. [Google Scholar] [CrossRef]
- Fernandez-Vidal, S.; Fernandez-Vidal, S.; Batista, M.; Salguero, J. Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075. Materials 2018, 11, 1276. [Google Scholar] [CrossRef] [Green Version]
- Samaei, M.; Zehsaz, M.; Chakherlou, T.N. Experimental and numerical study of fatigue crack growth of aluminum alloy 2024-T3 single lap simple bolted and hybrid (adhesive/bolted) joints. Eng. Fail. Anal. 2016, 59, 253–268. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Z.; Li, Y. A method for predicting the curing residual stress for CFRP/Al adhesive single-lap joints. Int. J. Adhes. Adhes. 2013, 46, 7–13. [Google Scholar] [CrossRef]
- Hamilton, C.; Węglowski, M.S.; Dymek, S. A Simulation of Friction-Stir Processing for Temperature and Material Flow. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2015, 46, 1409–1418. [Google Scholar] [CrossRef]
- Sheng, L.; Jiao, J.; Du, B.; Wang, F.; Wang, Q. Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel. Adv. Mater. Sci. Eng. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Biron, M. Outline of the actual situation of plastics compared to conventional materials. In Thermoplastics and Thermoplastic Composites; William Andrew: Norwich, NY, USA, 2018; pp. 1–32. ISBN 9780081025017. [Google Scholar]
- Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- Masek, P.; Zeman, P.; Kolar, P. Edge trimming of C/PPS plates. Int. J. Adv. Manuf. Technol. 2018, 101, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Xu, Z.; Wang, Q.; Sheng, L.; Zhang, W. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization. Opt. Laser Technol. 2018, 103, 170–176. [Google Scholar] [CrossRef]
- Rakgate, S.M.; Dundu, M. Effectiveness of Surface Preparation on the Capacity of Plated Reinforced Concrete Beams. Structures 2018, 14, 348–357. [Google Scholar] [CrossRef]
- Rudawska, A. Surface treatment methods. Surf. Treat. Bond. Technol. 2019, 47–62. [Google Scholar]
- Al-Rousan, R.Z.; AL-Tahat, M.F. Consequence of surface preparation techniques on the bond behavior between concrete and CFRP composites. Constr. Build. Mater. 2019, 212, 362–374. [Google Scholar] [CrossRef]
- Rudawska, A.; Danczak, I.; Müller, M.; Valasek, P. The effect of sandblasting on surface properties for adhesion. Int. J. Adhes. Adhes. 2016, 70, 176–190. [Google Scholar] [CrossRef]
- Arifvianto, B.; Suyitno; Mahardika, M. Effect of sandblasting and surface mechanical attrition treatment on surface roughness, wettability, and microhardness distribution of AISI 316L. Key Eng. Mater. 2011, 462–463, 738–743. [Google Scholar] [CrossRef]
- Silva, M.A.G.; Biscaia, H.; Ribeiro, P. On factors affecting CFRP-steel bonded joints. Constr. Build. Mater. 2019, 226, 360–375. [Google Scholar] [CrossRef]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of superhydrophobic coatings as a corrosion barrier: A review. Surf. Coatings Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Wojciechowski, L.; Kubiak, K.J.; Mathia, T.G. Roughness and wettability of surfaces in boundary lubricated scuffing wear. Tribol. Int. 2016, 93, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Vazquez Martinez, J.; Del Sol Illana, I.; Iglesias Victoria, P.; Salguero, J. Assessment the Sliding Wear Behavior of Laser Microtexturing Ti6Al4V under Wet Conditions. Coatings 2019, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Rudawska, A. Assessment of surface preparation for the bonding/adhesive technology. In Surface Treatment in Bonding Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 227–275. ISBN 9780128170106. [Google Scholar]
- Yuan, Y.; Lee, T.R. Contact Angle and Wetting Properties. In Springer Series in Surface Sciences; Springer: Heidelberg/Berlin, Germany, 2013; ISBN 978-3-642-34242-4. [Google Scholar]
- Campos Bernardes, P.; Andrade Araújo, E.; dos Santos Pires, A.C.; Felício Queiroz Fialho, J.; Aparecida Lelis, C.; de Andrade, N.J. Work of adhesion of dairy products on stainless steel surface. Brazilian J. Microbiol. 2012, 43, 1261–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, J.; Li, L. Carbon steel wettability characteristics enhancement for improved enamelling using a 1.2 kW high power diode laser. Opt. Lasers Eng. 1999, 32, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Tong, L.; Falzon, P.J. Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg. Int. J. Adhes. Adhes. 2014, 51, 32–41. [Google Scholar] [CrossRef]
- Santhanakrishnan Balakrishnan, V.; Obrosov, A.; Kuke, F.; Seidlitz, H.; Weiß, S. Influence of metal surface preparation on the flexural strength and impact damage behaviour of thermoplastic FRP reinforced metal laminate made by press forming. Compos. Part B Eng. 2019, 173, 1–10. [Google Scholar] [CrossRef]
- Sambruno, A.; Bañon, F.; Salguero, J.; Simonet, B.; Batista, M. Kerf Taper Defect Minimization Based on Abrasive Waterjet Machining of Low Thickness Thermoplastic Carbon Fiber Composites C/TPU. Materials 2019, 12, 4192. [Google Scholar] [CrossRef] [Green Version]
- Artaza, T.; Alberdi, A.; Olite, J.; Latapia, J.L.; Gil, D.; Suarez, A.; Rivero, A. Abrasive Waterjet Texturing as a Method to Enhance the Embedment of Metallic Inserts in Composite Materials. Procedia Eng. 2015, 132, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Pahuja, R.; Ramulu, M.; Hashish, M. Integration of jetting technology in metal additive manufacturing. In Proceedings of the 24th International Conference on Water Jetting, Manchester, UK, 5–7 September 2018; pp. 23–35. [Google Scholar]
- Rivero, A.; Alberdi, A.; Artaza, T.; Mendia, L.; Lamikiz, A. Surface properties and fatigue failure analysis of alloy 718 surfaces milled by abrasive and plain waterjet. Int. J. Adv. Manuf. Technol. 2018, 94, 2929–2938. [Google Scholar] [CrossRef]
- Linghoff, D.; Haghani, R.; Al-Emrani, M. Carbon-fibre composites for strengthening steel structures. Thin-Walled Struct. 2009, 47, 1048–1058. [Google Scholar] [CrossRef]
- Baillie, P.; Campbell, S.W.; Galloway, A.M.; Cater, S.R.; McPherson, N.A. A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate. World Acad. Sci. Eng. Technol. 2014, 8, 759–763. [Google Scholar]
- Lam, A.C.C.; Cheng, J.J.R.; Yam, M.C.H.; Kennedy, G.D. Repair of steel structures by bonded carbon fibre reinforced polymer patching: Experimental and numerical study of carbon fibre reinforced polymer - Steel double-lap joints under tensile loading. Can. J. Civ. Eng. 2007, 34, 1542–1553. [Google Scholar] [CrossRef]
- Gilbert, N. Structural Steel - S235, S275, S355 Chemical Composition, Mechanical Properties and Common Applications. AZO Mater. 2012, 1, 1–5. [Google Scholar]
- Suárez, A.; Veiga, F.; Polvorosa, R.; Artaza, T.; Holmberg, J.; de Lacalle, L.N.L.; Wretland, A. Surface integrity and fatigue of non-conventional machined Alloy 718. J. Manuf. Process. 2019, 48, 44–50. [Google Scholar] [CrossRef]
- Dursun, G.; Ibekwe, S.; Li, G.; Mensah, P.; Joshi, G.; Jerro, D. Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting. Mater. Today Proc. 2020, in press. [Google Scholar] [CrossRef]
%C | %Fe | %Mn | %P | %S | %Si |
0.25 | 98.01 | 1.60 | 0.04 | 0.05 | 0.05 |
Yield Strength (MPa) | Tensile Strength (MPa) | Thickness (mm) | |||
275 | 450 | 3 |
Traverse Speed (mm/min) | Cross Feed (mm) |
---|---|
5000–7000–9000 | 0.1–0.3–0.45 |
Power-P (W) | Frequency-F (kHz) | Sweep Speed-SS (mm/s) |
---|---|---|
5–10–20 | 20–80 | 10–100–250 |
Deposited Liquids | (mJ/m2) | (mJ/m2) | (mJ/m2) |
---|---|---|---|
Distilled water | 72.8 | 21.8 | 51.0 |
Diiodomethane | 50.8 | 50.8 | 0.0 |
Ethylene glycol | 47.7 | 30.9 | 16.0 |
Source | DF | Adj SS | Adj MS | F-Value | P-Value |
---|---|---|---|---|---|
Model | 5 | 215.608 | 43.122 | 19.97 | 0.016 |
Cross Feed | 1 | 199.911 | 199.911 | 92.59 | 0.002 |
Traverse Speed | 1 | 7.811 | 7.811 | 3.62 | 0.153 |
Cross Feed*Cross Feed | 1 | 4.712 | 4.712 | 2.18 | 0.236 |
Traverse Speed*Traverse Speed | 1 | 0.359 | 0.359 | 0.17 | 0.711 |
Cross Feed*Traverse Speed | 1 | 5.682 | 5.682 | 2.63 | 0.203 |
Error | 3 | 6.478 | 2.159 | - | - |
Total | 8 | 222.086 | - | - | - |
Source | DF | Adj SS | Adj MS | F-Value | P-Value |
---|---|---|---|---|---|
Model | 8 | 660.249 | 82.531 | 7.16 | 0.004 |
Power | 1 | 125.207 | 125.207 | 10.87 | 0.009 |
Frequency | 1 | 51.912 | 51.912 | 4.50 | 0.063 |
Sweep speed | 1 | 354.666 | 354.666 | 30.78 | 0.000 |
Power*Power | 1 | 75.285 | 75.285 | 6.53 | 0.031 |
Sweep speed*Sweep speed | 1 | 8.563 | 8.563 | 0.74 | 0.411 |
Power*Frequency | 1 | 60.548 | 60.548 | 5.25 | 0.048 |
Power*Sweep speed | 1 | 2.708 | 2.708 | 0.23 | 0.639 |
Frequency*Sweep speed | 1 | 15.624 | 15.624 | 1.36 | 0.274 |
Error | 9 | 103.714 | 11.524 | - | - |
Total | 17 | 763.963 | - | - | - |
Source | DF | Adj SS | Adj MS | F-Value | P-Value |
---|---|---|---|---|---|
Model | 5 | 6.84813 | 1.36963 | 61.09 | 0.003 |
Cross Feed | 1 | 5.75779 | 5.75779 | 256.81 | 0.001 |
Traverse Speed | 1 | 1.05075 | 1.05075 | 46.87 | 0.006 |
Cross Feed*Cross Feed | 1 | 0.05229 | 0.05229 | 2.33 | 0.224 |
Traverse Speed*Traverse Speed | 1 | 0.01938 | 0.01938 | 0.86 | 0.421 |
Cross Feed*Traverse Speed | 1 | 0.03916 | 0.03916 | 1.75 | 0.278 |
Error | 3 | 0.06726 | 0.02242 | ||
Total | 8 | 6.91539 |
Source | DF | Adj SS | Adj MS | F-Value | P-Value |
---|---|---|---|---|---|
Model | 8 | 605.396 | 75.675 | 20.10 | 0.000 |
Power | 1 | 327.522 | 327.522 | 87.00 | 0.000 |
Frequency | 1 | 104.062 | 104.062 | 27.64 | 0.001 |
Sweep speed | 1 | 119.177 | 119.177 | 31.66 | 0.000 |
Power*Power | 1 | 5.576 | 5.576 | 1.48 | 0.255 |
Sweep speed*Sweep speed | 1 | 16.952 | 16.952 | 4.50 | 0.063 |
Power*Frequency | 1 | 16.318 | 16.318 | 4.33 | 0.067 |
Power*Sweep speed | 1 | 3.961 | 3.961 | 1.05 | 0.332 |
Frequency*Sweep speed | 1 | 3.983 | 3.983 | 1.06 | 0.33.0 |
Error | 9 | 33.883 | 3.765 | ||
Total | 17 | 639.279 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bañon, F.; Sambruno, A.; Batista, M.; Simonet, B.; Salguero, J. Surface Quality and Free Energy Evaluation of s275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing. Metals 2020, 10, 290. https://doi.org/10.3390/met10020290
Bañon F, Sambruno A, Batista M, Simonet B, Salguero J. Surface Quality and Free Energy Evaluation of s275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing. Metals. 2020; 10(2):290. https://doi.org/10.3390/met10020290
Chicago/Turabian StyleBañon, Fermin, Alejandro Sambruno, Moises Batista, Bartolome Simonet, and Jorge Salguero. 2020. "Surface Quality and Free Energy Evaluation of s275 Steel by Shot Blasting, Abrasive Water Jet Texturing and Laser Surface Texturing" Metals 10, no. 2: 290. https://doi.org/10.3390/met10020290