Batzelladine D, a Marine Natural Product, Reverses the Fluconazole Resistance Phenotype Mediated by Transmembrane Transporters in Candida albicans and Interferes with Its Biofilm: An In Vitro and In Silico Study
"> Figure 1
<p>Effect of batzelladine D on the growth of 95-142, AD/CaCDR1 and AD/CaCDR2 cells. Yeast strains were incubated in the presence of two-fold serial dilutions (50–0.39 µM) of batzelladine D at 30 or 37 °C for 48 h. * Significantly lower than the untreated control (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Chemosensitization of fluconazole-resistant strains by batzelladine D. Five-fold serial dilutions were spotted on YPD or Sabouraud agar in the presence or absence of subinhibitory fluconazole concentrations specific for each strain. Batzelladine D was also added to the medium at final concentrations of 5 and 10 µM. Positive chemoreversing control was conducted with FK506 at 10 µM. Negative chemoreversing controls were performed using agar medium without supplementation and DMSO 0.5%. * FK506 is not an effective inhibitor of the CaCdr2p; thus, it was not employed as a positive control for reversal on the AD/CaCDR2 strain.</p> "> Figure 3
<p>(<b>A</b>) Left: original and redocking superposition of FK506 inhibitor within the CaCdr1 protein; Right: a closer view of the superposition; (<b>B</b>) Left: Original and redocking pose superposition of milbemycin within CaCdr2 protein; Right: a closer view of the superposition.</p> "> Figure 4
<p>(<b>A</b>) batzelladine D-FK506 superposition into active site of CaCdr1 protein and molecular interactions diagram for FK506 and batzelladine D. (<b>B</b>) batzelladine D-milbemycin A4 superposition into active site of CaCdr2 protein and molecular interactions diagrams for both molecules.</p> "> Figure 5
<p>Effect of batzelladine D on <span class="html-italic">C. albicans</span> 95-142 biofilm formation. Yeast strains were incubated in the presence of two-fold serial dilutions (50–3.125 µM) of batzelladine D at 37 °C for 48 h. The values of the untreated control were set to 100%. * Significantly lower than the untreated control (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Effect of batzelladine D on <span class="html-italic">C. albicans</span> 95-142 preformed biofilm. (<b>A</b>) Mature biofilms were incubated at 37 °C for 24 h in the presence of two-fold serial dilutions (50–3.125 µM) of batzelladine D. The values of the untreated control were set to 100%. * Significantly lower than the untreated control (<span class="html-italic">p</span> < 0.05). (<b>B</b>) Confocal microscopy images of the mature biofilm control (left) and mature biofilm treated with batzelladine D 50 µM (right).</p> "> Figure 7
<p>In vivo efficacy of batzelladine D and batzelladine D/fluconazole in <span class="html-italic">Caenorhabditis elegans</span> infected with <span class="html-italic">Candida albicans</span> 95-142. <span class="html-italic">C. elegans</span> worms were infected with <span class="html-italic">C. albicans</span> 95-142 and then treated with subinhibitory concentration of fluconazole (48 µg/mL); subinhibitory concentration of batzelladine D (3.125 µM); MIC value of batzelladine D (6.25 µM); effective concentration of batzelladine D against preformed biofilm (50 µM); and batzelladine D (3.125 µM) + fluconazole (48 µg/mL). Treatment with PBS (viability control), DMSO 0.5% (DMSO control), and MIC of fluconazole 128 µg/mL (FLC control) served as controls. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 8
<p>Toxicity effect of batzelladine D against <span class="html-italic">C. elegans</span>. Nematodes were incubated in the presence of two-fold serial dilutions (50–3.125 µM) of batzelladine D at 26 °C for 72 h, and later classified as live and dead. The values of the untreated control were set to 100%. * Significantly lower than the untreated control (<span class="html-italic">p</span> < 0.05).</p> "> Figure 9
<p>Minimum energy structure for tacrolimus, milbemicyn and batzelladine D at wB97XD/6-31G++dp level of theory. (<b>A</b>) CaCdr1p with tacrolimus as inhibitor; (<b>B</b>) CaCdr2p with milbemycin as inhibitor; both, A and B represent the structures retrieved from PDB and unitpro, respectively.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Batzelladine D Susceptibility Test
2.2. Chemoreversing Action of Batzelladine D
2.3. Interaction Between Fluconazole and Batzelladine D
2.4. Molecular Docking—Proposed Interaction Between CaCdr1p and CaCdr2p with Batzelladine D
Redocking
2.5. Effect of Batzelladine D on Biofilm Formation
2.6. Effect of Batzelladine D on Preformed Biofilm
2.7. Co-Administration of Batzelladine D and Fluconazole in Infected Caenorhabditis Elegans
2.8. Batzelladine D Toxicity Test in Caenorhabditis Elegans Animal Model
2.9. In Silico Toxicity Prediction
3. Materials and Methods
3.1. Reagents
3.2. Isolation of Batzelladine D and Stock Solution
3.3. Strains and Culture Conditions
3.4. Susceptibility Test
3.5. Chemosensitization Assay—Spot Method
3.6. Checkerboard Assay
3.7. Biofilm Formation
3.8. Preformed Biofilm
3.9. Confocal Laser Scanning Microscopy (CLSM)
3.10. Molecular Docking
3.11. Protein and Ligand Preparations
3.12. Redocking Protocol
3.13. Caenorhabditis Elegans Infection Model
3.14. Batzelladine D Toxicity in Caenorhabditis Elegans Lifespan
3.15. In Silico Toxicity Prediction
3.16. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Chakrabarti, A. Candidiasis and other emerging yeasts. Curr. Fungal Infect. Rep. 2023, 17, 15–24. [Google Scholar] [CrossRef]
- Benedict, K.; Whitham, H.K.; Jackson, B.R. Economic burden of fungal diseases in the United States. Open Forum Infect. Dis. 2022, 9, ofac097. [Google Scholar] [CrossRef]
- Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis-opportunism versus pathogenicity: A review of the virulence traits. Microorganisms 2020, 8, 857. [Google Scholar] [CrossRef]
- Parslow, B.Y.; Thornton, C.R. Continuing shifts in epidemiology and antifungal susceptibility highlight the need for improved disease management of invasive candidiasis. Microorganisms 2022, 10, 1208. [Google Scholar] [CrossRef]
- Holmes, A.R.; Lin, Y.H.; Niimi, K.; Lamping, E.; Keniya, M.; Niimi, M.; Tanabe, K.; Monk, B.C.; Cannon, R.D. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob. Agents Chemother. 2008, 52, 3851–3862. [Google Scholar] [CrossRef]
- Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida albicans: Formation, regulation and resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef]
- Taff, H.T.; Mitchell, K.F.; Edward, J.A.; Andes, D.R. Mechanisms of candida biofilm drug resistance. Future Microbiol. 2013, 8, 1325–1337. [Google Scholar] [CrossRef]
- Domingos, L.T.S.; Santos, M.F.C.; de Moraes, D.C.; de Sa, L.F.R.; da Silva, V.A.D.; Meuren, L.M.; Berlinck, R.G.S.; Ferreira-Pereira, A. Batzelladine D and norbatzelladine L purified from marine sponge Monanchora arbuscula induce the reversal of fluconazole. Bioorg. Chem. 2020, 105, 104402. [Google Scholar] [CrossRef]
- Prasad, R.; De Wergifosse, P.; Goffeau, A.; Balzi, E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr. Genet. 1995, 27, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Lamping, E.; Monk, B.C.; Niimi, K.; Holmes, A.R.; Tsao, S.; Tanabe, K.; Niimi, M.; Uehara, Y.; Cannon, R.D. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot. Cell 2007, 6, 1150–1165. [Google Scholar] [CrossRef]
- White, T.C.; Holleman, S.; Dy, F.; Mirels, L.F.; Stevens, D.A. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 2002, 46, 1704–1713. [Google Scholar] [CrossRef]
- Niimi, K.; Harding, D.R.; Parshot, R.; King, A.; Lun, D.J.; Decottignies, A.; Niimi, M.; Lin, S.; Cannon, R.D.; Goffeau, A.; et al. Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative. Antimicrob. Agents Chemother. 2004, 48, 1256–1271. [Google Scholar] [CrossRef]
- de Moraes, D.C.; Cardoso, K.M.; Domingos, L.T.S.; do Carmo Freire Ribeiro Pinto, M.; Monteiro, R.Q.; Ferreira-Pereira, A. β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain. Braz. J. Microbiol. 2020, 51, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.D.; Lamping, E.; Holmes, A.R.; Niimi, K.; Baret, P.V.; Keniya, M.V.; Tanabe, K.; Niimi, M.; Goffeau, A.; Monk, B.C. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 2009, 22, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva, F.P., Jr. Key topics in molecular docking for drug design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef]
- Singh, S.; Fatima, Z.; Ahmad, K.; Hameed, S. Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. PLoS ONE 2018, 13, e0203079. [Google Scholar] [CrossRef]
- Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 1987, 40, 1249–1255. [Google Scholar] [CrossRef]
- Tonthat, N.K.; Juvvadi, P.R.; Zhang, H.; Lee, S.C.; Venters, R.; Spicer, L.; Steinbach, W.J.; Heitman, J.; Schumacher, M.A. Structures of pathogenic fungal FKBP12s reveal possible self-catalysis function. mBio 2016, 7, e00492-16. [Google Scholar] [CrossRef]
- Antypenko, L.; Sadykova, Z.; Meyer, F.; Garbe, L.A.; Steffens, K. Tacrolimus as antifungal agent. Acta Chim. Slov. 2019, 66, 784–791. [Google Scholar] [CrossRef]
- Denardi, L.B.; Mario, D.A.; Loreto, E.S.; Santurio, J.M.; Alves, S.H. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates. Braz. J. Microbiol. 2015, 46, 125–129. [Google Scholar] [CrossRef]
- Silva, L.V.; Sanguinetti, M.; Vandeputte, P.; Torelli, R.; Rochat, B.; Sanglard, D. Milbemycins: More than efflux inhibitors for fungal pathogens. Antimicrob. Agents Chemother. 2013, 57, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Yin, S.; Li, Z.; Jiang, S.; Yang, Y.; Zhou, W.; Zhang, Y.; Huang, B. Observing noncovalent interactions in experimental electron density for macromolecular systems: A novel perspective for protein-ligand interaction research. J. Chem. Inf. Model. 2022, 62, 1734–1743. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Tian, F. Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design. Curr. Med. Chem. 2012, 19, 226–238. [Google Scholar] [CrossRef]
- Kollar, J.; Frecer, V. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach? J. Mol. Model. 2017, 24, 11. [Google Scholar] [CrossRef] [PubMed]
- Szczepaniak, J.; Ciszkowska-Lyson, B.; Smigielski, R.; Zdanowicz, U. Value of ultrasonography in assessment of recent injury of anterior talofibular ligament in children. J. Ultrason. 2015, 15, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Spassov, D.S.; Atanasova, M.; Doytchinova, I. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Front. Mol. Biosci. 2022, 9, 1066029. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, X.; Russell, P.; Li, J.; Pan, W.; Fu, J.; Zhang, A. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022, 233, 113323. [Google Scholar] [CrossRef]
- Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking and virtual screening. PLoS ONE 2016, 11, e0155183. [Google Scholar] [CrossRef]
- McNutt, A.T.; Francoeur, P.; Aggarwal, R.; Masuda, T.; Meli, R.; Ragoza, M.; Sunseri, J.; Koes, D.R. GNINA 1.0: Molecular docking with deep learning. J. Cheminform. 2021, 13, 43. [Google Scholar] [CrossRef]
- Abd Rani, N.Z.; Lee, Y.K.; Ahmad, S.; Meesala, R.; Abdullah, I. Fused tricyclic guanidine alkaloids: Insights into their structure, synthesis and bioactivity. Mar. Drugs 2022, 20, 579. [Google Scholar] [CrossRef]
- Rollin-Pinheiro, R.; Bayona-Pacheco, B.; Domingos, L.T.S.; da Rocha Curvelo, J.A.; de Castro, G.M.M.; Barreto-Bergter, E.; Ferreira-Pereira, A. Sphingolipid inhibitors as an alternative to treat candidiasis caused by fluconazole-resistant strains. Pathogens 2021, 10, 856. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.F.; Harper, P.M.; Williams, D.E.; Mesquita, J.T.; Pinto, E.G.; da Costa-Silva, T.A.; Hajdu, E.; Ferreira, A.G.; Santos, R.A.; Murphy, P.J.; et al. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J. Nat. Prod. 2015, 78, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Reis de Sa, L.F.; Toledo, F.T.; Goncalves, A.C.; Sousa, B.A.; Dos Santos, A.A.; Brasil, P.F.; Duarte da Silva, V.A.; Tessis, A.C.; Ramos, J.A.; Carvalho, M.A.; et al. Synthetic organotellurium compounds sensitize drug-resistant Candida albicans clinical isolates to fluconazole. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 2005, 18, 163–194. [Google Scholar] [CrossRef] [PubMed]
- Clemente de Moraes, D.; do Carmo Freire Ribeiro Pinto, M.; Tenorio Sousa Domingos, L.; do Valle Pereira Midlej, V.; Ferreira-Pereira, A. Effects of beta-lapachone and beta-nor-lapachone on multidrug efflux transporters and biofilms of Candida glabrata. Bioorg. Med. Chem. 2022, 63, 116749. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Pandian, S.K. Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front. Microbiol. 2020, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.K.; Pooranachithra, M.; Subramenium, G.A.; Divya, V.; Balamurugan, K.; Pandian, S.K. Umbelliferone impedes biofilm formation and virulence of methicillin-resistant Staphylococcus epidermidis via impairment of initial attachment and intercellular adhesion. Front. Cell. Infect. Microbiol. 2019, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Tampakakis, E.; Okoli, I.; Mylonakis, E. A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat. Protoc. 2008, 3, 1925–1931. [Google Scholar] [CrossRef]
- Breger, J.; Fuchs, B.B.; Aperis, G.; Moy, T.I.; Ausubel, F.M.; Mylonakis, E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 2007, 3, e18. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Reich, J.R.; Rufener, C. OSIRIS, an entirely in-house developed drug discovery informatics system. J. Chem. Inf. Model. 2009, 49, 232–246. [Google Scholar] [CrossRef] [PubMed]
Batzelladine D (µM) | Fluconazole (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Strains | MICa | MICb | FICc | MICa | MICb | FICc | FICId | Outcome |
95-142 | 6.25 | 3.125 | 0.5 | 128 | 48 | 0.375 | 0.875 | Additive |
AD/CaCDR1 | 25 | 6.25 | 0.25 | 300 | 75 | 0.25 | 0.5 | Additive |
AD/CaCDR2 | 50 | 6.25 | 0.125 | 75 | 4.7 | 0.0625 | 0.1875 | Synergic |
Molecule | CaCdrp1 | CaCdr2p |
---|---|---|
FK506 | −8.6 ± 0.5 | −7.2 ± 0.8 |
Milbemycin A4 | −10.2 ± 0.7 | −7.5 ± 0.7 |
Batzelladine D | −9.1 ± 0.4 | −9.5 ± 0.5 |
Enniatin A | −9.6 ± 0.6 | −7.6 ± 0.8 |
Beauvericin | −10.4 ± 0.3 | −9.6 ± 0.5 |
Osiris Property Explorer | Mutagenic | Tumorigenic | Irritant | Reproductive Effect |
---|---|---|---|---|
Batzelladine D | No | No | No | No |
Fluconazole | No | No | No | No |
GUSAR | Rat IP LD50 | Rat IV LD50 | Rat Oral LD50 | Rat SC LD50 |
Batzelladine D | 425.8 | 76.7 | 1342.0 | 1719.0 |
Fluconazole | 708 | 200.4 | 584.4 | 511.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingos, L.T.S.; de Moraes, D.C.; Santos, M.F.C.; Curvelo, J.A.R.; Bayona-Pacheco, B.; Marquez, E.A.; Martinez, A.W.B.; Berlinck, R.G.S.; Ferreira-Pereira, A. Batzelladine D, a Marine Natural Product, Reverses the Fluconazole Resistance Phenotype Mediated by Transmembrane Transporters in Candida albicans and Interferes with Its Biofilm: An In Vitro and In Silico Study. Mar. Drugs 2024, 22, 502. https://doi.org/10.3390/md22110502
Domingos LTS, de Moraes DC, Santos MFC, Curvelo JAR, Bayona-Pacheco B, Marquez EA, Martinez AWB, Berlinck RGS, Ferreira-Pereira A. Batzelladine D, a Marine Natural Product, Reverses the Fluconazole Resistance Phenotype Mediated by Transmembrane Transporters in Candida albicans and Interferes with Its Biofilm: An In Vitro and In Silico Study. Marine Drugs. 2024; 22(11):502. https://doi.org/10.3390/md22110502
Chicago/Turabian StyleDomingos, Levy T. S., Daniel C. de Moraes, Mário F. C. Santos, José A. R. Curvelo, Brayan Bayona-Pacheco, Edgar A. Marquez, Anthony W. B. Martinez, Roberto G. S. Berlinck, and Antonio Ferreira-Pereira. 2024. "Batzelladine D, a Marine Natural Product, Reverses the Fluconazole Resistance Phenotype Mediated by Transmembrane Transporters in Candida albicans and Interferes with Its Biofilm: An In Vitro and In Silico Study" Marine Drugs 22, no. 11: 502. https://doi.org/10.3390/md22110502