Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-Borne Pathogens
<p>Structures of sesquiterpenes <b>1</b>–<b>6</b> and cyclodepsipeptides <b>7</b>–<b>9</b>.</p> "> Figure 2
<p>Key COSY (bond lines), HMBC (arrows), and NOE (dashed lines) correlations of <b>1</b> <span class="html-italic"><sup>a</sup></span>. (<span class="html-italic"><sup>a</sup></span> blue and red lines represented NMR signals determining CDCl<sub>3</sub> and CD<sub>3</sub>OD, respectively).</p> "> Figure 3
<p>Comparisons of calculated ECD spectra for (1<span class="html-italic">S</span>, 2<span class="html-italic">S</span>, 6<span class="html-italic">R</span>, 7<span class="html-italic">R</span>, and 8<span class="html-italic">S</span>) and (1<span class="html-italic">R</span>, 2<span class="html-italic">R</span>, 6<span class="html-italic">S</span>, 7<span class="html-italic">S</span>, and 8<span class="html-italic">R</span>) with the experimental one of compound <b>1</b> in CH<sub>3</sub>OH.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation
2.2. Antagonistic Evaluation
3. Experimental Section
3.1. General Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction and Isolation
3.4. Antagonistic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ralph, D.; Jan, A.L.V.K.; Zacharias, A.P.; Ki, E.H.; Antonio, D.P.; Pietro, D.S.; Jason, J.R.; Marty, D.; Regine, K.; Jeff, E.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar]
- Liu, T.T.; Wu, H.B.; Jiang, H.Y.; Zhang, L.; Zhang, Y.N.; Mao, L.G. Thiophenes from Echinops grijsii as a preliminary approach to control disease complex of root-knot nematodes and soil-borne fungi: Isolation, activities, and structure−nonphototoxic activity relationship analysis. J. Agric. Food Chem. 2019, 67, 6160–6168. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Z.K.; Tariq, M.; Muhammad, A.H. Effects of southern root knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop. Prot. 2017, 92, 207–212. [Google Scholar]
- Huang, S.Z.; Huang, H.N.; Ma, Q.Y.; Mo, M.H.; Zhu, M.L.; Dai, H.F.; Ji, Y.P.; Wang, Q.H.; Zhao, Y.X. The phytochemicals with antagonistic activities toward pathogens of a disease complex caused by Meloidogyne incogni and Ralstonia solanacearumta. J. Pure Appl. Microbiol. 2015, 9, 209–213. [Google Scholar]
- Van der Putten, W.H.; Dijk, C.V.; Peters, B.A.M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 1993, 362, 53–56. [Google Scholar] [CrossRef]
- Russell, P.E. The development of commercial disease control. Plant Pathol. 2006, 55, 585–594. [Google Scholar] [CrossRef]
- Charles, L.C.; Franck, E.D.; Stephen, O.D. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar]
- Vincenzo, M.; Aurélie, S.; Enrico, B.; Catia, P.; Cindy, C.; Patricia, T.A.; Christophe, C.; Laura, M.; Florence, F. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar]
- Rosa, H.; Ada, V.; Ilan, C.; Enrique, M. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar]
- Morton, C.O.; Penny, R.H.; Brian, R.K. Infection of plant-parasitic nematodes by nematophagous fungi—A review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 2004, 6, 161–170. [Google Scholar] [CrossRef]
- Nashwa, M.A.S.; Amal, M.I.E.; Ahmed, S. Effect of Trichoderma spp. On fusarium wilt disease of tomato. Mol. Biol. Rep. 2019, 46, 4463–4470. [Google Scholar]
- Kamal, A.M.A.; Sobhy, I.I.A.; Ismail, R.A. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J. Phytopathol. 2014, 162, 567–574. [Google Scholar]
- AL-Shammari, T.A.; Bahkali, A.H.; Elgorban, A.M.; El-Kahky, M.T.; Al-Sum, B.A. The use of Trichoderma longibrachiatum and Mortierella alpina against root-knot nematode, Meloidogyne javanica on tomato. J. Pure Appl. Microbiol. 2013, 7, 199–207. [Google Scholar]
- Cesar, G.O.; Víctor, G.P.; Stefania, L.; Matteo, L. Enzyme activity of extracellular protein induced in Trichoderma asperellum and T. longibrachiatum by substrates based on Agaricus bisporus and Phymatotrichopsis omnivora. Fungal Biol. 2014, 118, 211–221. [Google Scholar]
- Song, Y.P.; Miao, F.P.; Liu, X.H.; Ji, N.Y. Responses of marine-derived Trichoderma fungi to seawater and their potential antagonistic behavior. J. Oceanol. Limnol. 2019, 37, 525–534. [Google Scholar] [CrossRef]
- Song, Y.P.; Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Tricholumin A, a highly transformed ergosterol derivative from the alga-endophytic fungus Trichoderma asperellum. Org. Lett. 2018, 20, 6306–6309. [Google Scholar] [CrossRef]
- Song, Y.P.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Diterpenes and sesquiterpenes from the marine algicolous fungus Trichoderma harzianum X-5. J. Nat. Prod. 2018, 81, 2553–2559. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Z.; Fang, S.T.; Miao, F.P.; Yin, X.L.; Ji, N.Y. Trichocarotins A–H and trichocadinin A, nine sesquiterpenes from the marine-alga-epiphytic fungus Trichoderma virens. Bioorg. Chem. 2018, 81, 319–325. [Google Scholar] [CrossRef]
- Liang, X.R.; Miao, F.P.; Song, Y.P.; Liu, X.H.; Ji, N.Y. Citrinovirin with a new norditerpene skeleton from the marine algicolous fungus Trichoderma citrinoviride. Bioorg. Med. Chem. Lett. 2016, 26, 5029–5031. [Google Scholar] [CrossRef]
- Du, F.Y.; Li, X.; Li, X.M.; Zhu, L.W.; Wang, B.G. Indolediketopiperazine alkaloids from Eurotium cristatum EN-220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Mar. Drugs 2017, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.M.; Ju, G.L.; Xiao, L.; Zhang, X.F.; Du, F.Y. Cyclodepsipeptides and sesquiterpenes from marine-derived fungus Trichothecium roseum and their biological functions. Mar. Drugs 2018, 16, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Zhou, Y.M.; Zhang, X.F.; Du, F.Y. Antifungal activity against apple fruit pathogens of Notopterygium incisum extract and bioactive secondary metabolites. Pestic. Biochem. Phys. 2018, 150, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.R.; Duan, E.H.; Zhang, Y.; Hu, S.; Liu, Y.H. Determining the configuration of trans-4-propyl-cyclohexylcarboxylic acid by NMR method. Mol. Cryst. Liq. Cryst. 2010, 528, 147–155. [Google Scholar] [CrossRef]
- Abraham, R.J.; Leonard, P.; Tormena, C.F. 1H NMR spectra. Part 28: Proton chemical shifts and couplings in three-membered rings. A ring current model for cyclopropane and a novel dihedral angle dependence for 3JHH couplings involving the epoxy proton. Magn. Reson. Chem. 2012, 50, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.H.; Li, X.M.; Liu, Y.; Wang, B.G. Penicibilaenes A and B, sesquiterpenes with a tricyclo[6.3.1.01,5]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org. Lett. 2014, 16, 6052−6055. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, D.H.; Zhu, T.J.; Cai, S.X.; Wang, F.P.; Xiao, X.; Gu, Q.Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 2009, 65, 1033–1039. [Google Scholar] [CrossRef]
- Chang, N.C.; Chang, C.K. Total synthesis of (±)-2-pupukeanone. J. Org. Chem. 1996, 61, 4967–4970. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.C.; Jiang, L.H.; Chen, C.L.; Guo, L.D.; Che, Y.S. Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici. Org. Lett. 2008, 10, 1397–1400. [Google Scholar] [CrossRef]
- Liu, L.; Niu, S.B.; Lu, X.H.; Chen, X.L.; Zhang, H.; Guo, L.D.; Che, Y.S. Unique metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis involving a Diels–Alder reaction and then mechanistic diversification. Chem. Commun. 2010, 46, 460–462. [Google Scholar] [CrossRef]
- Liu, L.; Bruhn, T.; Guo, L.D.; Gçtz, D.C.G.; Brun, R.; Stich, A.; Che, Y.S.; Bringmann, G. Chloropupukeanolides C–E: Cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici. Chem. Eur. J. 2011, 17, 2604–2613. [Google Scholar] [CrossRef]
- Shen, T.; Qian, H.; He, Y.L.; Li, L.M.; Wang, Y.D. Longifodiol, a novel rearranged triquinane norsesquiterpene from the root of Leontopodium longifolium. Chem. Lett. 2018, 47, 461–463. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Peng, Z.G.; Liu, D.; Si, L.L.; Wang, J.; Yuan, B.C.; Huang, J.; Proksch, P.; Lin, W.H. Harzianoic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. Bioorg. Med. Chem. 2019, 27, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Akira, I.; Kazuhide, K.; Hiroki, K.; Kiyoshi, T.; Harukuni, T.; Hoyoku, N. Trichothecinols A, B and C, potent anti-tumor promoting sesquiterpenoids from the fungus Trichothecium roseum. Tetrahedron Lett. 1996, 37, 9219–9220. [Google Scholar]
- Kenji, T.; Ronald, D.P.; Reiko, Y.; Masatoshi, M.; Masaru, M.; Shoichi, K.; Manfred, G.; Gen, O. 8-deoxy-trichothecin production by Spicellum roseum isolated from a cultivated mushroom in Japan. Mycotoxins 2001, 51, 71–77. [Google Scholar]
- Pang, X.Y.; Lin, X.P.; Tian, Y.Q.; Liang, R.; Wang, J.F.; Yang, B.; Zhou, X.F.; Kumaravel, K.; Luo, X.W.; Tu, Z.C.; et al. Three new polyketides from the marine sponge derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res. 2018, 32, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.X.; Adnan, M.; Shang, Y.; Lin, Y.; Luo, C.X. Sensitivity of Botrytis cinerea from nectarine/cherry in China to six fungicides and characterization of resistant isolates. Plant Dis. 2018, 102, 2578–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, M.; Nishiyama, M.; Maeda, H.; Tonouchi, A.; Konno, K.; Hashimoto, M. Structure-activity relationships of trichothecenes against COLO201 cells and Cochliobolus miyabeanus: The role of 12-epoxide and macrocyclic moieties. Bioorg. Med. Chem. Lett. 2019, 29, 982–985. [Google Scholar] [CrossRef]
- Cheng, J.L.; Zheng, M.; Yao, T.T.; Li, X.L.; Zhao, J.H.; Xia, M.; Zhu, G.N. Synthesis, antifungal activity, and QSAR study of novel trichodermin derivatives. J. Asian Nat. Prod. Res. 2015, 17, 47–56. [Google Scholar] [CrossRef]
- Malmierca, M.G.; Cardoza, R.E.; Alexander, N.J.; McCormick, S.P.; Hermosa, R.; Monte, E.; Gutiérrez, S. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl. Environ. Microbiol. 2012, 78, 4856–4868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yuan, X.L.; Du, Y.M.; Zhang, H.B.; Shen, G.M.; Zhang, Z.F.; Liang, Y.J.; Zhao, D.L.; Xu, K. Angularly prenylated indole alkaloids with antimicrobial and insecticidal activities from an endophytic fungus Fusarium sambucinum TE-6L. J. Agric. Food Chem. 2019, 67, 11994−12001. [Google Scholar] [CrossRef]
Compound 1 a | Compound 1 b | |||
---|---|---|---|---|
No. | δC (type) | δH (mult., J in Hz) | δC (type) | δH (mult., J in Hz) |
1 | 66.1, CH | 2.24, br. s | 68.4, CH | 2.15, d (5.6) |
2 | 43.4, C | 45.6, C | ||
3 | 33.0, CH2 | 2.56, m; 2.37, ov | 34.8, CH2 | 2.61, ddd (18.2, 11.4, 6.6) 2.34, ddd (18.2, 9.5, 1.9) |
4a 4b | 20.1, CH2 | 2.13, m; 2.02, m | 21.73, CH2 | 2.19, ov; 2.03, dddd (13.8, 9.5, 6.6, 2.1) |
5 | 214.7, CO | 219.0, CO | ||
6 | 37.1, CH | 2.39, ov | 39.2, CH | 2.40, dt (5.6, 2.1) |
7 | 37.5, CH | 2.40, s | 39.6, CH | 2.46, s |
8 | 48.0, CH | 1.83, ov | 50.4, CH | 1.80, ov |
9 | 20.3, CH2 | 1.73, ov | 22.2, CH2 | 1.77, ov |
10 | 35.9, CH2 | 1.78, ov | 38.0, CH2 | 1.83, ov; 1.72, ov |
11 | 20.6, CH3 | 0.87, s | 21.71, CH3 | 0.84, s |
12 | 73.6, C | 75.0, C | ||
13 | 28.0, CH3 | 1.23, s | 28.5, CH3 | 1.18, s |
14 | 25.6, CH3 | 1.19, s | 25.7, CH3 | 1.16, s |
Compounds | C. lagrnarium | C. fragariae | PTQ1 | CMQ1 | F. oxysporum f. sp. cucumerinum | F. oxysporum f. sp. lycopersici | M. incognita |
---|---|---|---|---|---|---|---|
1 | 8 | 16 | 64 | 32 | 128 | 256 | — |
2 | 16 | 64 | 32 | 32 | 64 | 32 | — |
3 | 16 | 64 | 64 | 32 | 32 | 32 | — |
4 | 64 | 128 | 256 | 128 | 128 | 256 | — |
5 | — | — | — | — | — | — | 38.2% c |
6 | — | — | — | — | — | — | 42.7% c |
7 | — | — | 256 | — | — | — | 149.2 |
8 | — | — | — | — | — | — | 140.6 |
9 | — | — | — | 256 | — | — | 198.7 |
Carbendazim a | 32 | 16 | 256 | 256 | 4 | 8 | |
Abamectin b | 24.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, F.-Y.; Ju, G.-L.; Xiao, L.; Zhou, Y.-M.; Wu, X. Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-Borne Pathogens. Mar. Drugs 2020, 18, 165. https://doi.org/10.3390/md18030165
Du F-Y, Ju G-L, Xiao L, Zhou Y-M, Wu X. Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-Borne Pathogens. Marine Drugs. 2020; 18(3):165. https://doi.org/10.3390/md18030165
Chicago/Turabian StyleDu, Feng-Yu, Guang-Lin Ju, Lin Xiao, Yuan-Ming Zhou, and Xia Wu. 2020. "Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-Borne Pathogens" Marine Drugs 18, no. 3: 165. https://doi.org/10.3390/md18030165
APA StyleDu, F. -Y., Ju, G. -L., Xiao, L., Zhou, Y. -M., & Wu, X. (2020). Sesquiterpenes and Cyclodepsipeptides from Marine-Derived Fungus Trichoderma longibrachiatum and Their Antagonistic Activities against Soil-Borne Pathogens. Marine Drugs, 18(3), 165. https://doi.org/10.3390/md18030165