Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis
<p>Fucoidan leads to cell death in ES-2 and OV-90 cells. (<b>A</b>) Observation of cell growth shows that fucoidan inhibits ES-2 and OV-90 cell growth. (<b>B</b>) Immunofluorescence observation of PCNA in ES-2 and OV-90 cell lines. Detection of PCNA in the nucleus of ES-2 and OV-90 cell lines was decreased by fucoidan. Scale bar indicates 40 µm. (<b>C</b>,<b>D</b>) Fucoidan-induced apoptosis of ES-2 and OV-90 cells. Fucoidan induced late apoptosis phase (red color) ES-2 and OV-90 cells concentration dependently (0, 25, 50, 100, 200, and 300 μg/mL) using a flow cytometry. (<b>E</b>) Population of the cells within each cell cycle progression was observed through flow cytometry after staining the fucoidan-treated ES-2 and OV-90 cells using PI dye. (<b>F</b>) Effects of fucoidan on the activation of apoptotic signals in ES-2 and OV-90 cells. (<b>G</b>) Effects of fucoidan with cisplatin or paclitaxel on the activation of the apoptotic proteins in human ovarian cancer cell lines. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 indicate significant differences.</p> "> Figure 2
<p>Induction of reactive oxygen species (ROS) production, calcium ion regulation, and mitochondrial membrane permeabilization by fucoidan. (<b>A</b>) ROS generation by fucoidan was estimated through dichlorofluorescein (DCF) fluorescence intensity using flow cytometry. (<b>B</b>) Flow cytometric observation of cytosolic Ca<sup>2+</sup> in response to 48 h incubation with dose dependent fucoidan by staining ES-2 and OV-90 cells with Fluo-4. (<b>C</b>) Flow cytometric observation of mitochondrial Ca<sup>2+</sup> concentrations in ES-2 and OV-90 cells in response to fucoidan by staining with Rhod-2. (<b>D</b>,<b>E</b>) Flow cytometric observation of mitochondrial membrane potential (MMP) in ES-2 and OV-90 cells treated with fucoidan by staining with JC-1 dye. Loss of MMP was estimated through JC-1 red and green fluorescence ratios. (<b>F</b>) Terminal deoxynucleotidyl transferase dNTP nick end labeling (TUNEL) detected apoptosis (red) and the cells were counter-stained with DAPI (blue) in ES-2 and OV-90 cells. Scale bar indicates 40 µm. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 indicate significant difference.</p> "> Figure 3
<p>Effect of fucoidan with 2-APB, BAPTA/AM or ruthenium red on calcium concentration in the cytosol and mitochondria. (<b>A</b>,<b>B</b>) Flow cytometry of cytosolic Ca<sup>2+</sup> with co-treatment of fucoidan with 2-APB, BAPTA/AM, or ruthenium red for 48 h in ES-2 and OV-90 cells. (<b>C</b>,<b>D</b>) Flow cytometry of mitochondrial Ca<sup>2+</sup> concentrations in ES-2 and OV-90 cells by the combined treatment of fucoidan and 2-APB, BAPTA/AM or ruthenium red for 48 h. ** <span class="html-italic">p</span> < 0.01 and * <span class="html-italic">p</span> < 0.05 indicate significant effects as compared to the vehicle treated control. # indicates significant effects (<span class="html-italic">p</span> < 0.05) as compared to fucoidan alone.</p> "> Figure 4
<p>Repression of cyclin D1, PI3K, and MAPK pathways by fucoidan. (<b>A</b>–<b>G</b>) Western blotting indicated (<b>A</b>) phosphorylated (p)-cyclin D1, (<b>B</b>) p-AKT, (<b>C</b>) p-P70S6K, (<b>D</b>) p-S6, (<b>E</b>) p-ERK1/2, (<b>F</b>) p-JNK, and (<b>G</b>) p-P38 proteins in fucoidan (0, 100, 200, and 300 μg/mL)-treated ES-2 and OV-90 cells. The values of graph were calculated compared with vehicle-treated cells. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 shows significances.</p> "> Figure 5
<p>Inhibition of intracellular signals on cell growth and phosphorylation of target proteins in ovarian cancer cell. (<b>A</b>) The growth of ES-2 and OV-90 cells was observed by treatment of fucoidan (300 μg/mL) or a combination of fucoidan with LY294002 (blockage of AKT), U0126 (blockage of ERK1/2), SB203580 (blockage of P38), or SP600125 (blockage of JNK) for 48 h. (<b>B</b>–<b>H</b>) Repression of inhibitors on the activation of (<b>B</b>) p-cyclin D1, (<b>C</b>) p-AKT, (<b>D</b>) p-P70S6K, (<b>E</b>) p-S6, (<b>F</b>) p-ERK1/2, (<b>G</b>) p-JNK, and (<b>H</b>) p-P38 in both ES-2 and OV-90 cells. The values of graph were calculated compared with vehicle-treated cells. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 indicate significant effects of each treatment compared with vehicle-treated control cells. # indicates significant effects (<span class="html-italic">p</span> < 0.05) as compared to fucoidan alone.</p> "> Figure 6
<p>Stimulation of endoplasmic reticulum (ER) stress sensor, ER–mitochondria tethering proteins, and autophagy regulators by fucoidan in ES-2 and OV-90 cells. (<b>A</b>–<b>F</b>) The stimulation of ER stress sensor proteins, (<b>A</b>) IRE1α, (<b>B</b>) ATF6α, (<b>C</b>) p-PERK, (<b>D</b>) GADD153, (<b>E</b>) p-eIF2α, and (<b>F</b>) GRP78 was observed through western blot analysis in ES-2 and OV-90 cell lines incubated with fucoidan. (<b>G</b>–<b>L</b>) The activation of ER-mitochondria axis-associated proteins, (<b>G</b>) VDAC, (<b>H</b>) IP3R1, (<b>I</b>) IP3R2, (<b>J</b>) GRP75, (<b>K</b>) MFN2, and (<b>L</b>) VAPB was analyzed by western blotting in fucoidan treated ES-2 and OV-90 cells. (<b>M</b>–<b>O</b>) The activation of autophagy-associated proteins, (<b>M</b>) LC3B, (<b>N</b>) BECN1, and (<b>O</b>) ATG5 was observed through western blot in ES-2 and OV-90 cells incubated with fucoidan. The graph of the signals was calculated compared with total signal or α tubulin (TUBA). *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 show significances.</p> "> Figure 7
<p>Effects of fucoidan on normal and xenograft zebrafish in vivo. (<b>A</b>) Toxicological analysis of fucoidan (0, 100, 200, and 300 μg/mL) was performed using fucoidan-exposed zebrafish larvae for 48 h to evaluate toxicity, cardiotoxicity, development, and kinesis in vivo. Scale bar indicates 250 µm. (<b>B</b>) Apoptotic effects of fucoidan on zebrafish larvae was analyzed using acridine orange to detect apoptotic cells after 48 h incubation. (<b>C</b>–<b>F</b>) Expression of apoptosis-related genes was estimated in fucoidan-treated zebrafish larvae for 48 h by quantitative RT-PCR. The scale bar indicates 50 µm. (<b>G</b>,<b>F</b>) In zebrafish xenograft model generated with microinjection of ES-2 (<b>G</b>) and OV-90 (<b>H</b>) cells, pre-treated fucoidan gradually inhibited tumor formation leading to a decrease in tumor size in vivo. The scale bar reveals 25 μm in square panels and 100 μm in rectangle panels. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 indicate significant effects of fucoidan.</p> "> Figure 8
<p>Anti-angiogenic activity of fucoidan in vivo and in vitro. (<b>A</b>) Zebrafish fli1 Tg (eGFP) models were analyzed to visualize vascular development in response to fucoidan. Fucoidan disrupted vasculature development, especially dorsal longitudinal anastomotic vessel (DLAV), dorsal aorta (DA), and intersegmental vessels (ISVs). Scale bar indicates 300 μm in left panels and 60 μm in right magnified panels. (<b>B</b>–<b>G</b>) Expression of angiogenesis-related genes was validated in fucoidan-treated fli1 Tg zebrafish by quantitative RT-PCR analysis. (<b>H</b>–<b>N</b>) Reduction of angiogenesis-related genes in ES-2 and OV-90 cells with the combination of fucoidan and cisplatin or paclitaxel. Messenger RNA expression of target genes was calculated based on that of <span class="html-italic">GAPDH</span> gene. *** <span class="html-italic">p</span> < 0.001, ** <span class="html-italic">p</span> < 0.01, and * <span class="html-italic">p</span> < 0.05 indicate significant effects of each treatment compared with vehicle-treated control cells. # represents significances (<span class="html-italic">p</span> < 0.05) compared with fucoidan alone.</p> "> Figure 9
<p>Illustration of fucoidan-regulated cell apoptosis in human ovarian cancer.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Fucoidan Regulates Proliferation and Apoptosis of Ovarian Cancer
2.2. Efficacy of Fucoidan on ROS Generation, Calcium Homeostasis, and Mitochondrial Membrane Potentials in Ovarian Cancer
2.3. Fucoidan Regulates Intracellular Signals in Ovarian Cancer Cell Lines
2.4. Disruptiopn of Endoplasmic Reticulum (ER) by Fucoidan in Human Ovarian Cancer Cell Lines
2.5. In Vivo Toxicity and Xenograft Analysis of Fucoidan Using Zebrafish
2.6. Inhibitory Effects of Fucoidan on Angiogenesis In Vivo and In Vitro
3. Discussion
4. Material and Methods
4.1. Chemicals
4.2. Cell Culture
4.3. Cell Proliferation Analysis
4.4. Observation of Immunofluorescence
4.5. Annexin V and PI Staining
4.6. Cell Cycle Assay
4.7. Determination of Cellular ROS
4.8. Intracellular Level of Free Ca2+
4.9. Measurement of Mitochondrial Ca2+ Concentration
4.10. Observation of Mitochondrial Membrane Potential
4.11. TUNEL Assay
4.12. Western Blot Analysis
4.13. In Vivo Toxicity and Xenograft Analysis
4.14. In Vivo Apoptosis Analysis
4.15. Analysis of Angiogenesis in Transgenic Zebrafish
4.16. RNA Isolation
4.17. Quantitative PCR Analysis
4.18. Significances
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Li, Q.; Zhou, J.; Zhang, S. ATP-binding cassette transporter A7 accelerates epithelial-to-mesenchymal transition in ovarian cancer cells by upregulating the transforming growth factor-beta signaling pathway. Oncol. Lett. 2018, 16, 5868–5874. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Tarhriz, V.; Bandehpour, M.; Dastmalchi, S.; Ouladsahebmadarek, E.; Zarredar, H.; Eyvazi, S. Overview of CD24 as a new molecular marker in ovarian cancer. J. Cell. Physiol. 2019, 234, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capriglione, S.; Luvero, D.; Plotti, F.; Terranova, C.; Montera, R.; Scaletta, G.; Schiro, T.; Rossini, G.; Benedetti Panici, P.; Angioli, R. Ovarian cancer recurrence and early detection: May HE4 play a key role in this open challenge? A systematic review of literature. Med. Oncol. 2017, 34, 164. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.A.; Bohlke, K.; Armstrong, D.K.; Bookman, M.A.; Cliby, W.A.; Coleman, R.L.; Dizon, D.S.; Kash, J.J.; Meyer, L.A.; Moore, K.N.; et al. Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology Clinical Practice Guideline. Gynecol. Oncol. 2016, 143, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bast, R.C., Jr.; Hennessy, B.; Mills, G.B. The biology of ovarian cancer: New opportunities for translation. Nat. Rev. Cancer 2009, 9, 415–428. [Google Scholar] [CrossRef]
- Bilan, M.I.; Grachev, A.A.; Ustuzhanina, N.E.; Shashkov, A.S.; Nifantiev, N.E.; Usov, A.I. Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. Carbohydr. Res. 2002, 337, 719–730. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [Green Version]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Ruperez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, D.J.; Kim, J.K.; You, S. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr. Polym. 2014, 113, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.A.; Hung, Y.L.; Chien, S.Y. Inhibitory activity of Sargassum hemiphyllum sulfated polysaccharide in arachidonic acid-induced animal models of inflammation. J. Food Drug Anal. 2015, 23, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Liu, Y.; Cao, M.J.; Liu, G.M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Jung, U.; Roh, C. Fucoidan from marine brown algae inhibits lipid accumulation. Mar. Drugs 2011, 9, 1359–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Sun, J.; Su, X.; Yu, Q.; Yu, Q.; Zhang, P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr. Polym. 2016, 154, 96–111. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, T.C.; Lin, L.C.; Shieh, T.M.; Wu, C.H.; Wang, K.L.; Hong, Y.H.; Hsia, S.M. Fucoidan Inhibits the Proliferation of Leiomyoma Cells and Decreases Extracellular Matrix-Associated Protein Expression. Cell. Physiol. Biochem. 2018, 49, 1970–1986. [Google Scholar] [CrossRef]
- Cho, T.M.; Kim, W.J.; Moon, S.K. AKT signaling is involved in fucoidan-induced inhibition of growth and migration of human bladder cancer cells. Food Chem. Toxicol. 2014, 64, 344–352. [Google Scholar] [CrossRef]
- Lin, C.Q.; Singh, J.; Murata, K.; Itahana, Y.; Parrinello, S.; Liang, S.H.; Gillett, C.E.; Campisi, J.; Desprez, P.Y. A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. 2000, 60, 1332–1340. [Google Scholar]
- Vishchuk, O.S.; Sun, H.; Wang, Z.; Ermakova, S.P.; Xiao, J.; Lu, T.; Xue, P.; Zvyagintseva, T.N.; Xiong, H.; Shao, C.; et al. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth. Oncotarget 2016, 7, 18763–18773. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.D.; Yao, C.J.; Chow, J.M.; Chang, C.L.; Hwang, P.A.; Chuang, S.E.; Whang-Peng, J.; Lai, G.M. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar. Drugs 2015, 13, 6099–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukahori, S.; Yano, H.; Akiba, J.; Ogasawara, S.; Momosaki, S.; Sanada, S.; Kuratomi, K.; Ishizaki, Y.; Moriya, F.; Yagi, M.; et al. Fucoidan, a major component of brown seaweed, prohibits the growth of human cancer cell lines in vitro. Mol. Med. Rep. 2008, 1, 537–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Riby, J.E.; Conde, L.; Grizzle, W.E.; Cui, X.; Skibola, C.F. A Fucus vesiculosus extract inhibits estrogen receptor activation and induces cell death in female cancer cell lines. BMC Complement. Altern. Med. 2016, 16, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, L.; Burney, M.; Gaikwad, A.; Nyshadham, P.; Nugent, E.K.; Gonzalez, A.; Smith, J.A. Preclinical Evaluation of Safety of Fucoidan Extracts From Undaria pinnatifida and Fucus vesiculosus for Use in Cancer Treatment. Integr. Cancer Ther. 2017, 16, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Burney, M.; Mathew, L.; Gaikwad, A.; Nugent, E.K.; Gonzalez, A.O.; Smith, J.A. Evaluation Fucoidan Extracts From Undaria pinnatifida and Fucus vesiculosus in Combination With Anticancer Drugs in Human Cancer Orthotopic Mouse Models. Integr. Cancer Ther. 2018, 17, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Choo, G.S.; Lee, H.N.; Shin, S.A.; Kim, H.J.; Jung, J.Y. Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression. Mar. Drugs 2016, 14, 126. [Google Scholar] [CrossRef] [Green Version]
- Boo, H.J.; Hong, J.Y.; Kim, S.C.; Kang, J.I.; Kim, M.K.; Kim, E.J.; Hyun, J.W.; Koh, Y.S.; Yoo, E.S.; Kwon, J.M.; et al. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar. Drugs 2013, 11, 2982–2999. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Kim, G.Y.; Moon, S.K.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Fucoidan inhibits the proliferation of human urinary bladder cancer T24 cells by blocking cell cycle progression and inducing apoptosis. Molecules 2014, 19, 5981–5998. [Google Scholar] [CrossRef] [Green Version]
- Strzalka, W.; Ziemienowicz, A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2011, 107, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Karpiniec, S.S.; Dickinson, J.L. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo. J. Cell. Physiol. 2016, 231, 688–697. [Google Scholar] [CrossRef]
- Han, M.H.; Lee, D.S.; Jeong, J.W.; Hong, S.H.; Choi, I.W.; Cha, H.J.; Kim, S.; Kim, H.S.; Park, C.; Kim, G.Y.; et al. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev. Res. 2017, 78, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, P.; Wang, H.; Li, Q.; Teng, H.; Liu, Z.; Yang, W.; Hou, L.; Zou, X. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar. Drugs 2013, 11, 1961–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer 2015, 112, 957–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinton, P.; Giorgi, C.; Siviero, R.; Zecchini, E.; Rizzuto, R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008, 27, 6407–6418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimi, I.; Roberts-Thomson, S.J.; Monteith, G.R. Calcium influx pathways in breast cancer: Opportunities for pharmacological intervention. Br. J. Pharmacol. 2014, 171, 945–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.G.; Pathan, N.; Ethell, I.M.; Krajewski, S.; Yamaguchi, Y.; Shibasaki, F.; McKeon, F.; Bobo, T.; Franke, T.F.; Reed, J.C. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999, 284, 339–343. [Google Scholar] [CrossRef]
- Diver, J.M.; Sage, S.O.; Rosado, J.A. The inositol trisphosphate receptor antagonist 2-aminoethoxydiphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: Cautions for its use in studying Ca2+ influx. Cell Calcium 2001, 30, 323–329. [Google Scholar] [CrossRef]
- Xu, S.Z.; Zeng, F.; Boulay, G.; Grimm, C.; Harteneck, C.; Beech, D.J. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: A differential, extracellular and voltage-dependent effect. Br. J. Pharmacol. 2005, 145, 405–414. [Google Scholar] [CrossRef]
- Tsien, R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 1980, 19, 2396–2404. [Google Scholar] [CrossRef]
- Jiang, S.; Chow, S.C.; Nicotera, P.; Orrenius, S. Intracellular Ca2+ signals activate apoptosis in thymocytes: Studies using the Ca2+-ATPase inhibitor thapsigargin. Exp. Cell Res. 1994, 212, 84–92. [Google Scholar] [CrossRef]
- Xu, L.; Tripathy, A.; Pasek, D.A.; Meissner, G. Ruthenium red modifies the cardiac and skeletal muscle Ca2+ release channels (ryanodine receptors) by multiple mechanisms. J. Biol. Chem. 1999, 274, 32680–32691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordeeva, A.V.; Zvyagilskaya, R.A.; Labas, Y.A. Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry 2003, 68, 1077–1080. [Google Scholar] [PubMed]
- Gorlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Cho, E.J.; Lee, J.H.; Yu, S.J.; Kim, Y.J.; Kim, C.Y.; Yoon, J.H. Fucoidan-induced ID-1 suppression inhibits the in vitro and in vivo invasion of hepatocellular carcinoma cells. Biomed. Pharmacother. 2016, 83, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, G.Y.; Nam, T.J.; Kim, N.D.; Choi, Y.H. Antiproliferative Activity of Fucoidan Was Associated with the Induction of Apoptosis and Autophagy in AGS Human Gastric Cancer Cells. J. Food Sci. 2011, 76, T77–T83. [Google Scholar] [CrossRef]
- Schlosshauer, P.W.; Li, W.; Lin, K.T.; Chan, J.L.; Wang, L.H. Rapamycin by itself and additively in combination with carboplatin inhibits the growth of ovarian cancer cells. Gynecol. Oncol. 2009, 114, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis 2004, 9, 667–676. [Google Scholar] [CrossRef]
- Zhang, Z.; Teruya, K.; Yoshida, T.; Eto, H.; Shirahata, S. Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar. Drugs 2013, 11, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Ji, X.; Xue, C.; Liang, H.; Ge, Y.; He, X.; Zhang, L.; Bian, K.; Zhang, L. Caspase-dependent and caspase-independent induction of apoptosis in breast cancer by fucoidan via the PI3K/AKT/GSK3beta pathway in vivo and in vitro. Biomed. Pharmacother. 2017, 94, 898–908. [Google Scholar] [CrossRef]
- Lee, H.E.; Choi, E.S.; Shin, J.A.; Lee, S.O.; Park, K.S.; Cho, N.P.; Cho, S.D. Fucoidan induces caspase-dependent apoptosis in MC3 human mucoepidermoid carcinoma cells. Exp. Ther. Med. 2014, 7, 228–232. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Lin, T.Y.; Hu, C.H.; Shu, D.T.F.; Lu, M.K. Fucoidan upregulates TLR4/CHOP-mediated caspase-3 and PARP activation to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Cancer Lett. 2018, 432, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Larman, M.; Lucy, J. The endoplasmic reticulum: Structure and function. Mol. Membr. Biol. 1999, 16, 313–316. [Google Scholar] [PubMed]
- Chen, S.; Zhao, Y.; Zhang, Y.; Zhang, D. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS ONE 2014, 9, e108157. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Chen, M.C.; Hsu, W.L.; Hwang, P.A.; Chou, T.C. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia. Mar. Drugs 2015, 13, 4436–4451. [Google Scholar] [CrossRef]
- Huang, T.H.; Chiu, Y.H.; Chan, Y.L.; Chiu, Y.H.; Wang, H.; Huang, K.C.; Li, T.L.; Hsu, K.H.; Wu, C.J. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar. Drugs 2015, 13, 1882–1900. [Google Scholar] [CrossRef]
Primary Antibodies | Dilution | Supplier | Catalog Number |
---|---|---|---|
Phospho-Cyclin D1 (Thr286) | 1:1000 | Cell Signaling | 3300 |
Cyclin D1 | 1:1000 | Cell Signaling | 2922 |
Phospho-AKT (SER473) | 1:1000 | Cell Signaling | 4060 |
AKT | 1:1000 | Cell Signaling | 9272 |
Phospho-ERK1/2 (Thr202/Tyr204) | 1:1000 | Cell Signaling | 9101 |
ERK1/2 | 1:1000 | Cell Signaling | 4695 |
Phospho-JNK (Thr183/Tyr185) | 1:1000 | Cell Signaling | 4668 |
JNK | 1:1000 | Cell Signaling | 9252 |
Phospho-P38 (Thr180/Tyr182) | 1:1000 | Cell Signaling | 4511 |
P38 | 1:1000 | Cell Signaling | 9212 |
Phospho-P70S6K (Thr421/Ser424) | 1:1000 | Cell Signaling | 9204 |
P70S6K | 1:1000 | Cell Signaling | 9202 |
Phospho-S6 (Ser235/236) | 1:1000 | Cell Signaling | 2211 |
S6 | 1:1000 | Cell Signaling | 2217 |
IRE1α | 1:1000 | Cell Signaling | 3294 |
ATF6α | 1:1000 | Santa Cruz | sc-166659 |
Phospho-PERK (Thr981) | 1:1000 | Santa Cruz | sc-32577 |
PERK | 1:1000 | Santa Cruz | sc-13073 |
Phospho-eIF2α (Ser51) | 1:1000 | Cell Signaling | 3398 |
eIF2α | 1:1000 | Cell Signaling | 5324 |
GADD153 | 1:1000 | Santa Cruz | sc-7351 |
GRP78 | 1:1000 | Santa Cruz | sc-13968 |
VDAC | 1:1000 | Cell Signaling | 4661 |
IP3R1 | 1:1000 | Invitrogen | PA1-901 |
IP3R2 | 1:1000 | Santa Cruz | sc-398434 |
GRP75 | 1:1000 | Cell Signaling | 3593 |
MFN2 | 1:1000 | Cell Signaling | 11925 |
VAPB | 1:1000 | Invitrogen | PA5-53023 |
LC3B | 1:1000 | Cell Signaling | 3868 |
BECN1 | 1:1000 | Cell Signaling | 3495 |
ATG5 | 1:1000 | Cell Signaling | 12994 |
Cleaved caspase-3 | 1:1000 | Cell Signaling | 9664 |
Cleaved caspase-9 | 1:1000 | Cell Signaling | 9501 |
Cytochrome c | 1:1000 | Cell Signaling | 11940 |
TUBA | 1:2000 | Santa Cruz | sc-5286 |
PCNA | 1:100 | Santa Cruz | sc-56 |
Gene | Primer Sequence (5′ → 3′) | Size (bp) | ||
---|---|---|---|---|
Human | VEGFA (AF022375.1) | Forward | TTGTACAAGATCCGCAGACG | 100 |
Reverse | TCACATCTGCAAGTACGTTCG | |||
VEGFB (BC008818.2) | Forward | CAGAGGAAAGTGGTGTCATGG | 90 | |
Reverse | CATGAGCTCCACAGTCAAGG | |||
VEGFC (NM_005429.5) | Forward | ATGTGGGGAAGGAGTTTGG | 94 | |
Reverse | CCCTCACTATTGCAGCAACC | |||
VEGFD (NM_004469.5) | Forward | TGTAAGTGCTTGCCAACAGC | 96 | |
Reverse | TTTCTTGGAATGGGAACAGC | |||
FLT1 (AF063657.2) | Forward | ATGGTCTTTGCCTGAAATGG | 135 | |
Reverse | TAGAAGCCAGTGTGGTTTGC | |||
FLT4 (AY233383.1) | Forward | GTACATGCCAACGACACAGG | 131 | |
Reverse | TCAGGCTTGTTGATGAATGG | |||
KDR (AF063658.1) | Forward | ACCCACGTTTTCAGAGTTGG | 124 | |
Reverse | TCCAGAATCCTCTTCCATGC | |||
GAPDH (BT006893.1) | Forward | GGCTCTCCAGAACATCATCC | 149 | |
Reverse | TTTCTAGACGGCAGGTCAGG | |||
Zebrafish | p53 (NM_001271820.1) | Forward | GCTTGTCACAGGGGTCATTT | 94 |
Reverse | ACAAAGGTCCCAGTGGAGTG | |||
casp3 (NM_131877.3) | Forward | AAAGGATCCCAGTGGAGGCAGATT | 131 | |
Reverse | TGGTCATGATCTGCAAGAGCTCCA | |||
casp8 (NM_131510.2) | Forward | AGAGAAGGGCACAGTTTTGG | 140 | |
Reverse | CCTGGTTCTCATCTCCTTGG | |||
casp9 (NM_001007404.2) | Forward | CTGCTGTGTGGTCATCATCC | 134 | |
Reverse | GACAGTTCTGGCCATTGAGG | |||
vegfaa (AF016244.1) | Forward | ATTCATACCCAGCAGCTTCG | 137 | |
Reverse | GCAGACAGATGGAGGAGAGC | |||
vegfc (AF466147.1) | Forward | GATGTGGGGAAAGAGTTTGG | 112 | |
Reverse | TGATGTTCCTGCACTGAAGC | |||
flt1 (BC139515.1) | Forward | CTGGTTATTCGGGATGTTGC | 121 | |
Reverse | TTTGGGGCTTCACATTTACC | |||
flt4 (AY833404.1) | Forward | TCACAACTGGATGGATTTGG | 100 | |
Reverse | GCCGACAGTCTTTTCTTTGC | |||
kdr (NM_001024653.2) | Forward | CTTGGCAGCCAGAAATATCC | 116 | |
Reverse | GACGAGCATCTCCTTTACGG | |||
kdrl (NM_131472.1) | Forward | CCTGATCCACAACTGCTTCC | 142 | |
Reverse | CACACGACTCAATGCGTACC | |||
gapdh (BC083506.1) | Forward | TGCTGGTATTGCTCTCAACG | 93 | |
Reverse | GCCATCAGGTCACATACACG |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, H.; Lee, J.-Y.; Yang, C.; Song, G.; Lim, W. Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis. Mar. Drugs 2020, 18, 45. https://doi.org/10.3390/md18010045
Bae H, Lee J-Y, Yang C, Song G, Lim W. Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis. Marine Drugs. 2020; 18(1):45. https://doi.org/10.3390/md18010045
Chicago/Turabian StyleBae, Hyocheol, Jin-Young Lee, Changwon Yang, Gwonhwa Song, and Whasun Lim. 2020. "Fucoidan Derived from Fucus vesiculosus Inhibits the Development of Human Ovarian Cancer via the Disturbance of Calcium Homeostasis, Endoplasmic Reticulum Stress, and Angiogenesis" Marine Drugs 18, no. 1: 45. https://doi.org/10.3390/md18010045