A Clock Transition in the Cr7Mn Molecular Nanomagnet
<p>(<b>a</b>) energy-level diagram for a Cr<sub>7</sub>Mn molecule, showing the zero-field avoided crossing between <math display="inline"><semantics> <mrow> <mo>|</mo> <mrow> <mi>m</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </mrow> <mo>〉</mo> </mrow> </semantics></math> states, creating the <math display="inline"><semantics> <mrow> <mo>|</mo> <mo>±</mo> <mo>〉</mo> </mrow> </semantics></math> clock states; (<b>b</b>) molecular structure of Cr<sub>7</sub>Mn; (<b>c</b>) picture of a loop-gap resonator with a Cr<sub>7</sub>Mn sample in the loop.</p> "> Figure 2
<p>(<b>a</b>) resonator <span class="html-italic">Q</span> vs. applied magnetic field at 4.00 GHz and powers from −20 to 0 dBm; (<b>b</b>) resonator <span class="html-italic">Q</span> divided by the <span class="html-italic">Q</span> at –20 dBm to emphasize the decoupling effect. The sharp peak around zero field suggests that this decoupling is associated with the clock transition.</p> "> Figure 3
<p>Spin echo signal as a function of the length of the extra pulse, at 4.43 GHz and 0 Oe. The resulting Rabi oscillations confirm that our signal comes from spin echo. The offset is an artifact of our background-subtraction method.</p> "> Figure 4
<p>(<b>a</b>) background-subtracted spin echo signal at various delay times <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>τ</mi> </mrow> </semantics></math>, at 4.43 GHz and 20 Oe. The time axis has been shifted such that every echo occurs at the same effective time; (<b>b</b>) spin echo signal area as a function of the delay time <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>τ</mi> </mrow> </semantics></math> for 10% (blue circles) and 0.5% (orange squares) samples. The lines connecting datapoints are guides to the eye.</p> "> Figure 5
<p><math display="inline"><semantics> <msub> <mi>T</mi> <mn>2</mn> </msub> </semantics></math> as a function of applied field for 10% (blue circles, at 4.43 GHz) and 0.5% (orange squares, at 4.50 GHz) samples. The apparent offset of the peaks from 0 Oe is due to remnant field in our magnet. The lines connecting datapoints are guides to the eye.</p> ">
Abstract
:1. Introduction
2. Results
2.1. CW Experiments
2.2. Spin Echo Experiments
3. Conclusions
4. Materials and Methods
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MNM | Molecular nanomagnet |
ESR | Electron-spin resonance |
LGR | Loop-gap resonator |
CW | Continuous-wave |
RF | Radio frequency |
References
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejada, J.; Chudnovsky, E.M.; Del Barco, E.; Hernandez, J.M.; Spiller, T.P. Magnetic qubits as hardware for quantum computers. Nanotechnology 2001, 12, 181. [Google Scholar] [CrossRef]
- Friedman, J.R.; Sarachik, M.P. Single-Molecule Nanomagnets. Annu. Rev. Condens. Matter Phys. 2010, 1, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Ardavan, A.; Bowen, A.M.; Fernandez, A.; Fielding, A.J.; Kaminski, D.; Moro, F.; Muryn, C.A.; Wise, M.D.; Ruggi, A.; McInnes, E.J.L.; et al. Engineering coherent interactions in molecular nanomagnet dimers. NPJ Quantum Inf. 2015, 1, 15012. [Google Scholar] [CrossRef] [Green Version]
- Wedge, C.J.; Timco, G.A.; Spielberg, E.T.; George, R.E.; Tuna, F.; Rigby, S.; McInnes, E.J.L.; Winpenny, R.E.P.; Blundell, S.J.; Ardavan, A. Chemical Engineering of Molecular Qubits. Phys. Rev. Lett. 2012, 108, 107204. [Google Scholar] [CrossRef] [PubMed]
- Timco, G.A.; Carretta, S.; Troiani, F.; Tuna, F.; Pritchard, R.J.; Muryn, C.A.; McInnes, E.J.L.; Ghirri, A.; Candini, A.; Santini, P.; et al. Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 2009, 4, 173–178. [Google Scholar] [CrossRef]
- Chiesa, A.; Whitehead, G.F.S.; Carretta, S.; Carthy, L.; Timco, G.A.; Teat, S.J.; Amoretti, G.; Pavarini, E.; Winpenny, R.E.P.; Santini, P. Molecular nanomagnets with switchable coupling for quantum simulation. Sci. Rep. 2015, 4, 7423. [Google Scholar] [CrossRef]
- Timco, G.A.; Faust, T.B.; Tuna, F.; Winpenny, R.E.P. Linking heterometallic rings for quantum information processing and amusement. Chem. Soc. Rev. 2011, 40, 3067. [Google Scholar] [CrossRef]
- Ferrando-Soria, J.; Moreno Pineda, E.; Chiesa, A.; Fernandez, A.; Magee, S.A.; Carretta, S.; Santini, P.; Vitorica-Yrezabal, I.J.; Tuna, F.; Timco, G.A.; et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 2016, 7, 11377. [Google Scholar] [CrossRef] [Green Version]
- Piligkos, S.; Weihe, H.; Bill, E.; Neese, F.; El Mkami, H.; Smith, G.M.; Collison, D.; Rajaraman, G.; Timco, G.A.; Winpenny, R.E.P.; et al. EPR Spectroscopy of a Family of CrIII7MII (M = Cd, Zn, Mn, Ni) “Wheels”: Studies of Isostructural Compounds with Different Spin Ground States. Chem. A Eur. J. 2009, 15, 3152–3167. [Google Scholar] [CrossRef]
- Lancaster, T.; Blundell, S.J.; Pratt, F.L.; Franke, I.; Steele, A.J.; Baker, P.J.; Salman, Z.; Baines, C.; Watanabe, I.; Carretta, S.; et al. Relaxation of muon spins in molecular nanomagnets. Phys. Rev. B 2010, 81, 140409R. [Google Scholar] [CrossRef]
- Bollinger, J.J.; Prestage, J.D.; Itano, W.M.; Wineland, D.J. Laser-Cooled-Atomic Frequency Standard. Phys. Rev. Lett. 1985, 54, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Shiddiq, M.; Komijani, D.; Duan, Y.; Gaita-Ariño, A.; Coronado, E.; Hill, S. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 2016, 531, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tupitsyn, I.S.; van Tol, J.; Beedle, C.C.; Hendrickson, D.N.; Stamp, P.C.E. Decoherence in crystals of quantum molecular magnets. Nature 2011, 476, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Froncisz, W.; Hyde, J.S. The loop-gap resonator: A new microwave lumped circuit ESR sample structure. J. Magn. Reson. 1982, 47, 515–521. [Google Scholar] [CrossRef]
- Portis, A.M. Electronic Structure of F Centers: Saturation of the Electron Spin Resonance. Phys. Rev. 1953, 91, 1071–1078. [Google Scholar] [CrossRef]
- Castner, T.G., Jr. Saturation of the paramagnetic resonance of a V center. Phys. Rev. 1959, 115, 1506. [Google Scholar] [CrossRef]
- Henderson, J.J.; Ramsey, C.M.; del Barco, E.; Stamatatos, T.C.; Christou, G. Control of the inhomogeneity degree by magnetic dilution in crystals of antiferromagnetic molecular rings. Phys. Rev. B 2008, 78, 214413. [Google Scholar] [CrossRef]
- Moro, F.; Kaminski, D.; Tuna, F.; Whitehead, G.F.S.; Timco, G.A.; Collison, D.; Winpenny, R.E.P.; Ardavan, A.; McInnes, E.J.L. Coherent electron spin manipulation in a dilute oriented ensemble of molecular nanomagnets: Pulsed EPR on doped single crystals. Chem. Commun. 2013, 50, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Ardavan, A.; Rival, O.; Morton, J.J.L.; Blundell, S.J.; Tyryshkin, A.M.; Timco, G.A.; Winpenny, R.E.P. Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing? Phys. Rev. Lett. 2007, 98, 057201. [Google Scholar] [CrossRef]
- Larsen, F.K.; McInnes, E.J.L.; El Mkami, H.; Overgaard, J.; Piligkos, S.; Rajaraman, G.; Rentschler, E.; Smith, A.A.; Smith, G.M.; Boote, V.; et al. Synthesis and Characterization of Heterometallic Cr7M Wheels. Angew. Chem. Int. Ed. 2003, 42, 101. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collett, C.A.; Ellers, K.-I.; Russo, N.; Kittilstved, K.R.; Timco, G.A.; Winpenny, R.E.P.; Friedman, J.R. A Clock Transition in the Cr7Mn Molecular Nanomagnet. Magnetochemistry 2019, 5, 4. https://doi.org/10.3390/magnetochemistry5010004
Collett CA, Ellers K-I, Russo N, Kittilstved KR, Timco GA, Winpenny REP, Friedman JR. A Clock Transition in the Cr7Mn Molecular Nanomagnet. Magnetochemistry. 2019; 5(1):4. https://doi.org/10.3390/magnetochemistry5010004
Chicago/Turabian StyleCollett, Charles A., Kai-Isaak Ellers, Nicholas Russo, Kevin R. Kittilstved, Grigore A. Timco, Richard E. P. Winpenny, and Jonathan R. Friedman. 2019. "A Clock Transition in the Cr7Mn Molecular Nanomagnet" Magnetochemistry 5, no. 1: 4. https://doi.org/10.3390/magnetochemistry5010004
APA StyleCollett, C. A., Ellers, K. -I., Russo, N., Kittilstved, K. R., Timco, G. A., Winpenny, R. E. P., & Friedman, J. R. (2019). A Clock Transition in the Cr7Mn Molecular Nanomagnet. Magnetochemistry, 5(1), 4. https://doi.org/10.3390/magnetochemistry5010004