A Five-Axis Toolpath Corner-Smoothing Method Based on the Space of Master–Slave Movement
<p>Schematic of global smoothing for linear trajectories.</p> "> Figure 2
<p>Schematic of local smoothing for linear trajectories.</p> "> Figure 3
<p>A typical toolpath in the SMM.</p> "> Figure 4
<p>Classification of trajectories in the SMM. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math> monotonically increases; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>q</mi> </mrow> </msub> </mrow> </semantics></math> increases first and then decreases; (<b>c</b>) the mirror image of (a); (<b>d</b>) the mirror image of (b); (<b>e</b>) zero master movement between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>L</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>L</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>; (<b>f</b>) zero master movement between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>L</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>C</mi> <mi>L</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>.Therefore, trajectory smoothing in the SMM primarily focuses on the cases of (<b>a</b>,<b>b</b>). By improving the continuity of trajectories in the SMM, the slave motion’s speed and acceleration can remain continuous.</p> "> Figure 5
<p>Smoothed trajectory in the SMM.</p> "> Figure 6
<p>Tool direction tolerance for a five-axis toolpath.</p> "> Figure 7
<p>G2-continuous symmetric Bézier spline.</p> "> Figure 8
<p>Intersection of transition curves.</p> "> Figure 9
<p>G2 continuous asymmetric dual Bézier spline.</p> "> Figure 10
<p>Mirror image of the asymmetric dual Bézier spline.</p> "> Figure 11
<p>Asymmetric dual Bézier spline trajectory in the SMM.</p> "> Figure 12
<p>The spline connection point and tangent when <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>ε</mo> </mrow> <mrow> <mo>′</mo> </mrow> </msup> <mo>≤</mo> <msup> <mrow> <mo>ε</mo> </mrow> <mrow> <mo>∗</mo> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 13
<p>The strategy for selecting the values of <math display="inline"><semantics> <mrow> <mi>k</mi> <msub> <mrow> <mi>k</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>k</mi> <msub> <mrow> <mi>k</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> under the condition of curvature monotonicity.</p> "> Figure 14
<p>Trajectory smoothing in the three-dimensional SMM <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>q</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 15
<p>Schematic of the program segment interpolation.</p> "> Figure 16
<p>Smoothing result of the toolpath for five-axis machining.</p> "> Figure 17
<p>Trajectory in the SMM. (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>q</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 18
<p>Comparison of trajectory shape between the B-spline method and dual Bézier method.</p> "> Figure 19
<p>Comparison of curvature between the dual Bézier method and the B-spline method. (<b>a</b>) dual Bézier method; (<b>b</b>) B-spline method.</p> "> Figure 20
<p>Machining experiment case and machine tool. (<b>a</b>) Side milling toolpath for the impeller; (<b>b</b>) AC dual rotary table five-axis CNC machine.</p> "> Figure 21
<p>Smoothing result of the impeller machining trajectory.</p> "> Figure 22
<p>Velocity of each machine axis. (<b>a</b>) Complete view; (<b>b</b>) local magnified view.</p> "> Figure 23
<p>Acceleration of each machine axis. (<b>a</b>) Complete view; (<b>b</b>) local magnified view.</p> "> Figure 24
<p>Jerk of each machine axis. (<b>a</b>) Complete view; (<b>b</b>) local magnified view.</p> "> Figure 25
<p>Cutting results of the impeller blade. Region A: near the trailing edge. (<b>a</b>) Original HNC-8 smoothing function; (<b>b</b>) proposed smoothing method.</p> "> Figure 26
<p>Comparison of surface quality in region A of the blade. (<b>a</b>) Original HNC-8 smoothing function; (<b>b</b>) proposed smoothing method.</p> "> Figure 27
<p>Measurement equipment. (<b>a</b>) Coordinate measuring machine; (<b>b</b>) impeller measurement.</p> ">
Abstract
:1. Introduction
2. Space of Master–Slave Movement
2.1. Definition
2.2. Trajectory Error Constraint
2.3. Trajectory Smoothness
3. Tool Tip Position Smoothing with Minimal Curvature Fluctuation
3.1. Symmetric Dual Bézier Spline
- (1)
- and share the same tangent direction at point . According to the properties of Bézier splines, the control points , , and are collinear.
- (2)
- and have the same curvature at point .
3.2. Minimal Curvature Fluctuation Conditions
3.3. Tool Position Smoothing Process
Algorithm 1. Smoothing of tool tip position. | |
Input: | |
Output: | |
Step 1: | Calculate vectors: Calculate the angle: |
Step 2: | Calculate contour error: Calculate control polygon dimensions: |
Step 3: | Calculate control points: |
Step 4: | Construct Bézier spline using control points: |
4. Trajectory Smoothing and Synchronous Interpolation of SMM
4.1. Asymmetric Dual Bézier Corner Smoothing
4.1.1. Asymmetric Dual Bézier Spline
- (1)
- Condition for G2 continuity at point
- (2)
- Condition for minimal curvature fluctuation
4.1.2. Corner Smoothing in SMM
- (1)
- Condition for minimal curvature fluctuation
- (2)
- Endpoint constraint
- (3)
- q and tangent at q
- (4)
- Control polygon proportional coefficients
- (5)
- Error adjustment
Algorithm 2. Smoothing of SMM | |
Input: | |
Output: | |
01: | while true do |
02: | |
03: | |
04: | |
05: | |
06: | |
07: | |
08: | |
09: | |
10: | |
11: | |
12: | |
13: | |
14: | |
15: | else |
16: | |
17: | |
18: | |
19: | |
20: | |
21: | |
22: | end if |
23: | |
24: | |
25: | |
26: | |
27: | else |
28: | exit |
29: | end if |
30: | end |
31: | |
32: | |
33: | |
34: | |
35: | |
36: |
4.2. Synchronization and Interpolation of Five-Axis Machining Toolpaths
5. Simulation and Experiment
5.1. Numerical Simulation
5.2. Machining Experiment
6. Conclusions
- (1)
- Unlike traditional corner-smoothing methods, this approach achieves trajectory smoothing and synchronous interpolation of the tool tip position and tool orientation through the master–slave cooperative space. Symmetric dual Bézier spline smoothing is used for the tool tip position trajectory as the primary motion, and sufficient conditions for monotonic curvature in the transition curve are derived, minimizing curvature fluctuation.
- (2)
- Asymmetric dual Bézier spline smoothing is applied to the master–slave cooperative space trajectory, establishing a G2-continuous synchronization relationship between the tool tip position and tool orientation. This effectively resolves the continuity issue in cross-dimensional synchronous interpolation between linear and rotary axes, simplifying the computation process and improving real-time performance.
- (3)
- Simulation tests and machining experiments show that, with the proposed method, the tool tip acceleration curve is smoother during part machining; maximum acceleration values for each axis were reduced by 21.05%, while jerk was lowered by 22.31%, leading to a significant reduction in machining marks. This indicates that the method effectively reduces machine vibration and enhances surface quality.
- (4)
- Theoretically, the proposed toolpath-smoothing method has broad applicability, meeting the requirements of five-axis systems and extending to multi-axis CNC machines such as four-axis and six-axis systems. This overcomes the limitations of current methods in multi-axis machining. In the future, this method will be further extended to other multi-axis CNC systems, including four- and six-axis machines. Additionally, further research will focus on feedrate planning methods that consider machine drive performance to enhance the efficiency of multi-axis CNC machining.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MIP | Mixed-integer programming |
MCS | Machine coordinate system |
WCS | Workpiece coordinate system |
SMM | Space of master–slave movement |
Appendix A
References
- Koren, Y.; Lin, R.S. Five-Axis Surface Interpolators. CIRP Ann. 1995, 44, 379–382. [Google Scholar] [CrossRef]
- Tan, Q.; Mohd Basri, M.A. Hardware–Software Embedded System for Real-Time Trajectory Planning of Multi-Axis Machine Using B-Spline Curve Interpolation Algorithm. Machines 2023, 11, 1043. [Google Scholar] [CrossRef]
- Zhong, W.B.; Luo, X.C.; Chang, W.L.; Cai, Y.-K.; Ding, F.; Liu, H.-T.; Sun, Y.-Z. Toolpath Interpolation and Smoothing for Computer Numerical Control Machining of Freeform Surfaces: A Review. Int. J. Autom. Comput. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Zhou, X. An Adapted NURBS Interpolator with a Switched Optimized Method of Feed-Rate Scheduling. Machines 2024, 12, 186. [Google Scholar] [CrossRef]
- Essid, M.; Gassara, B.; Baili, M.; Hbaieb, M.; Dessein, G.; Saï, W.B. Analytical Modeling of the CNC Machine Axis Motion in High-Speed Milling with Local Smoothing. Int. J. Adv. Manuf. Technol. 2019, 105, 457–470. [Google Scholar] [CrossRef]
- Tulsyan, S.; Altintas, Y. Local Toolpath Smoothing for Five-Axis Machine Tools. Int. J. Mach. Tools Manuf. 2015, 96, 15–26. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, L.M.; Ding, H. A Real-Time Look-Ahead Interpolation Methodology with Curvature-Continuous B-Spline Transition Scheme for CNC Machining of Short Line Segments. Int. J. Mach. Tools Manuf. 2013, 65, 88–98. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, L.Y.; Yuan, C.M.; Gao, X.-S. Curve Fitting and Optimal Interpolation for CNC Machining under Confined Error Using Quadratic B-Splines. Comput. Aided Des. 2015, 66, 62–72. [Google Scholar] [CrossRef]
- Parque, V.; Miyashita, T. Smooth Curve Fitting of Mobile Robot Trajectories Using Differential Evolution. IEEE Access 2020, 8, 82855–82866. [Google Scholar] [CrossRef]
- Zhao, K.; Li, S.; Kang, Z. Smooth Trajectory Generation for Linear Paths with Optimal Polygonal Approximation. In Proceedings of the Chinese Intelligent Systems Conference, Haikou, China, 26–27 October 2019; Springer: Singapore, 2019; pp. 457–465. [Google Scholar] [CrossRef]
- Sun, S.; Lin, H.; Zheng, L.; Yu, J.; Hu, Y. A Real-Time and Look-Ahead Interpolation Methodology with Dynamic B-Spline Transition Scheme for CNC Machining of Short Line Segments. Int. J. Adv. Manuf. Technol. 2016, 84, 1359–1370. [Google Scholar] [CrossRef]
- Ernesto, C.A.; Farouki, R.T. High-Speed Cornering by CNC Machines under Prescribed Bounds on Axis Accelerations and Toolpath Contour Error. Int. J. Adv. Manuf. Technol. 2012, 58, 327–338. [Google Scholar] [CrossRef]
- Fan, W.; Lee, C.H.; Chen, J.H. A Real-Time Curvature-Smooth Interpolation Scheme and Motion Planning for CNC Machining of Short Line Segments. Int. J. Mach. Tools Manuf. 2015, 96, 27–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, P.; Wu, J.; Zhang, H. An Optimal Curvature-Smooth Transition Algorithm with Axis Jerk Limitations along Linear Segments. Int. J. Adv. Manuf. Technol. 2018, 95, 875–888. [Google Scholar] [CrossRef]
- Sencer, B.; Ishizaki, K.; Shamoto, E. A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of NC Systems along Linear Tool Paths. Int. J. Adv. Manuf. Technol. 2015, 76, 1977–1992. [Google Scholar] [CrossRef]
- Bi, Q.Z.; Shi, J.; Wang, Y.H.; Zhu, L.; Ding, H. Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path. Int. J. Mach. Tools Manuf. 2015, 91, 96–108. [Google Scholar] [CrossRef]
- Beudaert, X.; Lavernhe, S.; Tournier, C. 5-Axis Local Corner Rounding of Linear Tool Path Discontinuities. Int. J. Mach. Tools Manuf. 2013, 73, 9–16. [Google Scholar] [CrossRef]
- Bi, Q.; Wang, Y.; Zhu, L.; Ding, H. A Practical Continuous-Curvature Bézier Transition Algorithm for High-Speed Machining of Linear Tool Path. In Proceedings of the International Conference on Intelligent Robotics and Applications, Aachen, Germany, 6–8 December 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 465–476. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Qiu, L.; Liu, X.; Wang, Z.; Wang, Y.D. Double B-Spline Curve-Fitting and Synchronization-Integrated Feedrate Scheduling Method for Five-Axis Linear-Segment Toolpath. Appl. Sci. 2020, 10, 3158. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; Zhou, W.; Shang, T.; Fleischer, J. Dual NURBS Path Smoothing for 5-Axis Linear Path of Flank Milling. Int. J. Precis. Eng. Manuf. 2018, 19, 1811–1820. [Google Scholar] [CrossRef]
- Huang, J.; Du, X.; Zhu, L.M. Real-Time Local Smoothing for Five-Axis Linear Toolpath Considering Smoothing Error Constraints. Int. J. Mach. Tools Manuf. 2018, 124, 67–79. [Google Scholar] [CrossRef]
- Yang, J.; Yuen, A. An Analytical Local Corner Smoothing Algorithm for Five-Axis CNC Machining. Int. J. Mach. Tools Manuf. 2017, 123, 22–35. [Google Scholar] [CrossRef]
- Shi, J.; Bi, Q.Z.; Zhu, L.M.; Wang, Y. Corner Rounding of Linear Five-Axis Tool Path by Dual PH Curves Blending. Int. J. Mach. Tools Manuf. 2015, 88, 223–236. [Google Scholar] [CrossRef]
Item | Description |
---|---|
Cutter model | Tapered ball-end milling cutter Diameter: 2 mm, taper: 7°, fillet radius: 1 mm |
Cutting parameters | Spindle speed: 20,000 rpm Feedrate: 3200 mm/min |
Workpiece material | Al6061 alloy |
Tool holder type | HSK-A63 shrink-fit tool holder |
HNC-8 Method | Proposed Method | |
---|---|---|
Time (s) | 6.74 | 5.57 |
Vmax (mm/min) | 18,632 | 21,745 |
Amax (mm/s2) | 4546 | 3589 |
Jmax (mm/s3) | 260,000 | 202,000 |
Section | Min Dev (mm) | Max Dev (mm) | Mean Dev (mm) |
---|---|---|---|
1 | 0.0185 | 0.0476 | 0.0343 |
2 | 0.0195 | 0.0358 | 0.0240 |
3 | 0.0046 | 0.0493 | 0.0272 |
4 | −0.0079 | 0.0293 | 0.0242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Zhang, H.; Yang, J.; Xie, J.; Zhu, W. A Five-Axis Toolpath Corner-Smoothing Method Based on the Space of Master–Slave Movement. Machines 2024, 12, 834. https://doi.org/10.3390/machines12120834
Gao S, Zhang H, Yang J, Xie J, Zhu W. A Five-Axis Toolpath Corner-Smoothing Method Based on the Space of Master–Slave Movement. Machines. 2024; 12(12):834. https://doi.org/10.3390/machines12120834
Chicago/Turabian StyleGao, Song, Haiming Zhang, Jianzhong Yang, Jiejun Xie, and Wanqiang Zhu. 2024. "A Five-Axis Toolpath Corner-Smoothing Method Based on the Space of Master–Slave Movement" Machines 12, no. 12: 834. https://doi.org/10.3390/machines12120834
APA StyleGao, S., Zhang, H., Yang, J., Xie, J., & Zhu, W. (2024). A Five-Axis Toolpath Corner-Smoothing Method Based on the Space of Master–Slave Movement. Machines, 12(12), 834. https://doi.org/10.3390/machines12120834