SMIS: A Stepwise Multiple Integration Solver Using a CAS
<p>Region bounded by <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mi>y</mi> <mo>=</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mspace width="0.277778em"/> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mi>y</mi> <mo>=</mo> <msqrt> <mi>x</mi> </msqrt> </mrow> </semantics></math>.</p> "> Figure 2
<p>Region bounded by <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>2</mn> <mi>a</mi> <mi>x</mi> <mspace width="0.277778em"/> <mo>;</mo> <mspace width="0.277778em"/> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>2</mn> <mi>b</mi> <mi>x</mi> <mspace width="0.277778em"/> <mo>;</mo> <mspace width="0.277778em"/> <mi>y</mi> <mo>=</mo> <mi>x</mi> <mspace width="0.277778em"/> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Portion of sphere <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>≤</mo> <mn>1</mn> <mspace width="0.277778em"/> </mrow> </semantics></math> in the first octant <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Portion of the paraboloid <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mi>z</mi> <mo>=</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>y</mi> <mn>2</mn> </msup> <mspace width="0.277778em"/> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <mn>0</mn> <mo>≤</mo> <mi>z</mi> <mo>≤</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Backgrounds, Objectives and Related Works
- (1)
- the development of new programs to increase the capabilities of CAS; and
- (2)
- the elaboration of specific tasks with students in order to facilitate the teaching and learning process of different mathematical topics in Engineering.
- Objective :
- To verify the positive effects of the development of programs with Derive on the learning process of the topic Multiple Integration in the degree of Technical Engineering of Telecommunications in the University of Málaga;
- Hypothesis :
- The development of programs with Derive facilitates the learning of the algorithmic concepts and procedures involved in the topic Multiple Integration and improves the students’ attitudes towards the subject in terms of attention, motivation, interest and participation.
- SMIS can show all the intermediate steps to obtain the final solution. This fact is especially useful in Education since SMIS can be used with Engineering and Mathematics students. Let us suppose that a student solves by hand an exercise involving multiple integration and wants to check if the obtained result is right or not. If the student uses other tools actually available to solve the exercise, the final result is obtained. If the result is the same as that obtained by hand, the student could accept that the exercise has been solved properly (although it could not be true) but if the final result does not match, the student will not be able to know where the mistake is. Using SMIS, the student can check all the intermediate steps and, in the case of a mistake, can easily find where the error or errors are. Obviously, if the student does not know how to continue a specific step in an exercise, SMIS with the stepwise option on can be used to help the student to continue the exercise. This way, SMIS can be used as a powerful tool for students.
- SMIS incorporates programs to work directly with specific applications and computations involving multiple integration. For example, as will be described in Section 3, SMIS can compute, using specific programs, double and triple integrals, multiple integrals using variable changes, areas and volumes, surface integrals, surface areas, line or double integrals using Green’s theorem [11], flux using its definition and flux using the divergence theorem [12].Let us consider the following example:Compute the flux of the vector field through the outside face of the cube bounded by using the Divergence Theorem.Normally, the built-in functions in CAS allows the computation, using their specific syntax, of multiple integrals but a CAS cannot directly compute a flux. This way, the user has to check the theory involved in the computation of a flux and the Divergence Theorem and compute it by definition or create a specific program in the CAS chosen to compute it.That is, the user has to know that:The possibility of using a single-called program to compute a flux is of great value not only because the user does not need to nest different built-in commands but also because the user can obtain extra information. For example, intermediate steps or warnings on the suspicious wrong order of integration.With SMIS, the user will only need to use the built program FluxDivergence with the appropriate parameters: FluxDivergence(F,x,0,1,y,0,1,z,0,1).In addition, with two extra final parameters set to true, the program will not only provide the final result but also, step by step, all the theory needed to compute it and all the intermediate steps and partial results.Furthermore, the programs developed in SMIS also detect possible errors in the order of integration; in which case, the result is provided together with a warning message.
3. Description of SMIS
3.1. Global Variables: Theory and Stepwise
3.2. Double Integral
3.2.1. Double Integral in Cartesian Coordinates
- The anonymous use of variables u and v allows the user to run the program in the desired order of integration by setting u and v to x or y in the right order;
- Regarding its use in Education, one of the recurrent mistakes that students make is to establish the right integration order. In this case, the program returns a warning message if the result is suspected of being wrong because of the integration order;
- Since Derive cannot detect in advance whether a computation can be performed, in the code of all programs of SMIS we assume that the stepwise option can be applied. When Derive cannot perform a computation, the user will have to interrupt the execution;
- We have used the same format than Derive. In other words, blue text corresponds with the display function of Derive and the final result is centered and in black. In addition, we will use a text in red color when Derive cannot perform a computation.
3.2.2. Double Integral in Polar Coordinates
3.3. Triple Integral
3.3.1. Triple Integral in Cartesian Coordinates
3.3.2. Triple Integral in Cylindrical Coordinates
3.3.3. Triple Integral in Spherical Coordinates
3.4. Area of a Region
- Area(u,u1,u2,v,v1,v2,myTheory,myStepwise)
- AreaPolar(u,u1,u2,v,v1,v2,myTheory,myStepwise,myx,myy)
3.5. Volume of a Solid
- Volume(u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise)
- VolumeCylindrical(u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise,myx,myy,myz)
- VolumeSpherical(u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise,myx,myy,myz)
3.6. Surface Integrals
- SurfaceIntegral(f,myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
- SurfaceIntegralPolar(f,myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
3.7. Area of a Surface
- SurfaceArea(myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
- SurfaceAreaPolar(myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
3.8. Flux
- Flux(F,myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
- FluxPolar(F,myw,w,u,u1,u2,v,v1,v2,myTheory,myStepwise)
3.9. Divergence Theorem
- FluxDivergence(F,u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise)
- FluxDivergenceCylindrical(F,u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise)
- FluxDivergenceSpherical(F,u,u1,u2,v,v1,v2,w,w1,w2,myTheory,myStepwise)
3.10. Green’s Theorem
- Green(P,Q,u,u1,u2,v,v1,v2,myTheory,myStepwise)
- GreenPolar(P,Q,u,u1,u2,v,v1,v2,myTheory,myStepwise)
4. The Use of SMIS in Mathematics Education
5. Conclusions and Future Work
- SMIS.mth is a library in Derive containing all the programs of SMIS. With this library, we achieve one of the main objectives in this paper: to increase the capabilities of a CAS. When loading this library in Derive, the user can use its programs to deal directly with double, triple and surface integrals and their applications. As mentioned before, it is easy to migrate this library to other CAS so that their capabilities would also be increased.
- SMIS.dfw is a tutorial in Derive which provides detailed examples of the uses of all the programs of SMIS. In addition, since the developed programs can optionally provide stepwise results, with this fact we achieve another important objective of this paper: SMIS can be used as a tutorial for the teaching and learning process of multiple integration and its applications which can be very useful in mathematics subjects dealing with multiple integration in Math, Physics and Engineering degrees. Again, this tutorial can be easily migrated to other CAS and, therefore, this tutorial can be used in other CAS. In addition, we have proposed “our version” of stepwise solutions but the provided code of all programs can also be adapted to the specific needs of the teacher.
Future Work
- The development of new stepwise solvers in Python for other mathematical topics;
- The integration of all solvers in a free web online application, which can be used in different languages.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAS | Computer Algebra System |
SMIS | Stepwise Multiple Integration Solver |
SFOPDES | Stepwise First Order Partial Differential Equations Solver |
Appendix A. Code of Programs
Appendix A.1. Double Integral
Appendix A.2. Triple Integral
Appendix A.3. Area of a Region
Appendix A.4. Volume of a Solid
Appendix A.5. Surface Integrals
Appendix A.6. Area of a Surface
Appendix A.7. Flux
Appendix A.8. Divergence Theorem
Appendix A.9. Green’s Theorem
References
- Engelman, C. The legacy of MATHLAB 68. In SYMSAC ’71, Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation, Los Angeles, CA, USA, 23, March 1971; Association for Computing Machinery: New York, NY, USA, 1971; pp. 29–41101145800204806265. [Google Scholar]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Mod. 1999, 17, 57–61. [Google Scholar] [CrossRef]
- Galán–García, J.L.; Aguilera–Venegas, G.; Galán–García, M.Á.; Rodríguez-Cielos, P.; Atencia-Mc.Killop, I. Improving CAS capabilities: New rules for computing improper integrals. Appl. Math. Comput. 2018, 316, 525–540. [Google Scholar] [CrossRef]
- Wester, M.J. Computer Algebra Systems: A Practical Guide; Wiley: Chichester, UK, 1999. [Google Scholar]
- Rich, A.D. A brief history of the muMATH/Derive CASs. DERIVE Newsl. 2000, 40, 5. [Google Scholar]
- Galán–García, J.L.; Aguilera–Venegas, G.; Galán–García, M.Á.; Rodríguez-Cielos, P.; Atencia-Mc.Killop, I.; Padilla–Domínguez, Y.; Rodríguez-Cielos, R. Killop, I.; Padilla–Domínguez, Y.; Rodríguez-Cielos, R. Enhancing CAS improper integrals computations using extensions of the residue theorem. Adv. Comput. Math. 2019, 45, 1825–1841. [Google Scholar] [CrossRef]
- Galán–García, J.L.; Aguilera–Venegas, G.; Rodríguez-Cielos, P.; Padilla–Domínguez, Y.; Galán–García, M.Á. SFOPDES: A Stepwise First Order Partial Differential Equations Solver with a Computer Algebra System. Comput. Math. Appl. 2019, 78, 3152–3164. [Google Scholar] [CrossRef]
- Galán-García, J.L. Integrales Múltiples con Derive. Un Estudio de Innovación Curricular en Primer Curso de Ingeniería Técnica de Telecomunicación. Ph.D. Thesis, University of Málaga, Málaga, Spain, 2003. [Google Scholar]
- Aguilera, G.; Galán, J.L.; Gálvez, A.; Jiménez, A.J.; Padilla, Y.; Rodríguez, P. Teaching multiple integrals and their applications using DERIVE 6 as a PeCAS. In Computer Algebra in Education; Wester, M.J., Beaudin, M., Eds.; Aulona Press: Skopje, NM, USA, 2008; pp. 109–123. [Google Scholar]
- Böhn, J. Derive Newsletter. Available online: http://www.austromath.at/dug/ (accessed on 22 September 2021).
- Green, G. An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. Available online: https://books.google.es/books?id=GwYXAAAAYAAJ&redir_esc=y (accessed on 22 September 2021).
- Stolze, C.H. A history of the divergence theorem. Hist. Math. 1978, 5, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S. Computer algebra: A 32-year update. In Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, Boston, MA, USA, 26–29 June 2013; pp. 7–8. [Google Scholar]
- Char, B.W.; Fee, G.J.; Geddes, K.O.; Gonnet, G.H.; Monagan, M.B. A tutorial introduction to Maple. J. Symb. Comput. 1986, 2, 179–200. [Google Scholar] [CrossRef] [Green Version]
- Maxima, a Computer Algebra System. Available online: http://maxima.sourceforge.net/ (accessed on 22 September 2021).
- Stein, W. Sage: Creating a viable free open source alternative to Magma, Maple, Mathematica, and MATLAB. Lond. Math. Soc. Lect. Note Ser. 2013, 403, 230–238. [Google Scholar]
- WolframAlpha Computational Intelligence. Available online: https://www.wolframalpha.com/ (accessed on 22 September 2021).
- Symbolab. Available online: https://www.symbolab.com/ (accessed on 22 September 2021).
- Joyner, D.; Čertík, O.; Meurer, A.; Granger, B.E. Open source computer algebra systems: SymPy. ACM Commun. Comput. Algebra 2012, 45, 225–234. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, L.M.; Legua-Fernández, M.P.; Moraño-Fernández, J.A. Matemáticas con DERIVE; Universidad Politécnica de Valencia: Valencia, Spain, 2006. [Google Scholar]
- Rich, A.; Scheibe, P.; Abbasi, N.M. Rule-based integration: An extensive system of symbolic integration rules. J. Open Res. Softw. 2018, 3, 1073. [Google Scholar] [CrossRef]
- Rubi (Rule-Based Integrator). Available online: https://rulebasedintegration.org/ (accessed on 20 October 2021).
- SymJa Android Library. Available online: https://github.com/axkr/symja_android_library (accessed on 20 October 2021).
- Rubi in SymPy. Available online: https://github.com/sympy/sympy/tree/master/sympy/integrals/rubi (accessed on 20 October 2021).
- Moses, J. Algebraic simplification: A guide for the perplexed. Commun. ACM 1971, 14, 527–537. [Google Scholar] [CrossRef]
- Padilla-Domínguez, Y. Integrales de Línea con Derive. Un Estudio de Innovación Curricular en Primer Curso de Ingeniería Técnica de Telecomunicación. Ph.D. Thesis, University of Málaga, Málaga, Spain, 2003. [Google Scholar]
- Rodríguez-Cielos, P. Derivación e Integración de Funciones de Variable Compleja con DERIVE: Un Estudio de Innovación Curricular en Primer Curso de Ingeniería Técnica de Telecomunicación. Ph.D. Thesis, University of Málaga, Málaga, Spain, 2004. [Google Scholar]
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.D.; Sall, A.A.; et al. COVID-19: Towards controlling of a pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef]
- Barlovits, S.; Jablonski, S.; Lázaro, C.; Ludwig, M.; Recio, T. Teaching from a Distance–Math Lessons during COVID-19 in Germany and Spain. Educ. Sci. 2021, 11, 406. [Google Scholar] [CrossRef]
- Sánchez Ruiz, L.M.; Moll-López, S.; Moraño-Fernández, J.A.; Llobregat-Gómez, N. B-Learning and Technology: Enablers for University Education Resilience. An Experience Case under COVID-19 in Spain. Sustainability 2021, 13, 3532. [Google Scholar] [CrossRef]
- Heugl, H.; Beaudin, M.; Böhm, J. Right or Wrong? Unexpected results when using CAS. DERIVE Newsl. 2019, 115, 31–44. [Google Scholar]
- Aguilera-Venegas, G.; Galán-García, J.L.; Galán-García, M.Á.; Lobillo-Mora, G.; Martínez-del Castillo, J.; Merino-Córdoba, S.; Padilla-Domínguez, Y.; Rodríguez-Cielos, P.; Rodríguez-Cielos, R. Parametrization of curves and line integrals with a CAS. Int. J. Technol. Math. Educ. 2017, 24, 179–190. [Google Scholar]
- Aguilera-Venegas, G.; Galán-García, J.L.; Galán-García, M.Á.; Rodríguez-Cielos, P. Teaching semantic tableaux method for propositional classical logic with a CAS. Int. J. Technol. Math. Educ. 2015, 22, 85–92. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galán-García, J.L.; Rodríguez-Cielos, P.; Padilla-Domínguez, Y.; Galán-García, M.Á.; Atencia, I.; Rodríguez-Padilla, P.; Aguilera-Venegas, G. SMIS: A Stepwise Multiple Integration Solver Using a CAS. Mathematics 2021, 9, 2866. https://doi.org/10.3390/math9222866
Galán-García JL, Rodríguez-Cielos P, Padilla-Domínguez Y, Galán-García MÁ, Atencia I, Rodríguez-Padilla P, Aguilera-Venegas G. SMIS: A Stepwise Multiple Integration Solver Using a CAS. Mathematics. 2021; 9(22):2866. https://doi.org/10.3390/math9222866
Chicago/Turabian StyleGalán-García, José Luis, Pedro Rodríguez-Cielos, Yolanda Padilla-Domínguez, María Ángeles Galán-García, Iván Atencia, Pablo Rodríguez-Padilla, and Gabriel Aguilera-Venegas. 2021. "SMIS: A Stepwise Multiple Integration Solver Using a CAS" Mathematics 9, no. 22: 2866. https://doi.org/10.3390/math9222866
APA StyleGalán-García, J. L., Rodríguez-Cielos, P., Padilla-Domínguez, Y., Galán-García, M. Á., Atencia, I., Rodríguez-Padilla, P., & Aguilera-Venegas, G. (2021). SMIS: A Stepwise Multiple Integration Solver Using a CAS. Mathematics, 9(22), 2866. https://doi.org/10.3390/math9222866