GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles
<p>Acquisition data system.</p> "> Figure 2
<p>Test routes: (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 3
<p>Sensor data and reference, (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 4
<p>Distance’s estimation from a point to the line.</p> "> Figure 5
<p>Data correction, (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 6
<p>Fuzzy system design, (<b>a</b>) Fuzzy system 1 (training): Latitude; (<b>b</b>) Fuzzy system 2 (training): Longitude; (<b>c</b>) Testing both fuzzy systems.</p> "> Figure 7
<p>Fuzzy systems testing, (<b>a</b>) Fuzzy system 1 (testing): Latitude; (<b>b</b>) Fuzzy system 2 (testing): Longitude.</p> "> Figure 8
<p>Vector diagram of the car model.</p> "> Figure 9
<p>Sensor data vs. UKF response. (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 10
<p>Reference (green) vs. FPC response (blue) vs. UKF (magenta). (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 11
<p>Error: reference vs. fuzzy systems response vs. UKF. (<b>a</b>) route 1, (<b>b</b>) route 2, (<b>c</b>) route 3, (<b>d</b>) route 4.</p> "> Figure 12
<p>Route 1: data training, Brazil dataset.</p> "> Figure 13
<p>Route 2: data testing, Brazil dataset.</p> "> Figure 14
<p>Route 2: Fuzzy systems output.</p> "> Figure 15
<p>Error: reference vs. sensor (green) and reference vs. fuzzy systems response (red).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Data Acquisition System
2.2. Approximation Data
2.3. Fuzzy System Design
2.4. Kinematic Model of Car and Tuning of UKF
3. Results
3.1. Analysis of Results with Our Own Dataset
3.2. Analysis of Results with Public Dataset
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fatima, B.; Amine, C.M.; Bekr, A. A Neuro-Fuzzy Inference Model for Breast Cancer Recognition. Int. J. Comput. Sci. Inf. Technol. 2012, 4, 163–173. [Google Scholar] [CrossRef]
- Tehrani, M.; Nariman-Zadeh, N.; Masoumnezhad, M. Adaptive Fuzzy Hybrid Unscented/H-Infinity Filter for State Estimation of Nonlinear Dynamics Problems. Trans. Inst. Meas. Control 2019, 41, 1676–1685. [Google Scholar] [CrossRef]
- Woo, R.; Yang, E.-J.; Seo, D.-W. A Fuzzy-Innovation-Based Adaptive Kalman Filter for Enhanced Vehicle Positioning in Dense Urban Environments. Sensors 2019, 19, 1142. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Tang, Y.; Shao, X.; Xie, Y. Multisensor Fusion Using Fuzzy Inference System for a Visual-IMU-Wheel Odometry. IEEE Trans. Instrum. Meas. 2021, 70, 2505216. [Google Scholar] [CrossRef]
- Gharajeh, M.S.; Jond, H.B. Hybrid Global Positioning System-Adaptive Neuro-Fuzzy Inference System based autonomous mobile robot navigation. Robot. Auton. Syst. 2020, 134, 103669. [Google Scholar] [CrossRef]
- Kim, H.-U.; Bae, T.-S. Deep Learning-Based GNSS Network-Based Real-Time Kinematic Improvement for Autonomous Ground Vehicle Navigation. J. Sens. 2019, 2019, 3737265. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, Y.; Guo, X.; Chen, X.; Cao, H.; Tang, J.; Li, J.; Liu, J. Seamless GPS/Inertial Navigation System Based on Self-Learning Square-Root Cubature Kalman Filter. IEEE Trans. Ind. Electron. 2021, 68, 499–508. [Google Scholar] [CrossRef]
- Dabiri, S.; Marković, N.; Heaslip, K.; Reddy, C.K. A deep convolutional neural network based approach for vehicle classification using large-scale GPS trajectory data. Transp. Res. Part C Emerg. Technol. 2020, 116, 102644. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Park, K. Numerical Analysis of 2-D Positioned, Indoor, Fuzzy-Logic, Autonomous Navigation System Based on Chromaticity and Frequency-Component Analysis of LED Light. Sensors 2021, 21, 4345. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, S.; Liu, L.; Zhang, X.; Yin, Y. Trajectory Tracking Control in Real-Time of Dual-Motor-Driven Driverless Racing Car Based on Optimal Control Theory and Fuzzy Logic Method. Complexity 2021, 2021, 5549776. [Google Scholar] [CrossRef]
- Duan, Y.; Li, H.; Wu, S.; Zhang, K. INS Error Estimation Based on an ANFIS and Its Application in Complex and Covert Surroundings. ISPRS Int. J. Geo-Inf. 2021, 10, 388. [Google Scholar] [CrossRef]
- Farhad, M.A.; Mosavi, M.R.; Abedi, A.A. Fully Adaptive Smart Vector tracking of Weak GPS Signals. Arab. J. Sci. Eng. 2021, 46, 1383–1393. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, Y.; Shen, Y.; Ji, C. A new fuzzy strong tracking cubature Kalman filter for INS/GNSS. GPS Solut. 2021, 25, 120. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, X.; Zhang, L. Heading tracking of 6WID/4WIS unmanned ground vehicles with variable wheelbase based on model free adaptive control. Mech. Syst. Signal Process. 2021, 159, 107715. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, S.; Ding, Y.; Li, M. UWB Base Station Cluster Localization for Unmanned Ground Vehicle Guidance. Math. Probl. Eng. 2021, 2021, 6639574. [Google Scholar] [CrossRef]
- Liu, J.; Guo, G. Vehicle Localization During GPS Outages with Extended Kalman Filter and Deep Learning. IEEE Trans. Instrum. Meas. 2021, 70, 7503410. [Google Scholar] [CrossRef]
- Pmod GPS Reference Manual; Digilent Inc.: Pullman, WA, USA. Available online: https://reference.digilentinc.com/reference/pmod/pmodgps/reference-manual (accessed on 23 September 2021).
- Raspberry, Documentation, Hardware, Sense Hat. “Shaun the Sheep” and “Farmageddon” Elements Are © 2019 Aardman and Studiocanal SAS. Available online: https://www.raspberrypi.org/documentation/hardware/sense-hat/ (accessed on 23 September 2021).
- Sofwan, A.; Soetrisno, Y.A.A.; Ramadhani, N.P.; Rahmayani, A.; Handoyo, E.; Arfan, M. Vehicle Distance Measurement Tuning using Haversine and Micro-Segmentation. In Proceedings of the 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 28–29 August 2019; pp. 239–243. [Google Scholar] [CrossRef]
- Bakbak, D.; Uluça, V. Multicriteria decision-making method using the cosine vector similarity measure under intuitionistic trapezoidal fuzzy multi-numbers in architecture. In Proceedings of the 6th International Multidisciplinary Studies Congress (Multicongress’ 19), Gaziantep, Turkey, 1 August 2019. [Google Scholar]
- Uluçay, V.; Deli, I.; Şahin, M. Trapezoidal fuzzy multi-number and its application to multi-criteria decision-making problems. Neural Comput. Appl. 2018, 30, 1469–1478. [Google Scholar] [CrossRef]
- ANFIS: Adaptive Neuro Fuzzy Inference System. The Math-Works, Inc.: USA 1994–2018. Available online: https://www.mathworks.com/help/fuzzy/anfis.html (accessed on 23 September 2021).
- Kukolj, D. Design of adaptive Takagi–Sugeno–Kang fuzzy models. Appl. Soft Comput. 2002, 2, 89–103. [Google Scholar] [CrossRef]
- Bergsten, P.; Palm, R.; Driankov, D. Observers for Takagi-Sugeno fuzzy systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2002, 32, 114–121. [Google Scholar] [CrossRef]
- evalfis: Evaluate Fuzzy Inference System. The Math-Works, Inc.: USA 1994–2018. Available online: https://www.mathworks.com/help/fuzzy/evalfis.html (accessed on 23 September 2021).
- Rafatnia, S.; Nourmohammadi, H.; Keighobadi, J. Fuzzy-adaptive constrained data fusion algorithm for indirect centralized integrated SINS/GNSS navigation system. GPS Solut. 2019, 23, 62. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Uhlmann, K. New extension of the Kalman filter to nonlinear systems. In Proceedings of the Signal Processing, Sensor Fusion, and Target Recognition, Orlando, FL, USA, 21–25 April 1997; Volume 3068, pp. 182–193. [Google Scholar]
- Cruz, M.O.; Macedo, H.; Guimaraes, A. Grouping Similar Trajectories for Carpooling Purposes. In Proceedings of the 2015 Brazilian Conference on Intelligent Systems (BRACIS), Natal, Brazil, 4–7 November 2015; pp. 234–239. [Google Scholar]
- Dua, D.; Graff, C. UCI Machine Learning Repository. University of California, School of Information and Computer Science: Irvine, CA, USA; Available online: http://archive.ics.uci.edu/ml (accessed on 3 November 2021).
Route | Distance (m) | Time (s) | Velocity (m/s) |
---|---|---|---|
(a) 1 | 282.45736 | 1020 | 0.276918 |
(b) 2 | 282.9798 | 840 | 0.336880 |
(c) 3 | 151.8607 | 480 | 0.316376 |
(d) 4 | 104.3988 | 420 | 0.248568 |
Route | Training Data | Validation Data | Total |
---|---|---|---|
1 | 751 | 250 | 1001 |
2 | 645 | 215 | 860 |
3 | 356 | 118 | 474 |
4 | 412 | 102 | 514 |
Fuzzy System | MF Input Lat | MF Input Lon | MF Output | Fuzzy Rules | RMSE (Train) |
---|---|---|---|---|---|
Latitude | 5 gaussian type 2 | 5 gaussian type 2 | linear | 25 | |
Longitude | 3 gaussian type 2 | 3 gaussian type 2 | linear | 9 |
# | Q | R |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 |
Route | UKF: RMSE (m) | Fuzzy (FPC): RMSE (m) |
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
UKF | ||
Route | Mean (m) | ) |
1 | ||
2 | ||
3 | ||
4 | ||
FPC (Fuzzy system) | ||
Route | Mean (m) | ) |
1 | ||
2 | ||
3 | ||
4 |
RMSE Sensor vs. Ref (m) | RMSE: Fuzzy (FPC) vs. Ref (m) |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Caicedo, P.J.; Rostro-González, H.; Rodriguez-Licea, M.A.; Gutiérrez-Frías, Ó.O.; Herrera-Ramírez, C.A.; Méndez-Gurrola, I.I.; Cano-Lara, M.; Barranco-Gutiérrez, A.I. GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles. Mathematics 2021, 9, 2818. https://doi.org/10.3390/math9212818
Correa-Caicedo PJ, Rostro-González H, Rodriguez-Licea MA, Gutiérrez-Frías ÓO, Herrera-Ramírez CA, Méndez-Gurrola II, Cano-Lara M, Barranco-Gutiérrez AI. GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles. Mathematics. 2021; 9(21):2818. https://doi.org/10.3390/math9212818
Chicago/Turabian StyleCorrea-Caicedo, Pedro J., Horacio Rostro-González, Martin A. Rodriguez-Licea, Óscar Octavio Gutiérrez-Frías, Carlos Alonso Herrera-Ramírez, Iris I. Méndez-Gurrola, Miroslava Cano-Lara, and Alejandro I. Barranco-Gutiérrez. 2021. "GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles" Mathematics 9, no. 21: 2818. https://doi.org/10.3390/math9212818
APA StyleCorrea-Caicedo, P. J., Rostro-González, H., Rodriguez-Licea, M. A., Gutiérrez-Frías, Ó. O., Herrera-Ramírez, C. A., Méndez-Gurrola, I. I., Cano-Lara, M., & Barranco-Gutiérrez, A. I. (2021). GPS Data Correction Based on Fuzzy Logic for Tracking Land Vehicles. Mathematics, 9(21), 2818. https://doi.org/10.3390/math9212818