Properties of Entropy-Based Topological Measures of Fullerenes
<p>Illustration of two cubic graphs: (<b>a</b>) Cuneane; (<b>b</b>) cube.</p> "> Figure 2
<p>The 2-D graph of zig-zag nanotube <span class="html-italic">T<sub>Z</sub></span>[5,10].</p> "> Figure 3
<p>Cap <span class="html-italic">B</span>.</p> "> Figure 4
<p>The presentation of fullerene A<sub>10<span class="html-italic">n</span></sub> as a combining of two copies of <span class="html-italic">B</span> and the nanotube <span class="html-italic">T<sub>Z</sub></span>[5,<span class="html-italic">n −</span> 4].</p> "> Figure 5
<p>Three-dimensional graph of zig-zag polyhex nanotori.</p> "> Figure 6
<p>Two-dimensional lattice for <span class="html-italic">T</span>[<span class="html-italic">p,q</span>].</p> "> Figure 7
<p>The molecular graph of the fullerene C<sub>24<span class="html-italic">n</span>+12</sub>, for <span class="html-italic">n</span> = 3.</p> "> Figure 8
<p>The molecular graph of the fullerene C<sub>12<span class="html-italic">n</span>+2</sub>.</p> "> Figure 9
<p>Two vertices with the same total distance which are not <span class="html-italic">H</span>-equivalent.</p> "> Figure 10
<p>The vertices <span class="html-italic">u</span> and <span class="html-italic">v</span> are not <span class="html-italic">H</span>-equivalent but <span class="html-italic">D</span>(<span class="html-italic">u</span>) = <span class="html-italic">D</span>(<span class="html-italic">v</span>).</p> "> Figure 11
<p>A cubic co-distance graph of diameter 4 with non-zero <span class="html-italic">H</span>-entropy.</p> "> Figure 12
<p>The fullerene A<sub>12<span class="html-italic">n</span>+4</sub>.</p> "> Figure 13
<p>The orbits of the <span class="html-italic">i</span>th layer (2 ≤ <span class="html-italic">i</span> ≤ <span class="html-italic">n</span>)of the fullerene graph A<sub>12<span class="html-italic">n</span>+4</sub>.</p> "> Figure 14
<p>The subgraph <span class="html-italic">B</span><sub>1</sub>.</p> "> Figure 15
<p>The subgraph <span class="html-italic">B</span><sub>2</sub>.</p> "> Figure 16
<p>The 3-dimensional structure of fullerene graph A<sub>12<span class="html-italic">n</span>+4</sub>.</p> "> Figure 17
<p>The Hosoya-partitions of <span class="html-italic">Tz</span>[6,<span class="html-italic">n</span> − 10].</p> ">
Abstract
:1. Introduction
2. Definitions and Preliminaries
3. Fullerene Graphs
4. Entropy Measure
4.1. Eccentric Entropy Measure
4.2. Ecc-Entropy of Fullerene Graphs
4.3. Eigen—Entropy of Fullerenes
4.4. The Hosoya Entropy of Fullerenes
4.5. Radial Entropy and Orbit Measures
5. Correlation Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albert, R.; Jeong, H.; Barabási, A.L. Diameter of the world wide web. Nature 1999, 401, 130–131. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–98. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Jeong, H.; Barabási, A.-L. Error and attack tolerance in complex networks. Nature 2000, 406, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.-I.; Kahng, B.; Kim, D. Universal behavior of load distribution in Scale-Free Networks. Phys. Rev. Lett. 2001, 87, 278701. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Vázquez, A.; Vespignani, A. Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett. 2001, 87, 258701. [Google Scholar] [CrossRef] [Green Version]
- Maslov, S.; Sneppen, K. Specificity and stability in topology of protein networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Berg, J.; Lassig, M. Correlated random networks. Phys. Rev. Lett. 2002, 89, 228701. [Google Scholar] [CrossRef] [Green Version]
- Solé, R.V.; Alverde, S.V. Information theory of complex networks: On evolution and architectural constraintsLect. Notes Phys. 2004, 650, 189–207. [Google Scholar]
- Wang, B.; Tang, H.W.; Guo, C.H.; Xiu, Z.L. Entropy Optimization of Scale-Free Networks Robustness to Random Failures. Physica A 2005, 363, 591. [Google Scholar] [CrossRef] [Green Version]
- Batagelj, V.; Mrvar, A. A program for large network analysis. Connections 1998, 21, 47–57. [Google Scholar]
- Holme, P.; Huss, M. Role-similarity based functional prediction in networked systems: Application to the yeast proteome. J. Roy. Soc. Interface 2005, 2, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Assortative mixing in networks. Phys. Rev. Lett. 2002, 89, 208701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinhofer, G.; Klin, M. Algebraic Combinatorics in Mathematical Chemistry; Methods and algorithms. III, Graph Invariants and Stabilization Methods (Preliminary Version) Technical Report; TUM-M9902; Technische Universitat Munchen: München, Germany, 1999. [Google Scholar]
- Costa, L.D.F.; Rodrigues, F.A. Seeking for Simplicity in Complex Networks. arXiv 2009, arXiv:Physics /0702102. [Google Scholar] [CrossRef] [Green Version]
- Fowler, P.W.; Manolopoulos, D.E.; Redmond, D.B.; Ryan, R.P. Possible symmetries of fullerene stuctures. Chem. Phys. Lett. 1993, 202, 371–378. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Kroto, H.W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Jendrol, S.; Owens, P.J. Longest cycles in generalized Buckminsterfullerene graphs. J. Math. Chem. 1995, 18, 83–90. [Google Scholar] [CrossRef]
- Knor, M.; Škrekovski, R.; Tepeh, A. Balaban Index of Cubic Graphs. MATCH Commun. Math. Comput. Chem. 2015, 73, 519–528. [Google Scholar]
- Andova, V.; Došlić, T.; Krnc, M.; Lužar, B.; Škrekovski, R. On the diameter and some related invariants of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2012, 68, 109–130. [Google Scholar]
- Andova, V.; Kardoš, F.; Škrekovski, R. Sandwiching saturation number of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2015, 73, 501–518. [Google Scholar]
- Andova, V.; Škrekovski, R. Diameter of full icosahedral-symmetry fullerene graphs. MATCH Commun. Math. Comput. Chem. 2013, 70, 205–220. [Google Scholar]
- Ashrafi, A.R.; Ghorbani, M. Eccentric Connectivity Index of Fullerenes. In Novel Molecular Structure Descriptors—Theory and Applications II; Gutman, I., Furtula, B., Eds.; University of Kragujevac: Kragujevac, Serbia, 2010; pp. 183–192. [Google Scholar]
- Sabirov, D.S.; Ōsawa, E. Information entropy of fullerenes. J. Chem. Inf. Model. 2015, 55, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, A.R.; Ghorbani, M.; Jalali, M. Eccentric connectivity polynomial of an infinite family of fullerenes. Optaelec. Adv. Mat. Rapid Comm. 2009, 3, 823–826. [Google Scholar]
- Balaban, A.T. Topological indices based on topological distances in molecular graphs. Pure Appl. Chem. 1983, 55, 199–206. [Google Scholar] [CrossRef]
- Babić, D.; Klein, D.J.; Sah, C.H. Symmetry of fullerenes. Chem. Phys. Lett. 1993, 211, 235–241. [Google Scholar] [CrossRef]
- Boltalina, O.V.; Galeva, N.A. Direct fluorination of fullerenes, Russ. Chem. Rev. 2000, 69, 609–621. [Google Scholar]
- Brinkmann, G.; Dress, A.W.M. A constructive enumeration of fullerenes. J. Algorithams 1997, 23, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, G.; Fowler, P.W.; Manolopoulos, D.E.; Palser, A.H.R. A census of nanotube caps. Chem. Phys. Lett. 1999, 315, 335–347. [Google Scholar] [CrossRef]
- Brinkmann, G.; Graver, J.E.; Justus, C. Numbers of faces in disordered patches. J. Math. Chem. 2009, 45, 263–278. [Google Scholar] [CrossRef]
- Brinkmann, G.; Greenberg, S.; Greenhill, C.; McKay, B.D.; Thomas, R.; Wollan, P. Generation of simple quadrangulations of the sphere. Discrete Math. 2005, 305, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Došlić, T. On lower bounds of number of perfect matchings in fullerene graphs. J. Math. Chem. 1998, 24, 359–364. [Google Scholar] [CrossRef]
- Došlić, T. On some structural properties of fullerene graphs. J. Math. Chem. 2002, 31, 187–195. [Google Scholar] [CrossRef]
- Došlić, T. Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages. J. Math. Chem. 2003, 33, 103–112. [Google Scholar] [CrossRef]
- Došlić, T. Bipartivity of fullerene graphs and fullerene stability. Chem. Phys. Lett. 2005, 412, 336–340. [Google Scholar] [CrossRef]
- Došlić, T. Saturation number of fullerene graphs. J. Math. Chem. 2008, 43, 647–657. [Google Scholar] [CrossRef]
- Došlić, T. Leapfrog fullerenes have many perfect matchings. J. Math. Chem. 2008, 44, 1–4. [Google Scholar] [CrossRef]
- Došlić, T.; Réti, T. Spectral properties of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2011, 66, 733–742. [Google Scholar]
- Dvořak, Z.; Lidicky, B.; Škrekovski, R. Bipartizing fullerenes. Eur. J. Combin. 2012, 33, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Erman, R.; Kardoš, F.; Miškuf, J. Long cycles in fullerene graphs. J. Math. Chem. 2009, 46, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Fajtlowicz, S.; Larson, C.E. Graph-Theoretic Independence as a Predictor of Fullerene Stability. Chem. Phys. Lett. 2003, 377, 485–490. [Google Scholar] [CrossRef]
- Fowler, P.W.; Daugherty, S.; Myrvold, W. Independence number and fullerene stability. Chem. Phys. Lett. 2007, 448, 75–82. [Google Scholar] [CrossRef]
- Ghorbani, M.; Songhori, M. Polyhedral graphs via their automorphism groups. Appl. Math. Comput. 2014, 321, 1–10. [Google Scholar] [CrossRef]
- Fowler, P.W.; Redmond, D.B. Symmetry aspects of bonding in carbon clusters: The leapfrog transformation. Theor. Chim. Acta 1992, 83, 367–375. [Google Scholar] [CrossRef]
- Fowler, P.W.; Rogers, K.M. Spiral codes and Goldberg representations of icosahedral fullerenes and octahedral analogues. J. Chem. Inf. Comput. Sci. 2001, 41, 108–111. [Google Scholar] [CrossRef]
- Fowler, P.W.; Rogers, K.M.; Fajtlowicz, S.; Hansen, P.; Caporossi, G. Facts and conjectures about fullerene graphs: Leapfrog, cylindrical and Ramanujan fullerenes. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue, R., Wassermann, A., Eds.; Springer: Berlin, Germany, 2000. [Google Scholar]
- Ghorbani, M.; Heidari-Rad, S. Study of fullerenes by their algebraic properties. Iranian J. Math. Chem. 2012, 3, 9–24. [Google Scholar]
- Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes; Oxford Univ. Press: Oxford, UK, 1995. [Google Scholar]
- Parker, M.C.; Jeynes, C. Fullerene stability by geometrical thermodynamics. Chem. Select 2020, 5, 5–14. [Google Scholar] [CrossRef]
- Ghorbani, M.; Iranmanesh, M.A. Computing eccentric connectivity polynomial of fullerenes. Fuller. Nanotubes Carbon Nanostruct. 2013, 21, 134–139. [Google Scholar] [CrossRef]
- Ghorbani, M.; Bani-Asadi, E. Remarks on characteristic coefficients of fullerene graphs. Appl. Math. Comput. 2014, 230, 428–435. [Google Scholar] [CrossRef]
- Goedgebeur, J.; McKay, B.D. Recursive generation of IPR fullerenes. J. Math. Chem. 2015, 53, 1702–1724. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M. A class of multi-symmetric polyhedral. Tohoku Math. J. 1939, 43, 104–108. [Google Scholar]
- Goodey, P.R. A class of hamiltonian polytopes. J. Graph Theory 1977, 1, 181–185. [Google Scholar] [CrossRef]
- Graver, J.E. The independence number of fullerenes and benzenoids. Eur. J. Combin. 2006, 27, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Grunbaum, B.; Motzkin, T.S. The number of hexagons and the simplicity of geodesics on certain polyhedral. Can. J. Math. 1963, 15, 744–751. [Google Scholar] [CrossRef]
- Hasheminezhad, M.; Fleischner, H.; Mc Kay, B.D. A universal set of growth operations for fullerenes. Chem. Phys. Lett. 2008, 464, 118–121. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; Woodall, D.R.; Fowler, P.W. Electronic stability of fullerenes: Eigenvalue theorems for leapfrog carbon clusters. J. Chem. Soc. Faraday Trans. 1992, 88, 2427–2435. [Google Scholar] [CrossRef]
- Hosoya, H.; Yamaguchi, T. Sextet polynomial, A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Lett. 1975, 16, 4659–4662. [Google Scholar] [CrossRef]
- Keshri, S.; Tembe, B.L. Thermodynamics of association of water soluble fullerene derivatives [C60(OH)n, n = 0, 2, 4, 8 and 12] in aqueous media. J. Chem. Sci. 2017, 129, 1327–1340. [Google Scholar] [CrossRef]
- Choudhury, N.; Pettitt, B.M. Entropy-enthalpy contributions to the potential of mean force of nanoscopic hydrophobic solutes. J. Phys. Chem. 2006, B 110, 8459. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Liang, H.; Zhang, J.; Bai, F. A note on Fowler-Manolopoulos predictor of fullerene stability. MATCH Commun. Math. Comput. Chem. 2010, 64, 419–424. [Google Scholar]
- Manolopoulos, D.E.; Fowler, P.W. A fullerene without a spiral. Chem. Phys. Lett. 1993, 204, 1–7. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; Fowler, P.W.; Taylor, R.; Kroto, H.W.; Walton, D.R.M. Faraday communications. An end to the search for the ground state of C84? J. Chem. Soc. Faraday Trans. R. Soc. Chem. 1992, 88, 3117–3118. [Google Scholar] [CrossRef]
- Manolopoulos, D.E.; May, J.C. Theoretical studies of the fullerenes: C34 to C70. Chem. Phys. Lett. 1991, 181, 105–111. [Google Scholar] [CrossRef]
- Balasubramanian, K. Enumeration of stereo, position and chiral isomers of polysubstituted giant fullerenes: Applications to C180 and C240. Fuller. Nanotubes Carbon Nanostruct. 2020, 1744573. [Google Scholar] [CrossRef]
- Schwerdtfeger, P.; Wirz, L.N.; Avery, J. The topology of fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 96–145. [Google Scholar] [CrossRef]
- Fowler, P.W. Chemical Graph Theory of Fullerenes. In From Chemical Topology to Three-Dimensional Geometry; Springer: Berlin, Germany, 2020; pp. 237–262. [Google Scholar]
- Stevanović, D.; Caporossi, G. On the (1, 2)-spectral spread of fullerenes. In Graphs and Discovery; Fajtlowicz, S., Fowler, P.W., Hansen, P., Janowitz, M.F., Roberts, F.S., Eds.; American Mathematical Society: Providence, RI, USA, 2005; pp. 365–370. [Google Scholar]
- Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503. [Google Scholar] [CrossRef]
- Ye, D.; Qi, Z.; Zhang, H. On k-resonant fullerene graphs. SIAM J. Discrete Math. 2009, 23, 1023–1044. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Zhang, H. A note on the cyclical edge-connectivity of fullerene graphs. J. Math. Chem. 2008, 43, 134–140. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, D. An upper bound for the Clar number of fullerene graphs. J. Math. Chem. 2007, 41, 123–133. [Google Scholar] [CrossRef]
- Anand, K.; Bianconi, G. Entropy measures for networks: Toward an information theory of complex topologies. Phys. Rev. E 2009, 80, 045102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basak, S.C.; Balaban, A.T.; Grunwald, G.D.; Gute, B.D. Topological indices: Their nature and mutual relatedness. J. Chem. Inf. Comput. Sci. 2000, 40, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Bonchev, D. Information Theoretic Indices for Characterization of Chemical Structures; Research Studies Press: Chichester, West Sussex, UK, 1983. [Google Scholar]
- Bonchev, D. Kolmogorov’s information, Shannon’s entropy, and topological complexity of molecules. Bulg. Chem. Commun. 1995, 28, 567–582. [Google Scholar]
- Bonchev, D.; Rouvray, D.H. (Eds.) Complexity in Chemistry, Biology, and Ecology, Mathematical and Computational Chemistry; Springer: New York, NY, USA, 2005. [Google Scholar]
- Bonchev, D.; Trinajstić, N. Information theory, distance matrix and molecular branching. J. Chem. Phys. 1977, 67, 4517–4533. [Google Scholar] [CrossRef]
- Butts, C.T. The complexity of social networks: Theoretical and empirical findings. Soc. Netw. 2001, 23, 31–71. [Google Scholar] [CrossRef]
- Constantine, G. Graph complexity and the Laplacian matrix in blocked experiments. Linear Multilinear Algebra 1990, 28, 49–56. [Google Scholar] [CrossRef]
- Dehmer, M. Strukturelle Analyse web-basierter Dokumente. In Multimedia und Telekooperation; Deutscher Universitäts-Verlag: Wiesbaden, Germany, 2006. [Google Scholar]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Dehmer, M.; Barbarini, N.; Varmuza, K.; Graber, A. Novel topological descriptors for analyzing biological networks. BMC Struct. Biol. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Dehmer, M.; Emmert-Streib, F. Analysis of Complex Networks: From Biology to Linguistics; Wiley VCH: Weinheim, Germany, 2009. [Google Scholar]
- Dehmer, M.; Mehler, A. A new method of measuring similarity for a special class of directed graphs. Tatra Mt. Math. Publ. 2007, 36, 39–59. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inform. Sci. 2011, 1, 57–78. [Google Scholar] [CrossRef]
- Dehmer, M.; Mowshowitz, A. Generalized graph entropies. Complexity 2011, 17, 45–50. [Google Scholar] [CrossRef]
- Dehmer, M.; Mowshowitz, A.; Emmert-Streib, F. Connections between classical and parametric network entropies. PLoS ONE 2011, 6, e15733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehmer, M.; Sivakumar, L.; Varmuza, K. Uniquely discriminating molecular structures using novel eigenvalue-based descriptors. MATCH Commun. Math. Comput. Chem. 2012, 67, 147–172. [Google Scholar]
- Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. J. Chem. Inf. Model. 2009, 49, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Emmert-Streib, F.; Dehmer, M. Information theoretic measures of UHG graphs with low computational complexity. Appl. Math. Comput. 2007, 190, 1783–1794. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Three approaches to the definition of information (in Russian). Probl. Peredaci Inform. 1965, 1, 3–11. [Google Scholar]
- Li, M.; Vitànyi, P. An Introduction to Kolmogorov Complexity and Its Applications; Springer: New York, NY, USA, 1997. [Google Scholar]
- Mehler, A.; Weiß, P.; Lucking, A. A network model of interpersonal alignment. Entrop 2010, 12, 1440–1483. [Google Scholar] [CrossRef] [Green Version]
- Mowshowitz, A. Entropy and the complexity of the graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar] [CrossRef]
- Rashevsky, N. Life, information theory, and topology. Bull. Math. Biophys. 1955, 17, 229–235. [Google Scholar] [CrossRef]
- Sole, R.V.; Montoya, J.M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci. 2001, 268, 2039–2045. [Google Scholar] [CrossRef]
- Wilhelm, T.; Hollunder, J. Information theoretic description of networks. Physica A 2007, 388, 385–396. [Google Scholar] [CrossRef]
- Thurner, S. Statistical Mechanics of Complex Networks. In Analysis of Complex Networks: From Biology to Linguistics; Wiley-VCH: Weinheim, Germany, 2009; pp. 23–45. [Google Scholar]
- Ulanowicz, R.E. Quantitative methods for ecological network analysis. Comput. Biol. Chem. 2004, 28, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M. Connective eccentric index of fullerenes. J. Math. Nanosci. 2001, 1, 43–50. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Hosoya, H. On some counting polynomials. Discrete Appl. Math. 1988, 19, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Mowshowitz, A. Entropy and the complexity of graphs II: The information content of digraphs and infinite graphs. Bull. Math. Biophys. 1968, 30, 225–240. [Google Scholar] [CrossRef]
- Mowshowitz, A. Entropy and the complexity of graphs III: Graphs with prescribed information content. Bull. Math. Biophys. 1968, 30, 387–414. [Google Scholar] [CrossRef]
- Mowshowitz, A. Entropy and the complexity of graphs IV: Entropy measures and graphical structure. Bull. Math. Biophys. 1968, 30, 533–546. [Google Scholar] [CrossRef]
- Mowshowitz, A.; Dehmer, M. The Hosoya entropy of a graph. Entropy 2015, 17, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Djafari, S.; Koorepazan-Moftakhar, F.; Ashrafi, A.R. Eccentric sequences of two infinite classes of fullerenes. J. Comput. Theor. Nanosci. 2013, 10, 2636–2638. [Google Scholar] [CrossRef]
- Došlić, T.; Ghorbani, M.; Hosseinzadeh, M. Eccentric connectivity polynomial of some graph operations. Utilitas Math. 2011, 84, 297–309. [Google Scholar]
- Sharafdini, R.; Safazadeh, M. On eccentric adjacency index of several infinite classes of fullerenes. Bri. J. Math. Comput. Sci. 2016, 12, 1–11. [Google Scholar] [CrossRef]
- Biggs, N. Algebraic Graph Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Gutman, I. The energy of a graph. Ber. Math.-Stat. Sekt. Forsch. Graz. 1978, 103, 1–22. [Google Scholar]
- Gutman, I. The Energy of a Graph: Old and New Results. In Algebraic Combinatorics and Applications; Springer-Verlag: Berlin, Germany, 2001. [Google Scholar]
- Gutman, I.; Furtula, B. Novel Molecular Structure Descriptors—Theory and Applications II; University of Kragujevac: Kragujevac, Serbia, 2010; pp. 183–192. [Google Scholar]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer-Verlag: Berlin, Geramny, 1986. [Google Scholar]
- Fowler, P.W. Fullerene graphs with more negative than positive eigenvalues: The exceptions that prove the rule of electron deficiency? J. Chem. Soc. Faraday Trans. 1997, 93, 1–3. [Google Scholar] [CrossRef]
- Fowler, P.W.; Hansen, P.; Stevanović, D. A note on the smallest eigenvalue of fullerenes. MATCH Commun. Math. Comput. Chem. 2003, 48, 37–48. [Google Scholar]
- Dehmer, M.; Emmert-Streib, F.; Shi, Y. Interrelations of graph distance measures based on topological indices. PLoS ONE 2014, 9, e94985. [Google Scholar] [CrossRef] [Green Version]
- Dehmer, M.; Emmert-Streib, F.; Shi, Y. Graph distance measures based on topological indices revisited. Appl. Math. Comput. 2015, 266, 623–633. [Google Scholar] [CrossRef]
- Ghorbani, M.; Dehmer, M.; Zangi, S. Graph operations based on using distance-based graph entropies. Appl. Math. Comput. 2018, 333, 547–555. [Google Scholar] [CrossRef]
- Harary, F. Graph Theory; Addison-Wesley: Boston, MA, USA, 1968. [Google Scholar]
- Mowshowitz, A.; Dehmer, M. A symmtry index for graphs. Symmetry Cult. Sci. 2010, 21, 321–327. [Google Scholar]
- Ghorbani, M.; Dehmer, M.; Mowshowitz, A.; Tao, J.; Emmert-Streib, F. The Hosoya entropy of graphs revisited. Symmetry 2019, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Mowshowitz, A.; Emmert-Streib, F. Hosoya entropy of fullerene graphs. Appl. Math. Comput. 2019, 352, 88–98. [Google Scholar] [CrossRef]
Vertices | σ (x) | No |
---|---|---|
Vertices of type 1 | n + 5 | 12 |
Vertices of type 2 | n + i (6 ≤ i ≤ n + 5) | 24 |
Fullerenes | Ifσ(F) |
---|---|
C60 | log 60 |
C84 | log 84 |
C108 | |
C132 | |
C156 |
Vertices | σ(x) | No. |
---|---|---|
Vertices of type 1 | 2n | 8 |
Vertices of type 2 | n | 6 |
Other Vertices | n + i (1 ≤ i ≤ n) | 12 |
F | Ifσ(F) |
---|---|
C26 | |
C38 | |
C50 | |
C62 | |
C74 | |
C86 | |
C98 | |
C110 |
Partitions | Elements | ecc |
---|---|---|
V1 | 1 | 2n + 1 |
V2n + 6 | 12n − 1, 12n, 12n + 1, 12n + 2, 12n + 3, 12n + 4 | |
V2 | 2, 5, 8 | 2n |
V2n + 5 | 12n − 13, 12n − 11, 12n – 9, 12n − 7, 12n − 5, 12n − 3 | |
V3 | 3, 4, 6, 7, 9, 10 | 2n − 1 |
V2n + 4 | 12n − 12, 12n − 10, 12n – 8, 12n − 6, 12n − 4, 12n − 2 | |
V4 | 12, 14, 16, 18, 20, 22 | 2n − 2 |
V2n + 3 | 12n − 25, 12n − 23, 12n − 21, 12n − 19, 12n − 17, 12n − 15 | |
V5 | 11, 15, 19 | 2n − 3 |
V6 | 13, 17, 21 | |
V2n + 2 | 12n − 24, 12n − 22, 12n − 20, 12n − 18, 12n − 16, 12n − 14 | |
V7 | 23, 27, 31 | 2n − 4 |
V8 | 25, 29, 33 | |
V2n + 1 | 12n − 36, 12n − 34, 12n − 32, 12n − 30, 12n − 28, 12n − 26 | |
V9 | 24, 26, 28, 30, 32, 34 | 2n − 5 |
V2n | 12n − 37, 12n − 35, 12n − 33, 12n − 31, 12n − 29, 12n − 27 | |
V10 | 36, 38, 40, 42, 44, 46 | 2n − 6 |
V2n−1 | 12n − 49, 12n − 47, 12n − 45, 12n − 43, 12n − 41, 12n − 39 | |
V11 | 35, 39, 43 | 2n − 7 |
V12 | 37, 41, 45 | |
V2n − 2 | 12n − 48, 12n − 46, 12n − 44, 12n − 42, 12n − 40, 12n − 38 | |
V13 | 47, 51, 55 | 2n − 8 |
V14 | 49, 53, 57 | |
V2n − 3 | 12n − 60, 12n − 58, 12n − 56, 12n − 54, 12n − 52, 12n − 50 | |
V15 | 48, 50, 52, 54, 56, 58 | 2n − 9 |
V2n − 4 | 12n − 61, 12n − 59, 12n − 57, 12n − 55, 12n − 55, 12n − 53, 12n − 51 |
n | E | D | Ifσ | Ia | H | Hecc |
---|---|---|---|---|---|---|
11 | 212.87 | 7.08 | 7.06 | 5.02 | 4.72 | 3.57 |
12 | 231.73 | 7.2 | 7.18 | 5.14 | 4.82 | 3.68 |
13 | 250.59 | 7.32 | 7.29 | 5.25 | 4.92 | 3.79 |
14 | 269.46 | 7.42 | 7.39 | 5.36 | 5.01 | 3.89 |
15 | 288.32 | 7.52 | 7.49 | 5.45 | 5.09 | 3.98 |
16 | 307.19 | 7.61 | 7.58 | 5.54 | 5.18 | 4.07 |
17 | 326.05 | 7.7 | 7.67 | 5.63 | 5.25 | 4.15 |
18 | 344.91 | 7.78 | 7.75 | 5.71 | 5.33 | 4.23 |
19 | 363.78 | 7.85 | 7.85 | 5.78 | 5.4 | 4.31 |
20 | 382.64 | 7.93 | 7.9 | 5.86 | 5.46 | 4.38 |
E,D | E, Ifσ | E,Ia | E,H | E,Hecc | |
---|---|---|---|---|---|
Cor | 0.9964006 | 0.9972326 | 0.99673 | 0.9975728 | 0.9974525 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Dehmer, M.; Emmert-Streib, F. Properties of Entropy-Based Topological Measures of Fullerenes. Mathematics 2020, 8, 740. https://doi.org/10.3390/math8050740
Ghorbani M, Dehmer M, Emmert-Streib F. Properties of Entropy-Based Topological Measures of Fullerenes. Mathematics. 2020; 8(5):740. https://doi.org/10.3390/math8050740
Chicago/Turabian StyleGhorbani, Modjtaba, Matthias Dehmer, and Frank Emmert-Streib. 2020. "Properties of Entropy-Based Topological Measures of Fullerenes" Mathematics 8, no. 5: 740. https://doi.org/10.3390/math8050740
APA StyleGhorbani, M., Dehmer, M., & Emmert-Streib, F. (2020). Properties of Entropy-Based Topological Measures of Fullerenes. Mathematics, 8(5), 740. https://doi.org/10.3390/math8050740