A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem
<p>(<b>a</b>) Generic binarization diagram; and (<b>b</b>) specific binarization diagram.</p> "> Figure 2
<p>A general flow chart of the binary db-scan algorithm.</p> "> Figure 3
<p>Gap comparison of <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>b</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>s</mi> <mi>c</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math>, <span class="html-italic">B</span>-<math display="inline"><semantics> <mrow> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> </mrow> </semantics></math> algorithms for the cb.5.500 MKP dataset.</p> "> Figure 4
<p>Gap comparison between the <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>b</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>s</mi> <mi>c</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math> and <span class="html-italic">k</span>-<math display="inline"><semantics> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> algorithms for the <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>b</mi> <mo>.</mo> <mn>30</mn> <mo>.</mo> <mn>500</mn> </mrow> </semantics></math> dataset.</p> ">
Abstract
:1. Introduction
- A machine learning technique is used with the objective of obtaining binary versions of metaheuristics defined and used in continuous optimization to tackle COPs in a simple and effective way. To perform the binarization process, this algorithm uses db-scan, which corresponds to an unsupervised learning algorithm. The selected metaheuristics are particle swarm optimization (PSO) and cuckoo search (CS). Their selection is based on the fact that they have been frequently used in solving continuous optimization problems and their parameterization is relatively simple, which allows us to focus on the binarization process.
- The multidimensional knapsack problem (MKP) was used to check the performance of the obtained binary versions. MKP was chosen because it is a problem extensively studied in the literature therefore we have specific instances making it easy to evaluate our hybrid algorithm. The details and applications of MKP are expanded on in Section 2.
- Two random operators are designed in order to define a baseline and quantify the contribution of the hybrid algorithm that uses db-scan in the binarization process. Additionally, to make the comparison more robust, the performance of our hybrid algorithm was evaluated with methods that use k-means and transfer functions (TF) as binarization mechanisms.
2. Multidimensional Knapsack Problem
3. Related Work
3.1. Related Binarization Work
3.2. Hybridizing Metaheuristics with Machine Learning
4. Binary db-Scan Algorithm
4.1. Initialization Operator
Algorithm 1 Initialization algorithm. |
|
4.2. Binary db-Scan Operator
- Find the points in the neighborhood of every point and identify the core points with more than neighbors.
- Find the connected components of core points on the neighbor graph, ignoring all noncore points.
- Assign each noncore point to a nearby cluster if the cluster is an neighbor; otherwise, assign it to noise.
Algorithm 2 Binary db-scan operator. |
|
4.3. Transition operator
Algorithm 3 Transition algorithm. |
4.4. Random Perturbation Operator
Algorithm 4 Perturbation algorithm. |
|
4.5. Repair Operator
Algorithm 5 Repair algorithm. |
|
5. Results and Discussion
5.1. Parameter Settings
- The percentage deviation of the best value obtained in the ten executions compared with the best known value (see Equation (9)):
- The percentage deviation of the worst value obtained in the ten executions compared with the best known value (see Equation (10)):
- The percentage deviation of the average value obtained in the ten executions compared with the best known value (see Equation (11)):
- The convergence time for the best value in each experiment normalized (see Equation (12)):
5.2. The Contribution of the db-Scan Binary Operator
5.3. K-means Algorithm Comparison
5.4. Transfer Function Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Madi, N.; Faris, H.; Mirjalili, S. Binary multi-verse optimization algorithm for global optimization and discrete problems. Int. J. Mach. Learn. Cybern. 2019, 10, 3445–3465. [Google Scholar] [CrossRef]
- García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Pe na, A.; Altimiras, F.; Astorga, G. A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019, 3238574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Chae, J. Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path. Mathematics 2019, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, S.; Babalik, A.; Kiran, M.S. An artificial algae algorithm for solving binary optimization problems. Int. J. Mach. Learn. Cybern. 2018, 9, 1233–1247. [Google Scholar] [CrossRef]
- García, J.; Altimiras, F.; Pe na, A.; Astorga, G.; Peredo, O. A binary cuckoo search big data algorithm applied to large-scale crew scheduling problems. Complexity 2018, 2018, 8395193. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Zhou, Y. An elite opposition-flower pollination algorithm for a 0-1 knapsack problem. Int. J. Bio-Inspired Comput. 2018, 11, 46–53. [Google Scholar] [CrossRef]
- García, J.; Lalla-Ruiz, E.; Voß, S.; Droguett, E.L. Enhancing a machine learning binarization framework by perturbation operators: Analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern. 2020, 1–20. [Google Scholar] [CrossRef]
- Saeheaw, T.; Charoenchai, N. A comparative study among different parallel hybrid artificial intelligent approaches to solve the capacitated vehicle routing problem. Int. J. Bio-Inspired Comput. 2018, 11, 171–191. [Google Scholar] [CrossRef]
- Valdez, F.; Castillo, O.; Jain, A.; Jana, D.K. Nature-inspired optimization algorithms for neuro-fuzzy models in real-world control and robotics applications. Comput. Intell. Neurosci. 2019, 2019, 9128451. [Google Scholar] [CrossRef]
- Adeli, A.; Broumandnia, A. Image steganalysis using improved particle swarm optimization based feature selection. Appl. Intell. 2018, 48, 1609–1622. [Google Scholar] [CrossRef]
- Balande, U.; Shrimankar, D. SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained Optimization Engineering Design Problems. Mathematics 2019, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Tan, J.; Zhang, X.; Chen, T.; Wang, K. Blind parameter identification of MAR model and mutation hybrid GWO-SCA optimized SVM for fault diagnosis of rotating machinery. Complexity 2019, 2019, 3264969. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; Aste Toledo, A.; Castro, C.; Paredes, F.; Olivares, R. Solving the manufacturing cell design problem through binary cat swarm optimization with dynamic mixture ratios. Comput. Intell. Neurosci. 2019, 2019, 4787856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Eberhart, R.C. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 congress on evolutionary computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 81–86. [Google Scholar]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin, Germany, 2010; pp. 65–74. [Google Scholar]
- Yang, X.S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms; Springer: Berlin, Germany, 2009; pp. 169–178. [Google Scholar]
- Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Li, X.l.; Shao, Z.j.; Qian, J.x. An optimizing method based on autonomous animats: Fish-swarm algorithm. Syst. Eng. Theory Pract. 2002, 22, 32–38. [Google Scholar]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Caserta, M.; Voß, S. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. In Metaheuristics: Intelligent Problem Solving; Springer: Berlin, Germany, 2009; pp. 1–38. [Google Scholar]
- Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 2016, 240, 171–215. [Google Scholar] [CrossRef]
- Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2015, 2, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.S.; Nguyen, T.K. Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Trans. Ind. Inf. 2018, 14, 3132–3142. [Google Scholar] [CrossRef]
- Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection. Appl. Intell. 2019, 49, 188–205. [Google Scholar] [CrossRef]
- de León, A.D.; Lalla-Ruiz, E.; Melián-Batista, B.; Moreno-Vega, J.M. A Machine Learning-based system for berth scheduling at bulk terminals. Expert Syst. Appl. 2017, 87, 170–182. [Google Scholar] [CrossRef]
- García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [Google Scholar] [CrossRef]
- Gavish, B.; Pirkul, H. Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math. Program. 1985, 31, 78–105. [Google Scholar] [CrossRef]
- Vimont, Y.; Boussier, S.; Vasquez, M. Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem. J. Comb. Optim. 2008, 15, 165–178. [Google Scholar] [CrossRef]
- Boussier, S.; Vasquez, M.; Vimont, Y.; Hanafi, S.; Michelon, P. A multi-level search strategy for the 0–1 multidimensional knapsack problem. Discret. Appl. Math. 2010, 158, 97–109. [Google Scholar] [CrossRef]
- Mansini, R.; Speranza, M.G. Coral: An exact algorithm for the multidimensional knapsack problem. INFORMS J. Comput. 2012, 24, 399–415. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, Q.K.; Zhang, X.L.; Duan, P.Y. An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems. Appl. Soft Comput. 2015, 29, 288–297. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Li, J.; Wang, X.; Yang, Z.; Lee, J.M.; Jung, K.H. Binary artificial algae algorithm for multidimensional knapsack problems. Appl. Soft Comput. 2016, 43, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; El-Shahat, D.; Faris, H.; Mirjalili, S. A binary multi-verse optimizer for 0-1 multidimensional knapsack problems with application in interactive multimedia systems. Comput. Ind. Eng. 2019, 132, 187–206. [Google Scholar] [CrossRef]
- Lai, X.; Hao, J.K.; Glover, F.; Lü, Z. A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional knapsack problem. Inf. Sci. 2018, 436, 282–301. [Google Scholar] [CrossRef]
- Petersen, C.C. Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Manag. Sci. 1967, 13, 736–750. [Google Scholar]
- Chajakis, E.; Guignard, M. A model for delivery of groceries in vehicle with multiple compartments and Lagrangean approximation schemes. In Proceedings of the Congreso Latino Ibero-Americano de Investigación de Operaciones e Ingeniería de Sistemas, México city, Mexico, 9 October 1992. [Google Scholar]
- Vasquez, M.; Hao, J.K. A logic-constrained knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Comput. Optim. Appl. 2001, 20, 137–157. [Google Scholar] [CrossRef]
- Yang, M.H. An efficient algorithm to allocate shelf space. Eur. J. Oper. Res. 2001, 131, 107–118. [Google Scholar] [CrossRef]
- Gavish, B.; Pirkul, H. Allocation of databases and processors in a distributed data processing. Manag. Distrib. Data Process. 1982, 32, 215–231. [Google Scholar]
- Srikanth, K.; Panwar, L.K.; Panigrahi, B.K.; Herrera-Viedma, E.; Sangaiah, A.K.; Wang, G.G. Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Comput. Electr. Eng. 2018, 70, 243–260. [Google Scholar] [CrossRef]
- Aljanad, A.; Mohamed, A.; Shareef, H.; Khatib, T. A novel method for optimal placement of vehicle-to-grid charging stations in distribution power system using a quantum binary lightning search algorithm. Sustain. Cities Soc. 2018, 38, 174–183. [Google Scholar] [CrossRef]
- Hu, H.; Yang, K.; Liu, L.; Su, L.; Yang, Z. Short-Term Hydropower Generation Scheduling Using an Improved Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm. Water Resour. Manag. 2019, 33, 2357–2379. [Google Scholar] [CrossRef]
- Hamedmoghadam, H.; Jalili, M.; Yu, X. An opinion formation based binary optimization approach for feature selection. Phys. A: Stat. Mech. Its Appl. 2018, 491, 142–152. [Google Scholar] [CrossRef]
- Gong, Y.J.; Zhang, J.; Liu, O.; Huang, R.Z.; Chung, H.S.H.; Shi, Y.H. Optimizing the vehicle routing problem with time windows: A discrete particle swarm optimization approach. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2011, 42, 254–267. [Google Scholar] [CrossRef]
- Tharwat, A.; Hassanien, A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl. Intell. 2018, 48, 670–686. [Google Scholar] [CrossRef]
- Yang, Y.; Mao, Y.; Yang, P.; Jiang, Y. The unit commitment problem based on an improved firefly and particle swarm optimization hybrid algorithm. In Proceedings of the IEEE Chinese Automation Congress (CAC), Changsha, China, 7–8 November 2013; pp. 718–722. [Google Scholar]
- García, J.; Crawford, B.; Soto, R.; Astorga, G. A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm Evol. Comput. 2019, 44, 646–664. [Google Scholar] [CrossRef]
- Kyurkchiev, N.; Iliev, A. A note on the new Fibonacci hyperbolic tangent activation function. Int. J. Innov. Sci. Eng. Technol. 2017, 4, 364–368. [Google Scholar]
- Kyurkchiev, V.; Kyurkchiev, N. A family of recurrence generated functions based on the “half-hyperbolic tangent activation function”. Biomed. Stat. Inf. 2017, 2, 87–94. [Google Scholar]
- Too, J.; Abdullah, A.R.; Mohd Saad, N. A New Quadratic Binary Harris Hawk Optimization for Feature Selection. Electronics 2019, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2019, 116, 147–160. [Google Scholar] [CrossRef]
- Leonard, B.J.; Engelbrecht, A.P.; Cleghorn, C.W. Critical considerations on angle modulated particle swarm optimisers. Swarm Intell. 2015, 9, 291–314. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. How important is a transfer function in discrete heuristic algorithms. Neural Comput. Appl. 2015, 26, 625–640. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- García, J.; Pope, C.; Altimiras, F. A Distributed-Means Segmentation Algorithm Applied to Lobesia botrana Recognition. Complexity 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Asta, S.; Özcan, E.; Curtois, T. A tensor based hyper-heuristic for nurse rostering. Knowl.-Based Syst. 2016, 98, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.; Ouelhadj, D.; Beullens, P.; Ozcan, E.; Juan, A.A.; Burke, E.K. A multi-agent based cooperative approach to scheduling and routing. Eur. J. Oper. Res. 2016, 254, 169–178. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Crawford, B.; Soto, R.; Astorga, G. percentile transition ranking algorithm applied to binarization of continuous swarm intelligence metaheuristics. In International Conference on Soft Computing and Data Mining; Springer: Berlin, Germany, 2018; pp. 3–13. [Google Scholar]
- Vecek, N.; Mernik, M.; Filipic, B.; Xrepinsek, M. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. 2016, 372, 446–469. [Google Scholar] [CrossRef]
- Ries, J.; Beullens, P. A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. J. Oper. Res. Soc. 2015, 66, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Zhang, H.L.; Zheng, J.H.; Dong, M.J.; Xie, Y.F.; Tian, Z.J. Heuristic evolutionary approach for weighted circles layout. In International Symposium on Information and Automation; Springer: Berlin, Germany, 2010; pp. 324–331. [Google Scholar]
- Yalcinoz, T.; Altun, H. Power economic dispatch using a hybrid genetic algorithm. IEEE Power Eng. Rev. 2001, 21, 59–60. [Google Scholar] [CrossRef]
- Kaur, H.; Virmani, J.; Thakur, S. Chapter 10 - A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. In U-Healthcare Monitoring Systems; Dey, N., Ashour, A.S., Fong, S.J., Borra, S., Eds.; Advances in Ubiquitous Sensing Applications for Healthcare; Academic Press: Cambridge, MA, USA, 2019; pp. 217–259. [Google Scholar]
- Faris, H.; Hassonah, M.A.; Ala M, A.Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018, 30, 2355–2369. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Mirjalili, S. Improved monarch butterfly optimization for unconstrained global search and neural network training. Appl. Intell. 2018, 48, 445–464. [Google Scholar] [CrossRef]
- Chou, J.S.; Thedja, J.P.P. Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Autom. Constr. 2016, 68, 65–80. [Google Scholar] [CrossRef]
- Pham, A.D.; Hoang, N.D.; Nguyen, Q.T. Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 2015, 30, 06015002. [Google Scholar] [CrossRef]
- Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Syst. Appl. 2016, 44, 320–331. [Google Scholar] [CrossRef]
- Chou, J.S.; Pham, A.D. Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Inf. Sci. 2017, 399, 64–80. [Google Scholar] [CrossRef]
- Kuo, R.; Lin, T.; Zulvia, F.; Tsai, C. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Appl. Soft Comput. 2018, 67, 299–308. [Google Scholar] [CrossRef]
- Mann, P.S.; Singh, S. Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. J. Netw. Comput. Appl. 2017, 83, 40–52. [Google Scholar] [CrossRef]
- de Alvarenga Rosa, R.; Machado, A.M.; Ribeiro, G.M.; Mauri, G.R. A mathematical model and a Clustering Search metaheuristic for planning the helicopter transportation of employees to the production platforms of oil and gas. Comput. Ind. Eng. 2016, 101, 303–312. [Google Scholar] [CrossRef]
- Pirkul, H. A heuristic solution procedure for the multiconstraint zero? one knapsack problem. Nav. Res. Logist. 1987, 34, 161–172. [Google Scholar] [CrossRef]
- Kong, X.; Gao, L.; Ouyang, H.; Li, S. Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm. Comput. Oper. Res. 2015, 63, 7–22. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 1996, 96, 226–231. [Google Scholar]
- Jiang, M.; Luo, J.; Jiang, D.; Xiong, J.; Song, H.; Shen, J. A cuckoo search-support vector machine model for predicting dynamic measurement errors of sensors. IEEE Access 2016, 4, 5030–5037. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, N.; Xiang, W. Clustering hierarchy protocol in wireless sensor networks using an improved PSO algorithm. IEEE Access 2017, 5, 2241–2253. [Google Scholar] [CrossRef]
- Mao, C.; Lin, R.; Xu, C.; He, Q. Towards a trust prediction framework for cloud services based on PSO-driven neural network. IEEE Access 2017, 5, 2187–2199. [Google Scholar] [CrossRef]
- He, X.S.; Wang, F.; Wang, Y.; Yang, X.S. Global Convergence Analysis of Cuckoo Search Using Markov Theory. In Nature-Inspired Algorithms and Applied Optimization; Springer: Berlin, Germany, 2018; pp. 53–67. [Google Scholar]
- Liu, J.; Wu, C.; Cao, J.; Wang, X.; Teo, K.L. A binary differential search algorithm for the 0–1 multidimensional knapsack problem. Appl. Math. Model. 2016, 40, 9788–9805. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Iliev, A.; Kyurkchiev, N. A Note on the Soboleva’Modified Hyperbolic Tangent Activation Function. Int. J. Innov. Sci. Eng. Technol. 2017, 4, 177–182. [Google Scholar]
Parameters | Description | Value | Range |
---|---|---|---|
Initial transition coefficient | 0.1 | [0.08, 0.1, 0.12] | |
Transition probability coefficient | 0.6 | [0.5, 0.6, 0.7] | |
N | Number of particles | 30 | [30, 40, 50] |
db-scan parameter | 0.3 | [0.3,0.4,0.5] | |
Point db-scan parameter | 10% | [10,12,14] | |
Iteration Number | Maximum iterations | 900 | [800,900,1000] |
Parameters | Description | Value | Range |
---|---|---|---|
Transition probability coefficient | 0.1 | [0.08, 0.1, 0.12] | |
Transition probability coefficient | 0.5 | [0.5, 0.6, 0.7] | |
N | Number of particles | 30 | [30, 40, 50] |
db-scan parameter | 0.3 | [0.3,0.4,0.5] | |
Point db-scan parameter | 12% | [10,12,14] | |
Step length | 0.01 | [0.009,0.01,0.011] | |
Levy distribution parameter | 1.5 | [1.4,1.5,1.6] | |
Iteration Number | Maximum iterations | 900 | [800,900,1000] |
Instance | Best | db-scan-CS | B-rand3-CS | B-rand5-CS | B-rand3-CS | ||||
---|---|---|---|---|---|---|---|---|---|
Known | Best | Avg | Best | Avg | Best | Avg | Best | Avg | |
0 | 120,148 | 120,096 | 120,029.9 | 120,066 | 119,012.1 | 120,066 | 118,983.5 | 120,066 | 119,001.3 |
1 | 117,879 | 117,730 | 117,617.5 | 117,702 | 116,316.1 | 117,730 | 116,375.2 | 117,702 | 116,421.8 |
2 | 121,131 | 121,039 | 120,937.9 | 120,951 | 118,921.4 | 120,951 | 118,902.2 | 120,951 | 118,981.7 |
3 | 120,804 | 120,683 | 120,522.8 | 120,583 | 119,162.6 | 120,572 | 118,901.6 | 120,572 | 118,971.4 |
4 | 122,319 | 122,280 | 122,165.2 | 122,231 | 120,742.6 | 122,231 | 120,931.4 | 122,231 | 121,065.9 |
5 | 122,024 | 121,982 | 121,868.7 | 121,957 | 120,164.3 | 121,957 | 120,189.1 | 121,957 | 120,217.5 |
6 | 119,127 | 119,070 | 118,950.0 | 119,068 | 116,839.4 | 119,068 | 116,821.3 | 119,068 | 116,897.1 |
7 | 120,568 | 120,472 | 120,336.6 | 120,463 | 118,963.9 | 120,463 | 118,967.2 | 120,463 | 119,054.5 |
8 | 121,586 | 121,377 | 121,161.9 | 121,077 | 120,243.1 | 121,052 | 120,241.5 | 121,052 | 120,295.2 |
9 | 120,717 | 120,524 | 120,362.9 | 120,499 | 118,841.4 | 120,499 | 118,889.1 | 120,499 | 118,977.2 |
10 | 218,428 | 218,296 | 218,163.7 | 218,185 | 217,085.2 | 218,196 | 217,023.1 | 218,185 | 217,115.4 |
11 | 221,202 | 220,951 | 220,813.9 | 220,852 | 219,156.1 | 220,852 | 219,198.7 | 220,852 | 219,277.2 |
12 | 217,542 | 217,349 | 217,254.3 | 217,258 | 215,732.1 | 217,258 | 215,738.4 | 217,258 | 215,812.8 |
13 | 223,560 | 223,518 | 223,455.2 | 223,510 | 221,984.7 | 223,510 | 221,962.3 | 223,510 | 222,054.2 |
14 | 218,966 | 218,848 | 218,771.5 | 218,811 | 216,873.9 | 218,811 | 216,822.1 | 218,811 | 216,999.7 |
15 | 220,530 | 220,441 | 220,342.2 | 220,429 | 219,012.8 | 220,441 | 219,084.3 | 220,429 | 219,175.2 |
16 | 219,989 | 219,858 | 219,717.9 | 219,785 | 217,983.1 | 219,785 | 217,961.2 | 219,785 | 218,096.8 |
17 | 218,215 | 218,032 | 217,890.1 | 218,010 | 216,321.5 | 218,010 | 216,338.1 | 218,010 | 216,479.2 |
18 | 216,976 | 216,866 | 216,798.8 | 216,940 | 214,547.2 | 216,940 | 214,579.6 | 216,940 | 214,654.2 |
19 | 219,719 | 219,631 | 219,520.0 | 219,602 | 217,946.2 | 219,602 | 217,955.6 | 219,602 | 218,086.2 |
20 | 295,828 | 295,717 | 295,628.4 | 295,652 | 294,269.6 | 295,652 | 294,281.3 | 295,652 | 294,376.1 |
21 | 308,086 | 307,924 | 307,860.6 | 307,783 | 305,754.9 | 307,783 | 305,701.2 | 307,783 | 305,874.6 |
22 | 299,796 | 299,796 | 299,717.8 | 299,727 | 298,158.9 | 299,727 | 298,126.6 | 299,727 | 298,279.5 |
23 | 306,480 | 306,480 | 306,445.2 | 306,469 | 304,841.3 | 306,469 | 304,891.5 | 306,469 | 305,056.2 |
24 | 300,342 | 300,245 | 300,202.5 | 300,240 | 298,814.7 | 300,240 | 298,799.1 | 300,240 | 298,941.6 |
25 | 302,571 | 302,492 | 302,442.3 | 302,481 | 300,769.8 | 302,481 | 300,732.6 | 302,481 | 300,926.9 |
26 | 301,339 | 301,284 | 301,238.3 | 301,272 | 300,126.1 | 301,272 | 300,121.8 | 301,272 | 300,312.2 |
27 | 306,454 | 306,325 | 306,264.2 | 306,325 | 304,467.8 | 306,290 | 304,503.2 | 306,290 | 304,701.8 |
28 | 302,828 | 302,769 | 302,721.4 | 302,749 | 300,891.8 | 302,749 | 300,825.3 | 302,749 | 300,912.8 |
29 | 299,910 | 299,774 | 299,722.7 | 299,774 | 298,947.1 | 299,757 | 298,964.7 | 299,757 | 299,147.3 |
Average | 214,168.8 | 214,061.63 | 213,964.15 | 214,015.03 | 212,429.72 | 214,013.8 | 212,427.09 | 214,012.1 | 212,538.78 |
Wilcoxon p-value | 3.40 | 1.73 | 3.4031 | 1.73 | 1.64 | 1.73 |
Instance | Best Known | db-scan-CS | db-scan-PSO | k-means-PSO | k-means-CS | ||||
---|---|---|---|---|---|---|---|---|---|
Best | Avg | Best | Avg | Best | Avg | Best | Avg | ||
0 | 116,056 | 115,526 | 115,371.4 | 115,526 | 115,362.9 | 115,526 | 115,239.2 | 115,526 | 115,232.3 |
1 | 114,810 | 114,405 | 114,325.1 | 114,684 | 114,327.2 | 114,352 | 114,174.1 | 114,405 | 114,165.1 |
2 | 116,741 | 116,256 | 116,137.6 | 116,583 | 116,301.4 | 116,158 | 116,061.3 | 116,256 | 116,052.9 |
3 | 115,354 | 114,782 | 114,699.3 | 114,782 | 114,687.3 | 114,739 | 114,581.3 | 114,782 | 114,545.7 |
4 | 116,525 | 116,353 | 115,921.8 | 116,353 | 115,924.6 | 115,994 | 115,880.4 | 115,995 | 115,876.8 |
5 | 115,741 | 115,594 | 115,172.4 | 115,244 | 115,177.8 | 115,342 | 115,146.2 | 115,342 | 115,140.1 |
6 | 114,181 | 113,952 | 113,549.8 | 113,712 | 113,535.4 | 113,712 | 113,429.6 | 113,712 | 113,438.2 |
7 | 114,348 | 113,626 | 113,527.3 | 113,626 | 113,525.1 | 113,610 | 113,531.4 | 113,626 | 113,519.5 |
8 | 115,419 | 114,822 | 114,666.2 | 114,822 | 114,638.5 | 114,822 | 114,697.6 | 114,822 | 114,673.1 |
9 | 117,116 | 116,467 | 116,351.5 | 116,467 | 116,344.3 | 116,382 | 116,379.8 | 116,467 | 116,370.6 |
Group 0 average | 115,629.1 | 115,178.3 | 114,972.24 | 115,179.9 | 114,982.45 | 115,093.3 | 114,912.09 | 115,063.7 | 114,901.43 |
Wilcoxon p-value | 0.02 | 0.01 | |||||||
10 | 218,104 | 217,776 | 217,561.1 | 217,607 | 217,541.2 | 217,776 | 217,620.3 | 217,776 | 217,618.7 |
11 | 214,648 | 214,110 | 214,082.2 | 214,110 | 214,070.4 | 214,110 | 213,998.4 | 214,110 | 214,001.3 |
12 | 215,978 | 215,580 | 215,500.1 | 215,580 | 215,504.3 | 215,580 | 215,498.1 | 215,638 | 215,497.6 |
13 | 217,910 | 217,201 | 217,119.8 | 217,301 | 217,109.3 | 217,301 | 217,217.3 | 217,301 | 217,211.8 |
14 | 215,689 | 215,036 | 214,951.2 | 215,036 | 214,961.2 | 215,036 | 214,991.2 | 215,116 | 214,997.2 |
15 | 215,919 | 215,326 | 215,204.5 | 215,408 | 215,104.5 | 215,408 | 215,221.4 | 215,408 | 215,167.2 |
16 | 215,907 | 215,576 | 215,426.4 | 215,576 | 215,407.6 | 215,576 | 215,488.8 | 215,576 | 215,491.4 |
17 | 216,542 | 215,999 | 215,942.8 | 215,999 | 215,987.4 | 216,057 | 216,012.6 | 216,057 | 215,977.2 |
18 | 217,340 | 217,013 | 216,839.3 | 216,882 | 216,860.2 | 217,013 | 216,878.7 | 217,013 | 216,821.5 |
19 | 214,739 | 214,194 | 214,104.3 | 214,194 | 214,133.7 | 214,332 | 214,129.1 | 214,332 | 214,121.1 |
20 | 301,675 | 301,343 | 301,201.3 | 301,343 | 301,187.4 | 301,343 | 301,249.2 | 301,343 | 301,240.3 |
Group 1 average | 216,277.6 | 215,781.1 | 215,673.17 | 215,769.3 | 215,667.98 | 215,832.7 | 215,705.59 | 215,818.9 | 215,690.5 |
Wilcoxon p-value | 0.11 | 0.26 | |||||||
21 | 300,055 | 299,636 | 299,564.2 | 299,636 | 299,551.2 | 299,636 | 299,584.5 | 299,720 | 299,577.2 |
22 | 305,087 | 304,850 | 304,741.9 | 304,850 | 304,769.8 | 304,995 | 304,752.4 | 304,995 | 304,749.1 |
23 | 302,032 | 301,658 | 301,572.4 | 301,658 | 301,531.4 | 301,658 | 301,586.1 | 301,645 | 301,585.8 |
24 | 304,462 | 304,186 | 304,081.4 | 304,186 | 304,080.9 | 304,186 | 304,109.9 | 304,186 | 304,100.6 |
25 | 297,012 | 296,450 | 296,404.9 | 296,450 | 296,411.5 | 296,450 | 296,422.1 | 296,521 | 296,411.4 |
26 | 303,364 | 302,917 | 302,832.6 | 302,917 | 302,839.1 | 302,917 | 302,841.3 | 302,941 | 302,841.8 |
27 | 307,007 | 306,616 | 306,448.9 | 306,616 | 306,446.5 | 306,616 | 306,453.8 | 306,616 | 306,449.2 |
28 | 303,199 | 302,636 | 302,541.2 | 302,636 | 302,549.6 | 302,791 | 302,567.3 | 302,791 | 302,561.9 |
29 | 300,596 | 300,170 | 300,037.3 | 300,170 | 300,042.5 | 300,170 | 300,072.4 | 300,170 | 300,062.4 |
Group 2 average | 302,446.5 | 302,044.9 | 301,942.61 | 302,046.2 | 301,940.99 | 302,092.8 | 301,963.9 | 302,076.2 | 301,957.97 |
Wilcoxon p-value | 0.007 | 0.04 | |||||||
Total average | 211,451.9 | 211,001.4 | 210,862.7 | 210,998.5 | 210,863.8 | 211,006.3 | 210,860.5 | 210,986.3 | 210,850.0 |
Instance | Best | db-scan-CS | db-scan-PSO | BAAA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Known | Best | Avg | Std | Best | Avg | Std | Best | Avg | Std | |
0 | 120,148 | 120,096 | 120,029.9 | 35.50 | 120,096 | 120,025.8 | 33.75 | 120,066 | 120,013.7 | 21.57 |
1 | 117,879 | 117,730 | 117,617.5 | 66.99 | 117,837 | 117,617.8 | 83.42 | 117,702 | 117,560.5 | 11.4 |
2 | 121,131 | 121,039 | 120,937.9 | 62.11 | 120,951 | 120,933.5 | 65.31 | 120,951 | 120,782.9 | 87.96 |
3 | 120,804 | 120,683 | 120,522.8 | 77.17 | 120,752 | 120,520.1 | 78.8 | 120,572 | 120,340.6 | 106.01 |
4 | 122,319 | 122,280 | 122,165.2 | 69.27 | 122,280 | 122,164.4 | 68.37 | 122,231 | 122,101.8 | 56.95 |
5 | 122,024 | 121,982 | 121,868.7 | 73.17 | 121,982 | 121,871.9 | 71.09 | 121,957 | 121,741.8 | 84.33 |
6 | 119,127 | 119,070 | 118,950 | 77.24 | 119,070 | 118,950.6 | 72.32 | 119,070 | 118,913.4 | 63.01 |
7 | 120,568 | 120,472 | 120,336.6 | 77.56 | 120,472 | 120,336 | 82.25 | 120,472 | 120,331.2 | 69.09 |
8 | 121,586 | 121,377 | 121,161.9 | 107.14 | 121,185 | 121,162.5 | 10.14 | 121,052 | 120,683.6 | 834.88 |
9 | 120,717 | 120,524 | 120,362.9 | 88.39 | 120,499 | 120,331.9 | 84.21 | 120,499 | 120,296.3 | 110.06 |
10 | 218,428 | 218,296 | 218,163.7 | 77.55 | 218,296 | 218,160.4 | 81.85 | 218,185 | 217,984.7 | 123.94 |
11 | 221,202 | 220,951 | 220,813.9 | 70.66 | 220,951 | 220,810.8 | 67.52 | 220,852 | 220,527.5 | 169.16 |
12 | 217,542 | 217,349 | 217,254.3 | 51.88 | 217,349 | 217,250 | 51.04 | 217,258 | 217,056.7 | 104.95 |
13 | 223,560 | 223,518 | 223,455.2 | 38.96 | 223,518 | 223,459.4 | 42.03 | 223,510 | 223,450.9 | 26.02 |
14 | 218,966 | 218,848 | 218,771.5 | 46.90 | 218,962 | 218,775 | 48.66 | 218,811 | 218,634.3 | 97.52 |
15 | 220,530 | 220,441 | 220,342.2 | 57.51 | 220,428 | 220,346 | 38.48 | 220,429 | 220,375.9 | 31.86 |
16 | 219,989 | 219,858 | 219,717.9 | 72.25 | 219,858 | 219,721 | 71.26 | 219,785 | 219,619.3 | 93.01 |
17 | 218,215 | 218,032 | 217,890.1 | 75.96 | 218,010 | 217,889 | 76.21 | 218,032 | 217,813.2 | 115.37 |
18 | 216,976 | 216,866 | 216,798.8 | 41.18 | 216,940 | 216,803.2 | 45.86 | 216,940 | 216,862 | 32.51 |
19 | 219,719 | 219,631 | 219,520 | 72.39 | 219,631 | 219,521.9 | 75.27 | 219,602 | 219,435.1 | 54.45 |
20 | 295,828 | 295,717 | 295,628.4 | 47.69 | 295,717 | 295,627.8 | 51.28 | 295,652 | 295,505 | 76.3 |
21 | 308,086 | 307,924 | 307,860.6 | 32.56 | 307,924 | 307,861.8 | 35.38 | 307,783 | 307,577.5 | 135.94 |
22 | 299,796 | 299,796 | 299,717.8 | 46.31 | 299,796 | 299,720.6 | 44.25 | 299,727 | 299,664.1 | 28.81 |
23 | 306,480 | 306,480 | 306,445.2 | 21.01 | 306,480 | 306,448.5 | 19.94 | 306,469 | 306,385 | 31.64 |
24 | 300,342 | 300,245 | 300,202.5 | 25.23 | 300,240 | 300,199.4 | 25.8 | 300,240 | 300,136.7 | 51.84 |
25 | 302,571 | 302,492 | 302,442.3 | 26.69 | 302,481 | 302,441.2 | 30.64 | 302,492 | 302,376 | 53.94 |
26 | 301,339 | 301,284 | 301,238.3 | 27.53 | 301,272 | 301,240.7 | 19.06 | 301,272 | 301,158 | 44.3 |
27 | 306,454 | 306,325 | 306,264.2 | 37.49 | 306,325 | 306,259.7 | 38.91 | 306,290 | 306,138.4 | 84.56 |
28 | 302,828 | 302,769 | 302,721.4 | 28.90 | 302,749 | 302,720.1 | 26.28 | 302,769 | 302,690.1 | 34.11 |
29 | 299,910 | 299,774 | 299,722.7 | 33.20 | 299,774 | 299,718.9 | 35.82 | 299,757 | 299,702.3 | 31.66 |
Average | 214,168.8 | 214,061.6 | 213,964.1 | 55.5 | 214,060.8 | 213,964.0 | 51.8 | 214,014.2 | 213,862.0 | 95.6 |
Wilcoxon p-value | 9.31 × 10−6 | 7.69 × 10−6 |
Instance | Best | T R-DBS | TE-DBS | db-scan-PSO | db-scan-CS | ||||
---|---|---|---|---|---|---|---|---|---|
Known | Best | Avg | Best | Avg | Best | Avg | Best | Avg | |
0 | 117,821 | 114,716 | 114,425.4 | 117,811 | 117,801.2 | 117,558 | 117,299.9 | 117,726 | 117,502.5 |
1 | 119,249 | 119,232 | 119,223.0 | 119,249 | 118,024 | 119,232 | 118,987.7 | 119,139 | 118,942.7 |
2 | 119,215 | 119,215 | 117,625.6 | 119,215 | 117,801.4 | 119,039 | 118,836.8 | 119,039 | 118,719.0 |
3 | 118,829 | 118,813 | 117,625.8 | 118,813 | 117,801.2 | 118,598 | 118,517.5 | 118,586 | 118,428.9 |
4 | 116,530 | 114,687 | 114,312.4 | 116,509 | 114,357.2 | 116,434 | 116,093.4 | 116,312 | 116,009.9 |
5 | 119,504 | 119,504 | 112,503.7 | 119,504 | 117,612.8 | 119,257 | 119,112.8 | 119,402 | 119,162.7 |
6 | 119,827 | 116,094 | 115,629.1 | 119,827 | 119,427.4 | 119,691 | 119,556.1 | 119,663 | 119,507.9 |
7 | 118,344 | 116,642 | 115,531.9 | 118,301 | 117,653.3 | 118,016 | 117,909.8 | 118,058 | 117,756.6 |
8 | 117,815 | 114,654 | 114,204 | 117,815 | 115,236.4 | 117,550 | 117,370.1 | 117,550 | 117,238.3 |
9 | 119,251 | 114,016 | 113,622.8 | 119,231 | 118,295.1 | 118,896 | 118,733.0 | 118,896 | 118,517.1 |
10 | 217,377 | 209,191 | 208,710.2 | 217,377 | 212,570.3 | 217,010 | 216,890.5 | 217,126 | 216,889.8 |
11 | 219,077 | 219,077 | 217,277.2 | 219,077 | 218,570.2 | 218,872 | 218,594.2 | 218,872 | 218,588.9 |
12 | 217,847 | 210,282 | 210,172.3 | 217,377 | 212,570.4 | 217,573 | 217,553.9 | 217,447 | 217,342.0 |
13 | 216,868 | 209,242 | 206,178.6 | 216,868 | 216,468.9 | 216,570 | 216,481.5 | 216,570 | 216,465.3 |
14 | 213,873 | 207,017 | 206,656 | 207,017 | 206,455 | 213,474 | 213,373.2 | 213,474 | 213,361.8 |
15 | 215,086 | 204,643 | 203,989.5 | 215,086 | 215,086 | 215,013 | 214,945.4 | 214,829 | 214,700.2 |
16 | 217,940 | 205,439 | 204,828.9 | 217,940 | 217,440.5 | 217,583 | 217,479.3 | 217,629 | 217,560.6 |
17 | 219,990 | 208,712 | 207,881.6 | 219,984 | 209,990.2 | 219,675 | 219,520.3 | 219,675 | 219,548.9 |
18 | 214,382 | 210,503 | 209,787.6 | 210,735 | 211,038.2 | 214,015 | 213,865.8 | 214,045 | 213,939.4 |
19 | 220,899 | 205,020 | 204,435.7 | 220,899 | 219,986.8 | 220,582 | 220,395.8 | 220,582 | 220,522.2 |
20 | 304,387 | 304,387 | 302,658.8 | 304,387 | 304,264.5 | 304,102 | 303,954.8 | 304,102 | 304,016.2 |
21 | 302,379 | 302,379 | 301,658.6 | 302,379 | 302,164.4 | 302,263 | 302,081.9 | 302,263 | 302,155.5 |
22 | 302,417 | 290,931 | 290,859.9 | 302,416 | 302,014.6 | 302,103 | 301,966.5 | 302,118 | 302,066.8 |
23 | 300,784 | 290,859 | 290,021.4 | 291,295 | 291,170.6 | 300,542 | 300,481.7 | 300,566 | 300,493.7 |
24 | 304,374 | 289,365 | 288,950.1 | 304,374 | 304,374.0 | 304,267 | 304,168.4 | 304,267 | 304,192.6 |
25 | 301,836 | 292,411 | 292,061.8 | 301,836 | 301,836.0 | 301,730 | 301,465.9 | 301,730 | 301,327.3 |
26 | 304,952 | 291,446 | 290,516.2 | 291,446 | 291,446 | 304,833 | 304,780.4 | 304,905 | 304,811.2 |
27 | 296,478 | 293,662 | 293,125.5 | 295,342 | 294,125.5 | 296,263 | 296,191.5 | 296,363 | 296,285.6 |
28 | 301,359 | 285,907 | 285,293.4 | 288,907 | 287,923.4 | 301,085 | 301,027.6 | 301,085 | 301,032.0 |
29 | 307,089 | 290,300 | 289,552.4 | 295,358 | 290,525.2 | 306,881 | 306,781 | 306,881 | 306,782.5 |
Average | 212,859.3 | 206,278.2 | 205,310.6 | 210,879.2 | 209,511.0 | 212,623.6 | 212,480.6 | 212,630.0 | 212,462.3 |
Wilcoxon p-value | 2.15 × 10−5 | 1.9 × 10−6 | 2.60 × 10−6 | 1.88 × 10−6 | |||||
Wilcoxon p-value | 0.48 | 0.001 | 0.38 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, J.; Moraga, P.; Valenzuela, M.; Pinto, H. A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics 2020, 8, 507. https://doi.org/10.3390/math8040507
García J, Moraga P, Valenzuela M, Pinto H. A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics. 2020; 8(4):507. https://doi.org/10.3390/math8040507
Chicago/Turabian StyleGarcía, José, Paola Moraga, Matias Valenzuela, and Hernan Pinto. 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem" Mathematics 8, no. 4: 507. https://doi.org/10.3390/math8040507
APA StyleGarcía, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. https://doi.org/10.3390/math8040507