Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices
"> Figure 1
<p>Convergence history for CauchyFro and CauchyCos (<b>left</b>), and MinRes and MinCos (<b>right</b>) for two merit functions: <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> (<b>up</b>) and <math display="inline"> <semantics> <mrow> <mo>Φ</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> (<b>down</b>), when applied to the Wathen matrix for <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics> </math>.</p> "> Figure 2
<p>Convergence history of the CG method applied to a linear system with the Wathen matrix, for <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>, 20 iterations, <math display="inline"> <semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mi>l</mi> <mi>f</mi> <mi>i</mi> <mi>l</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math>, using the preconditioned generated by the MinCos Algorithm and without preconditioning.</p> "> Figure 3
<p>Eigenvalues distribution of <span class="html-italic">A</span> (down) and of <math display="inline"> <semantics> <mrow> <msup> <mi>X</mi> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mi>A</mi> </mrow> </semantics> </math> (up) after 20 iterations of the MinCos Algorithm when applied to the Wathen matrix for <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mi>l</mi> <mi>f</mi> <mi>i</mi> <mi>l</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics> </math>.</p> ">
Abstract
:1. Introduction
2. Gradient-Type Iterative Methods
2.1. The Negative Gradient Direction
Algorithm 1 : CauchyCos (Steepest descent approach on CauchyCos (Steepest descent approach on ) |
|
2.2. Convergence Properties of the CauchyCos Algorithm
2.3. A Simplified Search Direction
Algorithm 2 : MinCos (simplified gradient approach on ) |
|
2.4. Convergence Properties of the MinCos Algorithm
2.5. Connections between the Considered Methods and Sparse Versions
- 7:
- Apply numerical dropping to with a maximum number of nonzero entries;
- 8:
- Set , where if , else.
3. Numerical Results
- from the Matlab gallery: Poisson, Lehmer, Wathen, Moler, and miij. Notice that the Poisson matrix, referred in Matlab as (Poisson, N) is the finite differences 2D discretization matrix of the negative Laplacian on with homogeneous Dirichlet boundary conditions.
- Poisson 3D (that depends on the parameter N) is the finite differences 3D discretization matrix of the negative Laplacian on the unit cube with homogeneous Dirichlet boundary conditions.
- from the Matrix Market [32]: nos1, nos2, nos5, and nos6.
3.1. Approximation to the Inverse with No Dropping Strategy
3.2. Sparse Approximation to the Inverse
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bertaccini, D.; Filippone, S. Sparse approximate inverse preconditioners on high performance GPU platforms. Comput. Math. Appl. 2016, 71, 693–711. [Google Scholar] [CrossRef]
- Carr, L.E.; Borges, C.F.; Giraldo, F.X. An element based spectrally optimized approximate inverse preconditioner for the Euler equations. SIAM J. Sci. Comput. 2012, 34, 392–420. [Google Scholar] [CrossRef]
- Chehab, J.-P. Matrix differential equations and inverse preconditioners. Comput. Appl. Math. 2007, 26, 95–128. [Google Scholar] [CrossRef]
- Chen, K. An analysis of sparse approximate inverse preconditioners for boundary integral equations. SIAM J. Matrix Anal. Appl. 2001, 22, 1058–1078. [Google Scholar] [CrossRef]
- Chen, K. Matrix Preconditioning Techniques and Applications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chow, E.; Saad, Y. Approximate inverse preconditioners via sparse–sparse iterations. SIAM J. Sci. Computing 1998, 19, 995–1023. [Google Scholar] [CrossRef]
- Chung, J.; Chung, M.; O’Leary, D.P. Optimal regularized low rank inverse approximation. Linear Algebra Appl. 2015, 468, 260–269. [Google Scholar] [CrossRef]
- Guillaume, P.H.; Huard, A.; LeCalvez, C. A block constant approximate inverse for preconditioning large linear systems. SIAM J. Matrix Anal. Appl. 2002, 24, 822–851. [Google Scholar] [CrossRef]
- Labutin, I.; Surodina, I.V. Algorithm for sparse approximate inverse preconditioners in the conjugate gradient method. Reliab. Comput. 2013, 19, 120–126. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Sajo-Castelli, A.M.; Fortes, M.A.; Raydan, M. Preconditioned conjugate gradient method for finding minimal energy surfaces on Powell-Sabin triangulations. J. Comput. Appl. Math. 2014, 268, 34–55. [Google Scholar] [CrossRef]
- Li, R.; Saad, Y. GPU-accelerated preconditioned iterative linear solvers. J. Supercomput. 2013, 63, 443–466. [Google Scholar] [CrossRef]
- Chow, E.; Saad, Y. Experimental study of ILU preconditioners for indefinite matrices. J. Comput. Appl. Math. 1997, 86, 387–414. [Google Scholar] [CrossRef]
- Manteuffel, T.A. An incomplete factorization technique for positive definite linear systems. Math. Comp. 1980, 34, 473–497. [Google Scholar] [CrossRef]
- Benzi, M.; Tuma, M. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 1999, 30, 305–340. [Google Scholar] [CrossRef]
- Kaporin, I.E. High quality preconditioning of a general symmetric positive definite matrix based on its UTU + UTR + RTU decomposition. Numer. Linear Algebra Appl. 1998, 5, 483–509. [Google Scholar] [CrossRef]
- Chow, E.; Saad, Y. Approximate inverse techniques for block-partitioned matrices. SIAM J. Sci. Comput. 1997, 18, 1657–1675. [Google Scholar] [CrossRef]
- Cosgrove, J.D.F.; Díaz, J.C.; Griewank, A. Approximate inverse preconditioning for sparse linear systems. Int. J. Comput. Math. 1992, 44, 91–110. [Google Scholar] [CrossRef]
- González, L. Orthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioning. SIAM Rev. 2006, 48, 66–75. [Google Scholar] [CrossRef]
- Gould, N.I.M.; Scott, J.A. Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J. Sci. Comput. 1998, 19, 605–625. [Google Scholar] [CrossRef]
- Kolotilina, L.Y.; Yeremin, Y.A. Factorized sparse approximate inverse preconditioning I. Theory. SIAM J. Matrix Anal. Appl. 1993, 14, 45–58. [Google Scholar] [CrossRef]
- Montero, G.; González, L.; Flórez, E.; García, M.D.; Suárez, A. Approximate inverse computation using Frobenius inner product. Numer. Linear Algebra Appl. 2002, 9, 239–247. [Google Scholar] [CrossRef]
- Andreani, R.; Raydan, M.; Tarazaga, P. On the geometrical structure of symmetric matrices. Linear Algebra Appl. 2013, 438, 1201–1214. [Google Scholar] [CrossRef]
- Chehab, J.P.; Raydan, M. Geometrical properties of the Frobenius condition number for positive definite matrices. Linear Algebra Appl. 2008, 429, 2089–2097. [Google Scholar] [CrossRef]
- Hill, R.D.; Waters, S.R. On the cone of positive semidefinite matrices. Linear Algebra Appl. 1987, 90, 81–88. [Google Scholar] [CrossRef]
- Iusem, A.N.; Seeger, A. On pairs of vectors achieving the maximal angle of a convex cone. Math. Program. Ser. B 2005, 104, 501–523. [Google Scholar] [CrossRef]
- Tarazaga, P. Eigenvalue estimates for symmetric matrices. Linear Algebra Appl. 1990, 135, 171–179. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming; Athena Scientific: Boston, MA, USA, 1999. [Google Scholar]
- Ribeiro, A.A.; Karas, E.W. Otimização Contínua: Aspectos Teóricos e Computacionais; Cengage Learning Editora: Curitiba, Brazil, 2014. [Google Scholar]
- Forsman, K.; Gropp, W.; Kettunen, L.; Levine, D.; Salonen, J. Solution of dense systems of linear equations arising from integral equation formulations. Antennas Propag. Mag. 1995, 37, 96–100. [Google Scholar] [CrossRef]
- Helsing, J. Approximate inverse preconditioners for some large dense random electrostatic interaction matrices. BIT Numer. Math. 2006, 46, 307–323. [Google Scholar] [CrossRef]
- Matrix Market. Available online: http://math.nist.gov/MatrixMarket/ (accessed on 1 October 2015).
- Schulz, G. Iterative Berechnung der Reziproken matrix. Z. Angew. Math. Mech. 1933, 13, 57–59. [Google Scholar] [CrossRef]
- Cahueñas, O.; Hernández-Ramos, L.M.; Raydan, M. Pseudoinverse preconditioners and iterative methods for large dense linear least-squares problems. Bull. Comput. Appl. Math. 2013, 1, 69–91. [Google Scholar]
- Soleymani, F. On a fast iterative method for approximate inverse of matrices. Commun. Korean Math. Soc. 2013, 28, 407–418. [Google Scholar] [CrossRef]
- Toutounian, F.; Soleymani, F. An iterative method for computing the approximate inverse of a square matrix and the Moore—Penrose inverse of a non-square matrix. Appl. Math. Comput. 2013, 224, 671–680. [Google Scholar] [CrossRef]
Matrix A | Size (n × n) | κ (A) | A |
---|---|---|---|
Poisson (50) | n = 2500 | 1.05 × 10+3 | sparse |
Poisson (100) | n = 1000 | 6.01 × 10+3 | sparse |
Poisson (150) | n = 22500 | 1.34 × 10+4 | sparse |
Poisson (200) | n = 400000 | 2.38 × 10+4 | sparse |
Poisson 3D (10) | n = 1000 | 79.13 | sparse |
Poisson 3D (15) | n = 3375 | 171.66 | sparse |
Poisson 3D (30) | n = 27,000 | 388.81 | sparse |
Poisson 3D (50) | n = 125,000 | 1.05 × 10+3 | sparse |
Lehmer (100) | n = 100 | 1.03 × 10+4 | dense |
Lehmer (200) | n = 200 | 4.2 × 10+4 | dense |
Lehmer (300) | n = 300 | 9.5 × 10+4 | dense |
Lehmer (400) | n = 400 | 1.7 × 10+5 | dense |
Lehmer (500) | n = 500 | 2.6 × 10+5 | dense |
minij (20) | n = 20 | 677.62 | dense |
minij (30) | n = 30 | 1.5 × 10+3 | dense |
minij (50) | n = 50 | 4.13 × 10+3 | dense |
minij (100) | n = 100 | 1.63 × 10+4 | dense |
minij (200) | n = 200 | 6.51 × 10+4 | dense |
moler (100) | n = 100 | 3.84 × 10+16 | dense |
moler (200) | n = 200 | 3.55 × 10+16 | dense |
moler (300) | n = 300 | 3.55 × 10+16 | dense |
moler (500) | n = 500 | 3.55 × 10+16 | dense |
moler (1000) | n = 1000 | 3.55 × 10+16 | dense |
nos1 | n = 237 | 2.53 × 10+7 | sparse |
nos2 | n = 957 | 6.34 × 10+9 | sparse |
nos5 | n = 468 | 2.91 × 10+4 | sparse |
nos6 | n = 675 | 8.0 × 10+7 | sparse |
Matrix | Size (n × n) | CauchyCos | CauchyFro | MinRes | MinCos |
---|---|---|---|---|---|
Poisson 2D (50) | n = 2500 | 88 | 132 | 7 | 6 |
Poisson 2D (70) | n = 4900 | 7 | 6 | ||
Poisson 2D (100) | n = 1000 | 7 | 7 | ||
Poisson 2D (200) | n = 40,000 | 7 | 7 | ||
Poisson 3D (10) | n = 1000 | 9 | 12 | 3 | 2 |
Poisson 3D (15) | n = 3375 | 10 | 14 | 3 | 2 |
Poisson 3D (30) | n = 27,000 | 3 | 3 | ||
Poisson 3D (50) | n = 125,000 | 3 | 3 | ||
Lehmer (10) | n = 10 | 888 | 1141 | 21 | 15 |
Lehmer (20) | n = 20 | 9987 | 49,901 | 123 | 51 |
Lehmer (30) | n = 30 | 355 | 109 | ||
Lehmer (40) | n = 40 | 645 | 190 | ||
Lehmer (50) | n = 50 | 987 | 293 | ||
Lehmer (70) | n = 70 | 1399 | 423 | ||
Lehmer (100) | n = 100 | 3905 | 1178 | ||
Lehmer (200) | n = 200 | 16,189 | 4684 | ||
Minij (20) | n = 20 | 31,271 | 63,459 | 209 | 45 |
Minij (30) | n = 30 | 153,456 | 629,787 | 553 | 102 |
Minij (50) | n = 50 | 1565 | 307 | ||
Minij (100) | n = 100 | 6771 | 1259 | ||
Minij (200) | n = 200 | 26,961 | 5057 | ||
Moler (100) | n = 100 | 7 | 83 | 3 | 3 |
Moler (200) | n = 200 | 77 | 15243 | 19 | 12 |
Moler (300) | n = 300 | 105 | 22 | ||
Moler (500) | n = 500 | 381 | 48 | ||
Moler (1000) | n = 1000 | 1297 | 152 | ||
Wathen (10) | n = 341 | 10,751 | 17,729 | 68 | 57 |
Wathen (20) | n = 1281 | 495 | 1112 | 22 | 16 |
Wathen (30) | n = 2821 | 24 | 17 | ||
Wathen (50) | n = 7701 | 20 | 15 |
Matrix | Method | of | Iter | % Fill-in | |
---|---|---|---|---|---|
nos1 () | MinCos | 0.0835 | [2.44 × 10−6,2.3272] | 20 | 3.71 |
nos1() | MinRes | [−98.66,5.40] | |||
nos6 () | MinCos | 0.4218 | [5.07 × 10−6,3.1039] | 20 | 0.45 |
nos6 () | MinCos | 0.2003 | [8.51 × 10−6,3.0702] | 20 | 0.82 |
nos6 () | MinRes | [−0.7351,2.6001] | |||
nos6 () | MinRes | [−0.2256,2.2467] | |||
nos5 () | MinCos | 0.068 | [0.002,1.36] | 10 | 1.18 |
nos5 () | MinCos | 0.0755 | [00.0024,1.3103] | 10 | 2.47 |
nos5 () | MinRes | [−20.31,2.16] | |||
nos5 () | MinRes | 0.1669 | [0.0021,1.7868] | 10 | 2.36 |
nos2 () | MinCos | 0.1289 | [5.2 × 10−9,2.73] | 10 | 0.52 |
nos2 () | MinCos | 0.0891 | [7.95 × 10−9,2.2873] | 10 | 0.80 |
nos2 () | MinCos | 0.0700 | [9.7 × 10−9,1.9718] | 10 | 1.14 |
nos2 () | MinRes | [−0.3326,2.4869] | |||
nos2 () | MinRes | 0.0970 | [4.21 × 10−9,1.5414] | 10 | 0.93 |
nos2 () | MinRes | 0.0861 | [4.21 × 10−9,1.1638] | 10 | 1.14 |
Matrix A | Size (n × n) | of | Iter | % Fil-in | |
---|---|---|---|---|---|
wathen (30) | n=2821 | 0.0447 | 20 | 0.73 | |
wathen (50) | n=7701 | 0.0461 | 20 | 0.27 | |
wathen (70) | n=14981 | 0.0457 | 20 | 0.14 | |
wathen (100) | n=30401 | 0.0467 | 20 | 6.8436 × 10−2 |
Matrix A | Size n × n | of | Iter | % Fil-in | |
---|---|---|---|---|---|
Poisson 2D (50) | n = 2500 | 0.1361 | 6 | 1.65 | |
Poisson 2D (100) | n = 10000 | 0.1249 | 7 | 0.41 | |
Poisson 2D (150) | n = 22500 | 0.1248 | 7 | 0.18 | |
Poisson 2D (200) | n = 40000 | 0.1246 | [9.78 × 10−4,1.1484] | 7 | 0.10 |
Matrix A | Size n × n | of | Iter | % Fil-in | |
---|---|---|---|---|---|
Poisson 3D (10) | n=1000 | 0.3393 | 2 | 2.09 | |
Poisson 3D(15) | n=3375 | 0.3357 | 2 | 0.66 |
Matrix A | of | Iter | % Fil-in | |
---|---|---|---|---|
Lehmer (100) | 0.0150 | 40 | 37.04 | |
Lehmer (200) | 0.0180 | 40 | 38.34 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chehab, J.-P.; Raydan, M. Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices. Mathematics 2016, 4, 46. https://doi.org/10.3390/math4030046
Chehab J-P, Raydan M. Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices. Mathematics. 2016; 4(3):46. https://doi.org/10.3390/math4030046
Chicago/Turabian StyleChehab, Jean-Paul, and Marcos Raydan. 2016. "Geometrical Inverse Preconditioning for Symmetric Positive Definite Matrices" Mathematics 4, no. 3: 46. https://doi.org/10.3390/math4030046