High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia
<p>Two-stage high-resolution prediction model with missing observations.</p> "> Figure 2
<p>Map of Jakarta, with an inset highlighting its location within Indonesia and Southeast Asia (note: 0–5–10 km indicates the scale of the map).</p> "> Figure 3
<p>Jakarta Province and the distribution of air-quality-monitoring stations (Station IDs can be found in <a href="#app1-mathematics-12-02899" class="html-app">Appendix A</a>).</p> "> Figure 4
<p>Distribution of missing observations from 1 January to 31 December 2022.</p> "> Figure 5
<p>Time variation of PM<sub>2.5</sub> concentrations at Gading Harmony (S3) and RespoKare Mask–Wisma 76 (S8).</p> "> Figure 6
<p>Monthly average PM<sub>2.5</sub> concentrations (μg/m<sup>3</sup>) per site.</p> "> Figure 7
<p>Covariates: (<b>A</b>) Population density (people/km<sup>2</sup>), (<b>B</b>) altitude (m), (<b>C</b>) precipitation (mm<sup>3</sup>).</p> "> Figure 8
<p>Observed and MTST-predicted PM<sub>2.5</sub> concentrations for 1 November–31 December 2022, for the 13 monitoring stations.</p> "> Figure 9
<p>MSTS-predicted (solid lines, 1–31 January 2023) and observed PM<sub>2.5</sub> concentrations (red dots, 1 January–31 December 2022) for the 13 monitoring stations.</p> "> Figure 10
<p>Box plots of the monthly distribution of the PM<sub>2.5</sub> concentrations for 1 January–31 December 2022 per observation station in μg/m<sup>3</sup>.</p> "> Figure 11
<p>The meshed study area.</p> "> Figure 12
<p>Observed versus predicted high-resolution PM<sub>2.5</sub> concentrations for the period 1–31 January 2023 for models M1–M5 for three selected monitoring stations (S5, S6, and S10).</p> "> Figure 13
<p>The global temporal pattern of the PM<sub>2.5</sub> predictions versus the global temporal pattern of the observations, January 2023.</p> "> Figure 14
<p>Temporal pattern of PM<sub>2.5</sub> and tracer gas data (CO and NO<sub>2</sub>), January 2023.</p> "> Figure 15
<p>Posterior means of the standard deviations of the GF innovations, 1–31 January 2023.</p> "> Figure 16
<p>The predicted high-resolution daily PM<sub>2.5</sub> concentration per grid area in January 2023 (μg/m<sup>3</sup>).</p> "> Figure 17
<p>PM<sub>2.5</sub> exceedance probabilities for level <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>35</mn> </mrow> </semantics></math> μg/m<sup>3</sup> per 1 km × 1 km grid area for 1–31 January 2023.</p> ">
Abstract
:1. Introduction
2. The Two-Stage High-Resolution Forecasting Model
2.1. The First Stage: Pure Multivariate Spatial Time Series (MSTS) Forecasting Model
2.2. The Second Stage: High-Resolution Spatiotemporal Prediction Model
The SPDE
2.3. Bayesian Inference with INLA
2.4. MSTS Forecasting and Imputing Missing Observations
2.5. High-Resolution Prediction: The INLA–SPDE Approach
2.6. Exceedance Probability for High-Resolution Predictions
2.7. Model Accuracy
2.8. Comprehensive Overview of the Two-Stage Model
3. Application: Daily PM2.5 Concentrations in Jakarta Province, Indonesia
3.1. Study Area and Descriptive Statistics
3.2. Predictors
3.3. MSTS PM2.5 Forecasts for the 13 Monitoring Stations
3.4. High-Resolution Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Station | Longitude | Latitude |
---|---|---|---|
S1 | AHP—Capital Place | 106.820 | −6.232 |
S2 | Angkasa-Kemayoran | 106.843 | −6.156 |
S3 | Gading Harmony | 106.900 | −6.166 |
S4 | Jakarta GBK | 106.803 | −6.215 |
S5 | Jimbaran 2 | 106.857 | −6.120 |
S6 | Kemayoran | 106.846 | −6.164 |
S7 | Pantai Mutiara | 106.796 | −6.110 |
S8 | RespoKare Mask—Wisma 76 | 106.798 | −6.191 |
S9 | Simprug THL Area | 106.794 | −6.228 |
S10 | US Embassy in Central Jakarta | 106.834 | −6.183 |
S11 | Wisma Barito Pacific | 106.798 | −6.197 |
S12 | Wisma Korindo | 106.844 | −6.244 |
S13 | Wisma Matahari Power | 106.784 | −6.209 |
References
- Han, J.; Kamber, M.; Pei, J. Data mining trends and research frontiers. In Data Mining: Concepts and Techniques, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 585–631. [Google Scholar]
- Alghamdi, T.; Elgazzar, K.; Sharaf, T. Spatiotemporal traffic prediction using hierarchical Bayesian modeling. Future Internet 2021, 13, 225. [Google Scholar] [CrossRef]
- Cai, B.; Lawson, A.B.; Hossain, M.M.; Choi, J. Bayesian latent structure models with space-time-dependent covariates. Stat. Model. 2012, 12, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, M.; Zahmatkesh, S. Modeling of spatio-temporal data with non-ignorable missing. J. Adv. Math. Model. 2020, 10, 39–61. [Google Scholar]
- Lenzi, A.; Steinsland, I.; Pinson, P. Benefits of spatiotemporal modeling for short-term wind power forecasting at both individual and aggregated levels. Environmetrics 2018, 29, e2493. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Hu, J.; Wang, M. Development of high-resolution spatio-temporal models for ambient air pollution in a metropolitan area of China from 2013 to 2019. Chemosphere 2022, 291, 132918. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Handoko, B.; Chadidjah, A.; Andriyana, Y.; Antikasari, M. Multivariate Bayesian semiparametric regression model for forecasting and mapping HIV and TB risks in West Java, Indonesia. Mathematics 2023, 11, 3641. [Google Scholar] [CrossRef]
- Haworth, J.; Cheng, T. Non-parametric regression for space–time forecasting under missing data. Comput. Environ. Urban Syst. 2012, 36, 538–550. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Folmer, H. Spatiotemporal high-resolution prediction and mapping: Methodology and application to dengue disease. J. Geogr. Syst. 2022, 24, 527–581. [Google Scholar] [CrossRef]
- Glasbey, C. Imputation of missing values in spatiotemporal solar radiation data. Environmetrics 1995, 6, 363–371. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; Otexts: Melbourne, Australia, 2018. [Google Scholar]
- Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592. [Google Scholar] [CrossRef]
- Carreras, G.; Miccinesi, G.; Wilcock, A.; Preston, N.; Nieboer, D.; Deliens, L. Missing not at random in end-of-life care studies: Multiple imputation and sensitivity analysis on data from the ACTION study. BMC Med. Res. Methodol. 2021, 21, 13. [Google Scholar] [CrossRef] [PubMed]
- Wardana, I.N.K.; Gardner, J.W.; Fahmy, S.A. Estimation of missing air pollutant data using a spatiotemporal convolutional autoencoder. Neural. Comput. Appl. 2022, 34, 16129–16154. [Google Scholar] [CrossRef]
- Dondersa, A.R.T.; van der Heijden, G.J.M.G.; Stijnend, T.; Moons, K.G. Review: A gentle introduction to imputation of missing values. J. Clin. Epidemiol. 2006, 59, 1087–1091. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Lin, X.; He, F.; Wang, Y. A spatiotemporal approach for traffic data imputation with complicated missing patterns. Transp. Res. Part C Emerg. 2020, 119, 102730. [Google Scholar] [CrossRef]
- Raghunathan, T.E.; Lepkowski, J.M.; Hoewyk, V.; Solenberger, P. A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models. Surv. Methodol. 2001, 27, 85–95. [Google Scholar]
- Sharma, S.; Lingras, P.; Zhong, M. Effect of Missing Value Imputations on Traffic Parameters Estimations from Permanent Traffic Counts. Transport. Res. Board. 2003, 1836, 132–142. [Google Scholar]
- Julie, M.D.; Kannan, B. Attribute reduction and missing value imputing with ANN: Prediction of learning disabilities. Neural Comput. Appl. 2012, 21, 1757–1763. [Google Scholar] [CrossRef]
- Qu, L.; Li, L. PPCA-Based Missing Data Imputation for Traffic Flow Volume: A Systematical Approach. IEEE Trans. Intell. Transp. Syst. 2009, 10, 512–522. [Google Scholar]
- Ni, D.; Leonard, J.D., II; Guin, A.; Feng, C. Multiple Imputation Scheme for Overcoming the Missing Values and Variability Issues in ITS Data. J. Transp. Eng. 2005, 131, 931–938. [Google Scholar] [CrossRef]
- Ahn, H.; Sun, K.; Kim, K.P. Comparison of Missing Data Imputation Methods in Time Series Forecasting. Comput. Mater. Contin. 2022, 70, 767–779. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Folmer, H. Bayesian Spatiotemporal Mapping of Relative Dengue Disease Risk in Bandung, Indonesia. J. Geogr. Syst. 2020, 22, 105–142. [Google Scholar] [CrossRef]
- Martínez-Hernández, I.; Genton, M.G. Surface Time Series Models for Large Spatio-Temporal Datasets. Spat. Stat. 2023, 53, 100718. [Google Scholar] [CrossRef]
- Mittnik, S. Multivariate time series analysis with state space models. Comput. Math. Appl. 1989, 17, 1189–1201. [Google Scholar] [CrossRef]
- Tao, P.; Delleur, J. Multistation, Multiyear Synthesisof HydrologicTime Series by Disaggregation. Water Resour. Res. 1976, 12, 1303–1312. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Stat. Methodol. Ser. B 2011, 73, 423–498. [Google Scholar] [CrossRef]
- Lasinio, G.J.; Mastrantonio, G.; Pollice, A. Discussing the “big n problem”. Stat. Methods Appl. 2013, 22, 97–112. [Google Scholar] [CrossRef]
- Banerjee, S.; Carlin, B.; Gelfand, A. Hierarchical Modeling and Analysis for Spatial Data; Chapman and Hall: London, UK, 2004. [Google Scholar]
- Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons: Chennai, India, 2015. [Google Scholar]
- Gomez-Rubio, V.; Cameletti, M.; Blangiardo, M. Missing data analysis and imputation via latent Gaussian Markov random felds. SORT 2022, 46, 217–244. [Google Scholar]
- Yusuf, A.A.; Resosudarmo, B.P. Does clean air matter in developing countries’ megacities? A hedonic price analysis of the Jakarta housing market, Indonesia. Ecol. Econ. 2009, 68, 1398–1407. [Google Scholar] [CrossRef]
- Ravishanker, N.; Raman, B.; Soyer, R. Dynamic Time Series Models Using R-INLA; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Morrison, K.T.; Shaddick, G.; Henderson, S.B.; Buckeridg, D.L. A latent process model for forecasting multiple time series in environmental public health surveillance. Statist. Med. 2016, 35, 3085–3100. [Google Scholar] [CrossRef]
- Sahu, S.K. Hierarchical Bayesian Models for Space–Time Air Pollution Data. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 477–495. [Google Scholar]
- Cameletti, M.; Lindgren, F.; Simpson, D. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv. Stat. Anal. 2013, 97, 109–131. [Google Scholar] [CrossRef]
- Sun, X.L.; Minasny, B.; Wang, H.L.; Zhaob, Y.G.; Zhang, G.L.; Wug, Y.J. Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE. Geoderma 2021, 384, 114808. [Google Scholar] [CrossRef]
- Rue, H.; Held, L. Gaussian Markov Random Fields Theory and Applications; Chapman & Hall/CRC Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Simpson, D.; Rue, H.; Riebler, A.; Martins, T.G.; Sørbye, S.H. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors. Stat. Sci. 2017, 32, 1–28. [Google Scholar] [CrossRef]
- Asghar, K.; Ali, A.; Tabassum, A.; Nadeem, S.G.; Hakim, S.T.; Amin, M.; Raza, G.; Bashir, S.; Afshan, N.; Usman, N.; et al. Assessment of particulate matter (PM) in ambient air of different settings and its associated health risk in Haripur city, Pakistan. Braz. J. Biol. 2022, 84, 256190. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.K.; Ghosh, S.K.; Mallick, B.K. Generalized Linear Models a Bayesian Perspective; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Gentle, J.E. Statistics and Computing; Springer: London, UK, 2009. [Google Scholar]
- Royal, R.M. Statistical Evidence A Likelihood Paradigm; Chapman & Hall: Boca Raton, FL, USA, 2000. [Google Scholar]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Sahu, S.K.; Böhning, D. Bayesian Spatio-Temporal Joint Disease Mapping of Covid-19 Cases and Deaths in Local Authorities of England. Spat. Stat. 2022, 49, 100519. [Google Scholar] [CrossRef]
- Chiuchiolo, C.; van Niekerk, J.; Rue, H. Joint Posterior Inference for Latent Gaussian Models with R-INLA. J. Stat. Comput. Simul. 2023, 93, 723–752. [Google Scholar] [CrossRef]
- Gomez-Rubio, V. Bayesian Inference with INLA; Taylor and Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian Measures of Model Complexity and Fit. J. R. Stat. Soc. Stat. Methodol. Ser. B 2002, 64, 583–639. [Google Scholar] [CrossRef]
- Celeux, G.; Forbes, F.; Robert, C.; Titterington, D. Deviance Information Criteria for Missing Data Models. Bayesian Anal. 2006, 1, 651–674. [Google Scholar] [CrossRef]
- Watanabe, S. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. J. Mach. Learn. Res. 2010, 11, 3571–3594. [Google Scholar]
- Roos, M.; Held, L. Sensitivity Analysis in Bayesian Generalized Linear Mixed Models for Binary Data. Bayesian Anal. 2011, 6, 259–278. [Google Scholar] [CrossRef]
- Whittle, P. On Stationary Processes in the Plane. Biometrika 1954, 41, 434–449. [Google Scholar] [CrossRef]
- Tentang Jakarta. Available online: https://jakarta.go.id/tentang-jakarta (accessed on 7 July 2023).
- Bai, L.; Wang, J.; Ma, X. Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, H.; Zhou, Q. China’s Natural Gas Production and Consumption Analysis Based on The Multicycle Hubbert Model and Rolling Grey Model. Renew. Sustain. Energy Rev. 2006, 53, 1149–1167. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef] [PubMed]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Kusuma, W.L.; Chih-Da, W.; Yu-Ting, Z.; Hapsari, H.H.; Muhama, J.L. PM2.;5 Pollutant in Asia—A Comparison of Metropolis Cities in Indonesia and Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 4924. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Song, P.; Han, H.; Feng, H.; Hui, Y.; Zhou, T.; Meng, W.; Yan, J. High altitude Relieves transmission risks of COVID-19 through meteorological and environmental factors: Evidence from China. Environ. Res. 2022, 212, 113214. [Google Scholar] [CrossRef]
- Grange, S.K.; Carslaw, D.C.; Lewis, A.C.; Boleti, E.; Hueglin, C. Random Forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys. 2018, 18, 6223–6239. [Google Scholar] [CrossRef]
- Fujino, R.; Miyamoto, Y. PM2.5 Decrease with Precipitation as Revealed by Single-Point Ground-Based Observation. Atmos. Sci. Lett. 2022, 23, e1088. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Lu, J. Exploring the Relationship Between Air Pollution and Meteorological Conditions in China Under Environmental Governance. Sci. Rep. 2020, 10, 14518. [Google Scholar] [CrossRef] [PubMed]
- Solano, J.; Montaño, T.; Maldonado-Correa, J.; Ordóñez, A.; Pesantez, M. Correlation Between the Wind Speed and the Elevation to Evaluate the Wind Potential in the Southern Region of Ecuador. Energy Rep. 2021, 7, 259–268. [Google Scholar] [CrossRef]
- Johansson, B.; Chen, D. The Influence of Wind and Topography on Precipitation Distribution in Sweden: Statistical Analysis and Modelling. Int. J. Climatol. 2023, 23, 1523–1535. [Google Scholar] [CrossRef]
- Yu, W.; Li, S.; Ye, T.; Xu, R.; Song, J.; Guo, Y. Deep Ensemble Machine Learning Framework for the Estimation of PM2:5 Concentrations. Environ. Health Perspect. 2022, 120, 37004. [Google Scholar] [CrossRef] [PubMed]
- Bolin, D.; Kirchner, K. The Rational SPDE Approach for Gaussian Random Fields with General Smoothness. J. Comput. Graph. Stat. 2020, 29, 274–285. [Google Scholar] [CrossRef]
- Lunn, D.; Jackson, C.; Best, N.; Thomas, A.; Spiegelhalter, D. The BUGS Book a Practical Introduction to Bayesian Analysis; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Folmer, H. Does the inclusion of spatiotemporally confounded covariates improve the forecasting accuracy of spatiotemporal models? A simulation study of univariate and causal forecasting models. Geogr. Syst. 2024, 1–40, undereview. [Google Scholar]
- Lestari, P.; Arrohman, M.K.; Damayanti, S.; Klimont, Z. Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta. Atmos. Pollut. Res. 2022, 13, 101521. [Google Scholar] [CrossRef]
- Keller, J.P.; Olives, C.; Kim, S.Y.; Sheppard, L.; Sampson, P.D.; Szpi, A.A. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution. Environ. Health Perspect. 2015, 123, 301–309. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.; Guo, L.; Tong, S.; Coelho, M.; Saldiva, P. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Mujtaba, G.; Shahzad, S.J.H. Air pollutants, economic growth and public health: Implications for sustainable development in OECD countries. Environ. Sci. Pollut. Res. 2021, 28, 12686–12698. [Google Scholar] [CrossRef]
Month | Minimum | Mean | Maximum | Standard Deviation |
---|---|---|---|---|
January | 1.00 | 30.43 | 96.82 | 19.07 |
February | 2.87 | 28.79 | 73.90 | 15.37 |
March | 2.17 | 29.27 | 106.10 | 20.98 |
April | 2.00 | 32.36 | 79.47 | 18.29 |
May | 1.92 | 33.80 | 88.65 | 17.79 |
June | 2.10 | 51.25 | 124.61 | 23.11 |
July | 2.76 | 49.14 | 103.00 | 18.17 |
August | 19.96 | 48.78 | 126.29 | 15.74 |
September | 12.16 | 46.23 | 80.92 | 12.58 |
October | 4.25 | 32.33 | 66.22 | 12.48 |
November | 6.68 | 27.19 | 68.88 | 14.70 |
December | 4.87 | 30.34 | 85.53 | 15.93 |
Overall | 1.00 | 37.46 | 126.29 | 19.21 |
Predictor | Data Source | Description | Unit | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
Population density | https://data.jakarta.go.id/ (accessed on 1 January 2021) | Population density among the 267 sub-districts in 2020 | people/km2 | Average area of 2.5 km2 | Annual |
Altitude | https://www.worldclim.org/ (accessed on 1 January 2021) | meter | 1 km × 1 km | Annual | |
Precipitation | https://bmkg.go.id/ (accessedon 1 January 2021) | mm | 0.5 km × 0.5 km | Daily |
Model | PDIC | DIC | PWAIC | WAIC | LML | MSE | MAE | MAPE | R2 |
---|---|---|---|---|---|---|---|---|---|
M1 | 4.00 | 464.998 | 4.268405 | 465.094 | −268.805 | 82,805.424 | 287.759 | 41.923 | 0.556 |
M2 | 17.54 | 345.81 | 17.558823 | 346.541 | −237.399 | 114,456.464 | 338.314 | 30.386 | 0.747 |
M3 | 199.88 | 204.763 | 135.570765 | 185.703 | −244.957 | 14,369.369 | 119.872 | 10.257 | 0.748 |
M4 | 306.51 | −2511.548 | 154.588434 | −2631.043 | 300.049 | 0.001 | 0.037 | 0.041 | 0.855 |
M5 | 304.34 | −2493.711 | 154.148557 | −2612.901 | 300.026 | 0.001 | 0.038 | 0.044 | 0.858 |
Covariate | Mean | SD | Critical Ratio | p-Value |
---|---|---|---|---|
Intercept | 2.973 | 0.125 | 23.784 | 0.000 |
Altitude | −0.078 | 0.093 | −0.839 | 0.281 |
Population density | 0.070 | 0.079 | 0.886 | 0.269 |
Precipitation | −0.039 | 0.023 | −1.696 | 0.095 |
Random Effects and Innovations | Mean | SD | Critical Ratio | p-Value | Fraction of Variance (%) |
---|---|---|---|---|---|
Range (r) | 4301.302 | 640.4352 | 6.7162 | 0.000 | |
Autoregressive coefficient () | 0.9742 | 0.0076 | 128.1842 | 0.000 | |
SD error () | 0.0068 | 0.0026 | 2.6154 | 0.013 | 0.0199 |
SD temporal trend () | 0.2847 | 0.0410 | 6.9439 | 0.000 | 34.9319 |
SD innovations () | 0.3885 | 0.0608 | 6.3898 | 0.000 | 65.0482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaya, I.G.N.M.; Folmer, H. High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia. Mathematics 2024, 12, 2899. https://doi.org/10.3390/math12182899
Jaya IGNM, Folmer H. High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia. Mathematics. 2024; 12(18):2899. https://doi.org/10.3390/math12182899
Chicago/Turabian StyleJaya, I Gede Nyoman Mindra, and Henk Folmer. 2024. "High-Resolution Spatiotemporal Forecasting with Missing Observations Including an Application to Daily Particulate Matter 2.5 Concentrations in Jakarta Province, Indonesia" Mathematics 12, no. 18: 2899. https://doi.org/10.3390/math12182899