On Cyclic Associative Semihypergroups and Neutrosophic Extended Triplet Cyclic Associative Semihypergroups
<p>Square <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 2
<p>The relationships among some algebraic systems.</p> "> Figure 3
<p>Top left (running result of Python).</p> "> Figure 4
<p>Top right (running result of Python).</p> "> Figure 5
<p>Upper half (running result of Python).</p> "> Figure 6
<p>Lower left (running result of Python).</p> "> Figure 7
<p>Lower right (running result of Python).</p> "> Figure 8
<p>Lower half (running result of Python).</p> "> Figure 9
<p>(<span class="html-italic">C</span>, ▴) (running result of Python).</p> "> Figure 10
<p>New top left (running result of Python).</p> "> Figure 11
<p>New lower right (running result of Python).</p> "> Figure 12
<p>(<span class="html-italic">P</span>, <span class="html-italic">▪</span>) (running result of Python).</p> "> Figure 13
<p>The relationships among various Net-CA-semihypergroups.</p> "> Figure 14
<p>How we proved Theorem 7: Where (1) = <b>Remark 6</b><span class="html-italic">;</span> (2) = <b>Theorem 3</b>; (3) = <b>Theorem 4</b>; (4) = <b>Theorem 5</b>; (5) = <b>Theorem 6</b>.</p> "> Figure 15
<p>The relations among various P-NET-CA-semihypergroups.</p> ">
Abstract
:1. Introduction
2. Cyclic Associative Semihypergroups (CA-Semihypergroups)
- (a)
- if u, v ∈ C1, then u▴v = u▴1 v;
- (b)
- if u, v ∈ C2, then u▴v = u▴2 v;
- (c)
- if u ∈ C1, v ∈ C2, then u▴v = u;
- (d)
- if u ∈ C2, v ∈ C1, then u▴v = v;
- (e)
- if u ∈ C2, v ∈ C1, w ∈ C1, then u▴(v▴w) = w▴(u▴v);
- (1)
- Denote C = C1∪C2, and define the binary hyperoperation ▴ in C as follows:
- (a)
- if u, v ∈ C1, then u▴v = u▴1 v;
- (b)
- if u, v ∈ C2, then u▴v = u▴2 v;
- (c)
- if u ∈ C1, v ∈ C2, then u▴v = u;
- (d)
- if u ∈ C2, v ∈ C1, then u▴v = v;
- (2)
- Suppose (M, ⋆) and (C, ▴) are isomorphic. Denote P = C1∪M, and define the binary hyperoperation ▪ in P as follows:
- (e)
- if u, v ∈ C1, then u▪v = u▴1 v;
- (f)
- if u, v ∈ M, then u▪v = u⋆v;
- (g)
- if u ∈ C1, v ∈ M, then u▪v = u;
- (h)
- if u ∈ M, v∈ C1, then u▪v = v;
- Condition 1:
- (a)
- if u, v ∈ C1, then u▴v = u▴1 v;
- (b)
- if u, v ∈ C2, then u▴v = u▴2 v;
- (c)
- if u ∈ C1, v ∈ C2, then u▴v = u;
- (d)
- if u ∈ C2, v ∈ C1, then u▴v = v;
- (e)
- if u ∈ C2, v ∈ C1, w ∈ C1, then u▴(v▴w) = w▴(u▴v).
- Condition 2:
- (f)
- if u, v ∈ C1, then u▴v = u▴1 v;
- (g)
- if u, v ∈ C2, then u▴v = u▴2 v;
- (h)
- if u ∈ C1, v ∈ C2, then u▴v = u;
- (i)
- if u ∈ C2, v ∈ C1, then u▴v = v;
- (j)
- C1 is a commutative CA-semihypergroup.
Python function concat_CA |
1: def concat_CA(CA1,CA2,n): |
2: p = CA1.shape [1] # Obtain the order of the first CA-semihypergroup |
3: q = CA2.shape [1] # Obtain the order of the second CA-semihypergroup |
4: df1 = pd.dataframe.from_records(CA1, columns = list(rang(p))) # top left |
5: arr1 = np.zeros((p,q),int) |
6: list1 = np.array(arr1).tolist() |
7: k = −1 |
8: for item in list1: |
9: k += 1 |
10: for i in range(len(item)): |
11: item[i] = [k] |
12: arr2 = np.array(list1) |
13: df2 = pd.dataframe.from_records(arr2, columns = list(range(p,p + q))) # top right |
14: df3 = pd.concat([df1,df2], axis = 1) # upper half |
15: arr3 = arr2.swpaxes(1,0) # transpose |
16: df4 = pd.dataframe.from_records(arr3, list(range(p,p + q))) # lower left |
17: df5 = pd.dataframe(CA2, index = list(range(p,p + q)), columns = list(range(p,p + q))) |
18: df6 = pd.concat([df4,df5], axis = 1, ignore_index = True) # lower half |
19: global df_lastCA |
20: df_lastCA = pd.concat([df3,df6], axis = 0) # generating CA |
21: CA2 = np.array(df_lastCA) |
22: CA1_copy = copy.deepcopy(CA1) |
23: global isgo |
24: isgo = True |
25: while isgo: |
26: CA1 = CA1_copy # new top left |
27: CA2 = chang_list(CA2) |
28: CA2_copy = copy.deepcopy(CA2) |
29: df_lastCA = pd.Dataframe(CA2_copy) # save the final CA-semihypergroup |
30: CA2 = change2(CA2,CA1.shape [1]) # generating isomorphic CA2 (new lower right) |
31: if CA2.shape [1] < int(3*n + 4): # recursive condition |
32: concat_CA(CA1,CA2,n) # recursive |
33: elif CA2.shape [1] = = int(3*n + 4): # the ending condition of recursiveisgo |
34: isgo = False # break out of the while loop |
35: return df_lastCA # return the final CA-semihypergroup |
3. Neutrosophic Extended Triplet CA-Semihypergroups (NET-CA-Semihypergroups)
- (1)
- an RL-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that
- (2)
- an LR-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that
- (3)
- an RR-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that
- (4)
- an LL-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that
- (5)
- an NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that
- (1)
- an R-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element t, such that
- (2)
- an L-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element s, such that
- (3)
- an S-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element r, such that
4. Strong Pure Neutrosophic Extended Triplet CA-Semihypergroups (SP-NET-CA-Semihypergroups)
- (1)
- PRL-NET-CA-semihypergroup, if for any u∈ C, there exist v∈ C and w∈C, such that
- (2)
- PLR-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that
- (3)
- PRR-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that
- (4)
- PLL-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that
- (5)
- P-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that
- (6)
- SP-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that
- (1)
- if (u, v, w) is a PRL-NET-hyper-neutrosophic-triplet, then
- (2)
- (C, ⋆) is a PLR-NET-CA-semihypergroup.
- (1)
- if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then
- (2)
- if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then (v, v, v) is an SP-NET-CA-hyper-neutrosophic-triplet;
- (3)
- if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then for any t ∈ v ⋆ w, (u, v, t) is an SP-NET-CA-hyper-neutrosophic-triplet;
- (4)
- if (u, v, w), (v, v, r) are two SP-NET-CA-hyper-neutrosophic-triplets, then
- (5)
- if (u, v, w), (r, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, then
- (6)
- if (u, v, w), (r, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, and |u ⋆ r|= |v ⋆ s| = 1, then
- (7)
- if (u, v, w), (r, v, t) are two SP-NET-CA-hyper-neutrosophic-triplets, and |u ⋆ r| = 1, then
- (8)
- if (u, v, w), (w, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, then
5. Conclusions
- (1)
- Let (C1, ▴1), (C2, ▴2) be two CA-semihypergroups, and (C = C1 ∪ C2 (C1 ∩ C2 = Φ), ▴) satisfy the conditions in Theorem 1 Then (C, ▴) is a CA-semihypergroup (see Theorem 1).
- (2)
- Let (C1, ▴1) be a commutative CA-semihypergroup, (C2, ▴2) be a CA-semihypergroup, (C = C1 ∪ C2 (C1 ∩ C2 = Φ), ▴) satisfy the conditions in Theorem 2. Then (C, ▴) is a CA-semihypergroup (see Theorem 2, Example 7, and Python function concat_CA)
- (3)
- RL-NET-CA-semihypergroups, RR-NET-CA-semihypergroups and R-Regular-CA-semihypergroups are three fully equivalent algebraic structures (see Proposition 1 and Proposition 2)
- (4)
- LR-NET-CA-semihypergroups and L-Regular-CA-semihypergroups are two fully equivalent algebraic structures (see Proposition 4).
- (5)
- Every PRL-NET-CA-semihypergroup is a PLR-NET-CA-semihypergroup (see Theorem 3).
- (6)
- Every PLR-NET-CA-semihypergroup is an SP-NET-CA-semihypergroup (see Theorem 4).
- (7)
- Every PRR-NET-CA-semihypergroup is a PLR-NET-CA-semihypergroup (see Theorem 5).
- (8)
- Every PLL-NET-CA-semihypergroup is a PRL-NET-CA-semihypergroup (see Theorem 6).
- (9)
- The relations among various P-NET-CA-semihypergroups (see Theorem 7 and Figure 15).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Okubo, S. Introduction to Octonion and Other Non-Associative Algebras in Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Maksa, G. Cm solutions of some functional equations of associative type. Ann. Univ. Sci. Bp. Sect. Comp. 2004, 24, 125–132. [Google Scholar]
- Zhan, J.M.; Tan, Z.S. Left weakly Novikov algebra. J. Math. 2005, 25, 135–138. [Google Scholar]
- Sabinin, L.; Sbitneva, L.; Shestakov, I. Non-Associative Algebras and Its Applications; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Behn, A.; Correa, I.; Hentzel, I.R. On Flexible Algebras satisfying x (yz) = y (zx). Algebra Colloq. 2010, 17, 881–886. [Google Scholar] [CrossRef]
- Shah, T.; Razzaque, A.; Rehman, I.; Gondal, M.A.; Faraz, M.I.; Shum, K.P. Literature survey on non-associative rings and developments. Eur. J. Pure Appl. Math. 2019, 12, 370–408. [Google Scholar] [CrossRef]
- Chajda, I.; Halaš, R.; Länger, H. Operations and structures derived from non-associative MV-algebras. Soft Comput. 2019, 23, 3935–3944. [Google Scholar] [CrossRef] [Green Version]
- Lazendic, S.; Pizurica, A.; De Bie, H. Hypercomplex algebras for dictionary learning. In Proceedings of the Early Proceedings of the AGACSE 2018 Conference, Campinas, São Paulo, Brazil, 23–27 July 2018; pp. 57–64. [Google Scholar]
- Hirsch, R.; Jackson, M.; Kowalski, T. Algebraic foundations for qualitative calculi and networks. Theor. Comput. Sci. 2019, 768, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Byrne, L. Two brief formulations of Boolean algebra. Bull. Am. Math. Soc. 1946, 52, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Sholander, M. Medians, lattices, and trees. Proc. Am. Math. Soc. 1954, 5, 808–812. [Google Scholar] [CrossRef]
- Kleinfeld, M. Rings with x (yz) = y (zx). Commun. Algebra 1995, 23, 5085–5093. [Google Scholar] [CrossRef]
- Behn, A.; Correa, I.; Hentzel, I.R. Semiprimality and nilpotency of non-associative rings satisfying x (yz) = y (zx). Commun. Algebra 2008, 36, 132–141. [Google Scholar] [CrossRef]
- Samanta, D.; Hentzel, I.R. Non-associative rings satisfying a (bc) = b (ca) and (a,a,b) = (b,a,a). Commun. Algebra 2019, 47, 3915–3920. [Google Scholar] [CrossRef]
- Iqbal, M.; Ahmad, I.; Shah, M.; Ali, M.I. On cyclic associative Abel-Grassman groupoids. Br. J. Math. Comput. Sci. 2016, 12, 1–16. [Google Scholar] [CrossRef]
- Iqbal, M.; Ahmad, I. On further study of CA-AG-groupoids. Proc. Pak. Acad. Sci. A Phys. Comput. Sci. 2016, 53, 325–337. [Google Scholar]
- Iqbal, M.; Ahmad, I. Ideals in CA-AG-groupoids. Indian J. Pure Appl. Math. 2018, 49, 265–284. [Google Scholar] [CrossRef]
- Zhang, X.H.; Ma, Z.R.; Yuan, W.T. Cyclic Associative Groupoids (CA-Groupoids) and Cyclic Associative Neutrosophic Extended Triplet groupoids (CA-NET-Groupoids). Neutrosophic Sets Syst. 2019, 29, 19–29. [Google Scholar]
- Yuan, W.T.; Zhang, X.H. Regular CA-Groupoids and Cyclic Associative Neutrosophic Extended Triplet Groupoids (CA-NET-Groupoids) with Green Relations. Mathematics 2020, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.R.; Zhang, X.H.; Smarandache, F. Some Results on Various Cancellative CA-Groupoids and Variant CA-Groupoids. Symmetry 2020, 12, 315. [Google Scholar] [CrossRef] [Green Version]
- Gulistan, M.; Nawaz, S.; Hassan, N. Neutrosophic Triplet Non-Associative Semihypergroups with Application. Symmetry 2018, 10, 613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Samarandache, F.; Ma, Y.C. Neutrosophic Extended Triplet Semihypergroups and Regular Hypergroups. Symmetry 2019, 11, 1217. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.H.; Smarandache, F.; Zhang, X.H. ON Neutrosophic Extended Triplet LA-hypergroups and Strong Pure LA-semihypergroups. Symmetry 2020, 12, 163. [Google Scholar] [CrossRef] [Green Version]
- Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications; Pons Publishing House: Brussels, Belgium, 2017. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29, 595–601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Hu, Q.Q.; Smarandache, F.; An, X.G. On neutrosophic triplet groups: Basic properties, NT-subgroups, and some notes. Symmetry 2018, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- Jaíyéolá, T.G.; Smarandache, F. Some sesults on neutrosophic triplet group and their applications. Symmetry 2018, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Y.; Zhang, X.H. The decomposition theorems of AG-neutrosophic extended triplet loops and strong AG-(l, l)-loops. Mathematics 2019, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.C.; Zhang, X.H.; Yang, X.F.; Zhou, X. Generalized neutrosophic extended triplet group. Symmetry 2019, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Wang, X.J.; Smarandache, F.; Jaíyéolá, T.G.; Lian, T.Y. Singular neutrosophic extended triplet groups and generalized groups. Cogn. Syst. Res. 2019, 57, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Du, Y.D. A Class of BCI-algebra and Quasi-hyper BCI-algebra. Axioms, 2022; in press. [Google Scholar]
⋆ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | {0} | {0} | {0} | {0} |
1 | {0} | {0} | {0} | {0} |
2 | {0} | {0} | {0} | {0} |
3 | {0} | {0} | {1} | {0,2} |
⋆ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | {0} | {0} | {0} | {0} |
1 | {0} | {0} | {0} | {0} |
2 | {0} | {0} | {0} | {0} |
3 | {0} | {0} | {1} | {0,3} |
⋆ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | {0} | {0} | {0} | {0} |
1 | {0} | {0} | {0} | {0} |
2 | {0} | {0} | {0} | {0} |
3 | {0} | {0} | {0,2} | {0,3} |
⋆ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | {0,1,2,3} | {0,1,2,3} | {0,1,2,3} | {0,1,2,3} |
1 | {0,1,2,3} | {0,1,2,3} | {0,1,2,3} | {0,1,2,3} |
2 | {0,1,2,3} | {0,1,2,3} | {0,1,2,3} | {1,3} |
3 | {0,1,2,3} | {0,1,3} | {2,3} | {0,1,3} |
⋆ | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | {0} | {0} | {0} | {0} |
1 | {0} | {0} | {0} | {0} |
2 | {0} | {0} | {0} | {0} |
3 | {0} | {0} | {0,2} | {1,2} |
⋆ | I | R | R2 | R3 | L | L2 | L3 |
---|---|---|---|---|---|---|---|
I | {I} | {R,L3} | {R2,L2} | {R3,L} | {R3,L} | {R2,L2} | {R,L3} |
R | {R,L3} | {R2,L2} | {R3,L} | {I} | {I} | {R3,L} | {R2,L2} |
R2 | {R2,L2} | {R3,L} | {I} | {R,L3} | {R,L3} | {I} | {R3,L} |
R3 | {R3,L} | {I} | {R,L3} | {R2,L2} | {R2,L2} | {R,L3} | {I} |
L | {R3,L} | {I} | {R,L3} | {R2,L2} | {R2,L2} | {R,L3} | {I} |
L2 | {R2,L2} | {R3,L} | {I} | {R,L3} | {R,L3} | {I} | {R3,L} |
L3 | {R,L3} | {R2,L2} | {R3,L} | {I} | {I} | {R3,L} | {R2,L2} |
▴1 | 0 | 1 | 2 |
---|---|---|---|
0 | {0} | {0,1} | {0,1,2} |
1 | {0,1} | {1} | {0,1,2} |
2 | {0,1,2} | {0,1,2} | {0,1,2} |
▴2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|
3 | {4} | {3,4,5,6} | {4} | {3,4} |
4 | {4} | {3,4,5,6} | {4} | {4} |
5 | {4} | {3,4,5,6} | {4,5} | {3,4,6} |
6 | {3,4} | {3,4,5,6} | {3,4,6} | {3,4,6} |
▴ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
0 | {0} | {0,1} | {0,1,2} | {0} | {0} | {0} | {0} |
1 | {0,1} | {1} | {0,1,2} | {1} | {1} | {1} | {1} |
2 | {0,1,2} | {0,1,2} | {0,1,2} | {2} | {2} | {2} | {2} |
3 | {0} | {1} | {2} | {4} | {3,4,5,6} | {4} | {3,4} |
4 | {0} | {1} | {2} | {4} | {3,4,5,6} | {4} | {4} |
5 | {0} | {1} | {2} | {4} | {3,4,5,6} | {4,5} | {3,4,6} |
6 | {0} | {1} | {2} | {3,4} | {3,4,5,6} | {3,4,6} | {3,4,6} |
⋆ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
3 | {3} | {3,4} | {3,4,5} | {3} | {3} | {3} | {3} |
4 | {3,4} | {4} | {3,4,5} | {4} | {4} | {4} | {4} |
5 | {3,4,5} | {3,4,5} | {3,4,5} | {5} | {5} | {5} | {5} |
6 | {3} | {4} | {5} | {7} | {6,7,8,9} | {7} | {6,7} |
7 | {3} | {4} | {5} | {7} | {6,7,8,9} | {7} | {7} |
8 | {3} | {4} | {5} | {7} | {6,7,8,9} | {7 8} | {6,7,9} |
9 | {3} | {4} | {5} | {6,7} | {6,7,8,9} | {6,7,9} | {6,7,9} |
▪ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | {0} | {0,1} | {0,1,2} | {0} | {0} | {0} | {0} | {0} | {0} | {0} |
1 | {0,1} | {1} | {0,1,2} | {1} | {1} | {1} | {1} | {1} | {1} | {1} |
2 | {0,1,2} | {0,1,2} | {0,1,2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} |
3 | {0} | {1} | {2} | {3} | {3,4} | {3,4,5} | {3} | {3} | {3} | {3} |
4 | {0} | {1} | {2} | {3,4} | {4} | {3,4,5} | {4} | {4} | {4} | {4} |
5 | {0} | {1} | {2} | {3,4,5} | {3,4,5} | {3,4,5} | {5} | {5} | {5} | {5} |
6 | {0} | {1} | {2} | {3} | {4} | {5} | {7} | {6,7,8,9} | {7} | {6,7} |
7 | {0} | {1} | {2} | {3} | {4} | {5} | {7} | {6,7,8,9} | {7} | {7} |
8 | {0} | {1} | {2} | {3} | {4} | {5} | {7} | {6,7,8,9} | {7,8} | {6,7,9} |
9 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7} | {6,7,8,9} | {6,7,9} | {6,7,9} |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | {0} | {0,1} | {0,1,2} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} |
1 | {0,1} | {1} | {0,1,2} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} |
2 | {0,1,2} | {0,1,2} | {0,1,2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} |
3 | {0} | {1} | {2} | {3} | {3,4} | {3,4,5} | {3} | {3} | {3} | {3} | {3} | {3} | {3} |
4 | {0} | {1} | {2} | {3,4} | {4} | {3,4,5} | {4} | {4} | {4} | {4} | {4} | {4} | {4} |
5 | {0} | {1} | {2} | {3,4,5} | {3,4,5} | {3,4,5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} |
6 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {6,7} | {6,7,8} | {6} | {6} | {6} | {6} |
7 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7} | {7} | {6,7,8} | {7} | {7} | {7} | {7} |
8 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7,8} | {6,7,8} | {6,7,8} | {8} | {8} | {8} | {8} |
9 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {10} | {9,10,11,12} | {10} | {9,10} |
10 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {10} | {9,10,11,12} | {10} | {10} |
11 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {10} | {9,10,11,12} | {10,11} | {9,10,12} |
12 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9,10} | {9,10,11,12} | {9,10,12} | {9,10,12} |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | {0} | {0,1} | {0,1,2} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} |
1 | {0,1} | {1} | {0,1,2} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} |
2 | {0,1,2} | {0,1,2} | {0,1,2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} |
3 | {0} | {1} | {2} | {3} | {3,4} | {3,4,5} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} |
4 | {0} | {1} | {2} | {3,4} | {4} | {3,4,5} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} |
5 | {0} | {1} | {2} | {3,4,5} | {3,4,5} | {3,4,5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} |
6 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {6,7} | {6,7,8} | {6} | {6} | {6} | {6} | {6} | {6} | {6} |
7 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7} | {7} | {6,7,8} | {7} | {7} | {7} | {7} | {7} | {7} | {7} |
8 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7,8} | {6,7,8} | {6,7,8} | {8} | {8} | {8} | {8} | {8} | {8} | {8} |
9 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {9,10} | {9,10,11} | {9} | {9} | {9} | {9} |
10 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9,10} | {10} | {9,10,11} | {10} | {10} | {10} | {10} |
11 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9,10,11} | {9,10,11} | {9,10,11} | {11} | {11} | {11} | {11} |
12 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {13} | {12,13,14,15} | {13} | {12,13} |
13 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {13} | {12,13,14,15} | {13} | {13} |
14 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {13} | {12,13,14,15} | {13,14} | {12,13,15} |
15 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12,13} | {12,13,14,15} | {12,13,15} | {12,13,15} |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | {0} | {0,1} | {0,1,2} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} | {0} |
1 | {0,1} | {1} | {0,1,2} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} | {1} |
2 | {0,1,2} | {0,1,2} | {0,1,2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} | {2} |
3 | {0} | {1} | {2} | {3} | {3,4} | {3,4,5} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} | {3} |
4 | {0} | {1} | {2} | {3,4} | {4} | {3,4,5} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} | {4} |
5 | {0} | {1} | {2} | {3,4,5} | {3,4,5} | {3,4,5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} | {5} |
6 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {6,7} | {6,7,8} | {6} | {6} | {6} | {6} | {6} | {6} | {6} | {6} | {6} | {6} |
7 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7} | {7} | {6,7,8} | {7} | {7} | {7} | {7} | {7} | {7} | {7} | {7} | {7} | {7} |
8 | {0} | {1} | {2} | {3} | {4} | {5} | {6,7,8} | {6,7,8} | {6,7,8} | {8} | {8} | {8} | {8} | {8} | {8} | {8} | {8} | {8} | {8} |
9 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {9,10} | {9,10,11} | {9} | {9} | {9} | {9} | {9} | {9} | {9} |
10 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9,10} | {10} | {9,10,11} | {10} | {10} | {10} | {10} | {10} | {10} | {10} |
11 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9,10,11} | {9,10,11} | {9,10,11} | {11} | {11} | {11} | {11} | {11} | {11} | {11} |
12 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12} | {12,13} | {12,13,14} | {12} | {12} | {12} | {12} |
13 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12,13} | {13} | {12,13,14} | {13} | {13} | {13} | {13} |
14 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12,13,14} | {12,13,14} | {12,13,14} | {14} | {14} | {14} | {14} |
15 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12} | {13} | {14} | {16} | {15,16,17,18} | {16} | {15,16} |
16 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12} | {13} | {14} | {16} | {15,16,17,18} | {16} | {16} |
17 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12} | {13} | {14} | {16} | {15,16,17,18} | {16,17} | {15,16,18} |
18 | {0} | {1} | {2} | {3} | {4} | {5} | {6} | {7} | {8} | {9} | {10} | {11} | {12} | {13} | {14} | {15,16} | {15,16,17,18} | {15,16,18} | {15,16,18} |
⋆ | 0 | 1 | 2 |
---|---|---|---|
0 | {0} | {0} | {1} |
1 | {0} | {0} | {0} |
2 | {0} | {0} | {0,1} |
⋆ | 0 | 1 | 2 |
---|---|---|---|
0 | {0} | {0} | {0} |
1 | {0} | {0,1,2} | {1} |
2 | {0} | {0,1,2} | {0,1} |
⋆ | 0 | 1 | 2 |
---|---|---|---|
0 | {1} | {0,1,2} | {1} |
1 | {1} | {0,1,2} | {1} |
2 | {0,1} | {0,1,2} | {1, 2} |
⋆ | 0 | 1 | 2 |
---|---|---|---|
0 | {0} | {1,2} | {0,1,2} |
1 | {0,1,2} | {2} | {0,1,2} |
2 | {0,1,2} | {2} | {0,1,2} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Zhang, X. On Cyclic Associative Semihypergroups and Neutrosophic Extended Triplet Cyclic Associative Semihypergroups. Mathematics 2022, 10, 535. https://doi.org/10.3390/math10040535
Hu M, Zhang X. On Cyclic Associative Semihypergroups and Neutrosophic Extended Triplet Cyclic Associative Semihypergroups. Mathematics. 2022; 10(4):535. https://doi.org/10.3390/math10040535
Chicago/Turabian StyleHu, Minghao, and Xiaohong Zhang. 2022. "On Cyclic Associative Semihypergroups and Neutrosophic Extended Triplet Cyclic Associative Semihypergroups" Mathematics 10, no. 4: 535. https://doi.org/10.3390/math10040535
APA StyleHu, M., & Zhang, X. (2022). On Cyclic Associative Semihypergroups and Neutrosophic Extended Triplet Cyclic Associative Semihypergroups. Mathematics, 10(4), 535. https://doi.org/10.3390/math10040535