Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications
"> Figure 1
<p>Ceramic honeycomb monoliths with different cell density.</p> "> Figure 2
<p>Preparation steps for carbon-coated HMs.</p> "> Figure 3
<p>SEM microphotographs of carbon-coated HMs prepared by A: air blowing and B: spinning. From reference [<a href="#B20-materials-03-01203" class="html-bibr">20</a>], with permission from Elsevier.</p> "> Figure 4
<p>SEM pictures of the channels (cross section) from α-Al<sub>2</sub>O<sub>3</sub> coated monoliths after the first [(b) and (d)] and the last [(a) and (c)] coating. From reference [<a href="#B17-materials-03-01203" class="html-bibr">17</a>], with permission from Elsevier.</p> "> Figure 5
<p>CNF growth rate at 570 ºC as a function of time on stream from a 200 ml min<sup>-1</sup> gas mixture containing 50% CH<sub>4</sub> and 10% H<sub>2</sub> balance N<sub>2</sub>. Adapted from reference [<a href="#B26-materials-03-01203" class="html-bibr">26</a>], with permission from the Royal Society of Chemistry.</p> "> Figure 6
<p>Preparation steps for integral carbon HMs</p> "> Figure 7
<p>Relationship between the mechanical strength and interparticulate pore volume of the monolith composites. Origin of the commercial activated carbon used in the composite: coal ( <span class="html-fig-inline" id="materials-03-01203-i001"> <img alt="Materials 03 01203 i001" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i001.png"/></span>), nutshell ( <span class="html-fig-inline" id="materials-03-01203-i002"> <img alt="Materials 03 01203 i002" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i002.png"/></span>), wood ( <span class="html-fig-inline" id="materials-03-01203-i003"> <img alt="Materials 03 01203 i003" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i003.png"/></span>) and peat ( <span class="html-fig-inline" id="materials-03-01203-i004"> <img alt="Materials 03 01203 i004" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i004.png"/></span>). From reference [<a href="#B33-materials-03-01203" class="html-bibr">33</a>], with permission from Elsevier.</p> "> Figure 8
<p>Breakthrough profiles for carbon-packed beds and monoliths (31 and 62 cells/cm<sup>2</sup>) ( <span class="html-fig-inline" id="materials-03-01203-i005"> <img alt="Materials 03 01203 i005" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i005.png"/></span>, Norit R1 4.3 g; <span class="html-fig-inline" id="materials-03-01203-i006"> <img alt="Materials 03 01203 i006" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i006.png"/></span>, Norit R1 8.6 g; <span class="html-fig-inline" id="materials-03-01203-i007"> <img alt="Materials 03 01203 i007" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i007.png"/></span>, Norit R1 13 g; <span class="html-fig-inline" id="materials-03-01203-i008"> <img alt="Materials 03 01203 i008" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i008.png"/></span>, (31 cells/cm<sup>2</sup>)-5 cm-5 cm; <span class="html-fig-inline" id="materials-03-01203-i009"> <img alt="Materials 03 01203 i009" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i009.png"/></span>, (31 cells/cm<sup>2</sup>)-5 cm-10 cm; <span class="html-fig-inline" id="materials-03-01203-i010"> <img alt="Materials 03 01203 i010" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i010.png"/></span>, (31 cells/cm<sup>2</sup>)-5 cm-15 cm; <span class="html-fig-inline" id="materials-03-01203-i011"> <img alt="Materials 03 01203 i011" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i011.png"/></span>, (62 cells/cm<sup>2</sup>)-5 cm-5 cm; <span class="html-fig-inline" id="materials-03-01203-i012"> <img alt="Materials 03 01203 i012" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i012.png"/></span>, (62 cells/cm<sup>2</sup>)-5 cm-10 cm; <span class="html-fig-inline" id="materials-03-01203-i013"> <img alt="Materials 03 01203 i013" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i013.png"/></span>, (62 cells/cm<sup>2</sup>)-5 cm-15 cm. From reference [<a href="#B40-materials-03-01203" class="html-bibr">40</a>], with permission from Elsevier.</p> "> Figure 9
<p>The dynamic adsorption efficiency towards o-DCB for different contact times and temperatures: 30 ºC ( <span class="html-fig-inline" id="materials-03-01203-i014"> <img alt="Materials 03 01203 i014" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i014.png"/></span>), 100 ºC ( <span class="html-fig-inline" id="materials-03-01203-i015"> <img alt="Materials 03 01203 i015" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i015.png"/></span>) and 150 ºC ( <span class="html-fig-inline" id="materials-03-01203-i016"> <img alt="Materials 03 01203 i016" src="/materials/materials-03-01203/article_deploy/html/images/materials-03-01203-i016.png"/></span>). From reference [<a href="#B43-materials-03-01203" class="html-bibr">43</a>], with permission from Elsevier.</p> "> Figure 10
<p>Kinetics of CO<sub>2</sub> and CH<sub>4</sub> adsorption on carbon honeycomb HP110 and a commercial carbon molecular sieve CMS. From reference [<a href="#B24-materials-03-01203" class="html-bibr">24</a>], with permission from Elsevier.</p> "> Figure 11
<p>Activity of the catalysts in the m-xylene combustion (μmol of m-xylene burned per gram of Pd and per second). From reference [<a href="#B67-materials-03-01203" class="html-bibr">67</a>], with permission of Elsevier.</p> ">
Abstract
:1. Introduction
2. Preparation Methods
2.1. Carbon-coated HMs
2.1.1. Dip-coating
2.1.2. CVD
Growth temperature (ºC) | CNF/monolith (wt %) | CNF/alumina (wt/wt) | Average coating thickness (μm) | Nanofiber diameter (nm) | Composite mechanical strength (MPa) |
---|---|---|---|---|---|
600 | 13.2 | 2.4 | 2.2 | 5–10 | 35 |
650 | 16 | 3.0 | 4 | 10–30 | 30 |
700 | 17.8 | 3.3 | 4 | 10–30 | ---- |
2.2. Integral carbon HMs
Function | Additive |
---|---|
Agglomerant | Methylcellulose, starch, polyvinyl alcohol, hydroxyethyl cellulose, dextrine from potato starch |
Plasticizer | Polyethilene glycol, glycerine |
Defloculating | Glycerine, ammonium poliacrylate, oleic acid |
Lubricant | Oleic acid, aluminium stearate, stearic acid |
Dispersant | Aluminium phosphate hydrate dissolved in o-phosphoric acid, gelatine from porcine skin |
Humidifying | Ethanol, kerosene |
Drying | Gelatine from porcine skin, ferric chloride hexahydrate, aluminium chloride |
Activation temperature (ºC) | Activation time (h) | Burn-off (%) | SBET (m2/g) | Micropore volume (cm3/g) | Micropore width (nm) |
---|---|---|---|---|---|
850 | 1 | 8 | 481 | 0.24 | 2.24 |
850 | 3 | 19 | 658 | 0.33 | 1.40 |
850 | 8 | 47 | 968 | 0.51 | 1.58 |
950 | 1 | 31 | 831 | 0.47 | 1.83 |
3. Environmental Applications
3.1. Carbon-based HMs as adsorbents
Cell density – individual piece length | Total length (cm) | ||
---|---|---|---|
5 | 10 | 15 | |
31 cells/cm2 – 5 cm | 31.7 | 41.7 | 46.7 |
62 cells/cm2 – 5 cm | 24.3 | 36.2 | 45.0 |
93 cells/cm2 – 2.5 cm | 15.3 | 22.4 | 31.4 |
140 cells/cm2 – 1 cm | 16.5 | 20.2 | 31.9 |
3.2. Carbon-based HMs as supports for catalysts
Reaction temperature (ºC) | TOF (s-1) x 10–4 | ||
---|---|---|---|
With fresh catalyst | 20h Time-on-stream with SO2 | ||
150 | 1.7 | 4.9 | |
180 | 4.9 | 9.6 |
Support | SBET (m2/g) | SExternal (m2/g) | VMacro(cm3/g) | VMeso (cm3/g) |
---|---|---|---|---|
WA | 474 (1366) | 4 (12) | 0.325 (0.937) | 0 |
WB | 460 (1489) | 62 (199) | 0.233 (0.754) | 0.138 (0.447) |
HPM | (2) | (<1) | non detected | non detected |
Catalyst | Benzene | Toluene | m-Xylene |
---|---|---|---|
Pt/CNF | 5.07 | 2.79 | 1.95 |
Pd/CNF | 1.38 | 0.62 | 0.56 |
Pt/Alumina | 0.24 | 0.55 | 0.46 |
Pd/Alumina | 0.16 | 0.40 | 0.23 |
4. Conclusions
References
- Lox, E.S.J.; Engler, B.H. Environmental catalysis—Mobile sources. In Environmental Catalysis; Ertl, G., Knözinger, H., Weitkamp, J., Eds.; Wiley−VCH: Weinheim, Germany, 1999; pp. 1–117. [Google Scholar]
- Vergunst, T.; Linders, M.J.G.; Kapteijn, F.; Moulijn, J.A. Carbon-based monolithic structures. Catal. Rev. Sci. Eng. 2001, 43, 291–314. [Google Scholar] [CrossRef]
- Williams, J.L. Monolith structures, materials, properties and uses. Catal. Today 2001, 69, 3–9. [Google Scholar] [CrossRef]
- Avila, P.; Montes, M.; Miró, E.E. Monolithic reactors for environmental applications. A review on preparation technologies. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- Heck, R.M.; Gulati, S.; Farrauto, R.J. The application of monoliths for gas phase catalytic reactions. Chem. Eng. J. 2001, 82, 149–156. [Google Scholar] [CrossRef]
- Nijhuis, T.A.; Beers, A.E.W.; Vergunst, T.; Hoek, I.; Kapteijn, F.; Moulijn, J.A. Preparation of monolithic catalysts. Catal. Rev. Sci. Eng. 2001, 43, 345–380. [Google Scholar] [CrossRef]
- Radovic, L.R.; Moreno-Castilla, C.; Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. In Chemistry and Physics of Carbon; Radovic, L.R., Ed.; Marcel Dekker: New York, NY, USA, 2001; Volume 27, pp. 227–406. [Google Scholar]
- Bottani, E.J.; Tascón, J.M.D. Adsorption by Carbons; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Radovic, L.R.; Rodríguez-Reinoso, F. Carbon materials in catalysis. In Chemistry and Physics of Carbon; Radovic, L.R., Ed.; Marcel Dekker: New York, NY, USA, 1997; Volume 25, pp. 243–250. [Google Scholar]
- Serp, P.; Figueiredo, J.L. Carbons Materials for Catalysis; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zhang, M.; Zhou, B.; Chuang, K.T. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures. Appl. Catal. B Environ. 2001, 13, 123–130. [Google Scholar] [CrossRef]
- Maldonado-Hódar, F.J.; Moreno-Castilla, C.; Pérez-Cadenas, A.F. Catalytic combustion of toluene on platinum-containing monolithic carbon aerogels. Appl. Catal. B Environ. 2004, 54, 217–224. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Kapteijn, F.; Zieverink, M.M.P.; Moulijn, J.A. Selective hydrogenation of fatty acid methyl esters over palladium on carbon-based monoliths: Structural control of activity and selectivity. Catal. Today 2007, 128, 13–17. [Google Scholar] [CrossRef]
- Bardhan, P. Ceramic honeycomb filters and catalysts. Curr. Opin. Solid State Mater. Sci. 1997, 2, 577–583. [Google Scholar] [CrossRef]
- Xu, X.; Moulijn, J.A. Transformation of a structural carrier into a structured catalys. In Structured Catalysts and Reactors, 2nd ed.; Cybulski, A., Moulijn, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 751–778. [Google Scholar]
- Pérez-Cadenas, A.F.; Kapteijn, F.; Moulijn, J.A. Tuning the morphology of monolith coatings. Appl. Catal. A: Gen. 2007, 319, 267–271. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Zieverink, M.M.P.; Kapteijn, F.; Moulijn, J.A. High performance monolithic catalysts for hydrogenation reactions. Catal. Today 2005, 105, 623–628. [Google Scholar] [CrossRef]
- Gadkaree, K.P. Carbon honeycomb structures for adsorption applications. Carbon 1998, 36, 981–989. [Google Scholar] [CrossRef]
- de Lathouder, K.M.; Bakker, J.; Kreutzer, M.T.; Kapteijn, F.; Moulijn, J.A.; Wallin, S.A. Structured reactors for enzyme immobilization: Advantages of tuning the wall morphology. Chem. Eng. Sci. 2004, 59, 5027–5033. [Google Scholar] [CrossRef]
- Valdés-Solis, T.; Marbán, G.; Fuertes, A.B. Preparation of microporous carbon-ceramic cellular monoliths. Microporous Mesoporous Mater. 2001, 43, 113–126. [Google Scholar] [CrossRef]
- Garcia-Bordejé, E.; Kapteijn, F.; Moulijn, J.A. Preparation and characterisation aspects of carbon-coated monoliths. Catal. Today 2001, 69, 357–363. [Google Scholar] [CrossRef]
- Garcia-Bordejé, E.; Kapteijn, F.; Moulijn, J.A. Preparation and characterisation of carbon-coated monoliths for catalyst supports. Carbon 2002, 40, 1079–1088. [Google Scholar] [CrossRef]
- Vergunst, T.; Kapteijn, F.; Moulijn, J.A. Preparation of carbon-coated monolithic supports. Carbon 2002, 40, 1891–1902. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Blanco, C.; Linares-Solano, A.; Brydson, R.; Rand, B. Development of new carbon honeycomb structures from cellulose and pitch. Carbon 2002, 541–550. [Google Scholar] [CrossRef]
- Jarrah, N.; van Ommen, J.G.; Lefferts, L. Development of monolith with a carbon-nanofiber-washcoat as a structured catalyst support in liquid phase. Catal. Today 2003, 79–80, 29–33. [Google Scholar]
- Jarrah, N.A.; van Ommen, J.G.; Lefferts, L. Growing a carbon nano-fiber layer on a monolith support; effect of nickel loading and growth conditions. J. Mater. Chem. 2004, 14, 1590–1597. [Google Scholar] [CrossRef]
- De Lathouder, K.M.; Lozano, C.; Linares-Solano, A.; Kapteijn, F.; Moulijn, J.A. Carbon coated monoliths as support material for a lactase from Aspergillus oryzae: Characterization and design of the carbon carriers. Carbon 2006, 44, 3053–3063. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Kvande, I.; Chen, D.; Ronning, M. Carbon nanofibers uniformly grown on gamma-alumina washcoated cordierite monoliths. Adv. Mater. 2006, 18, 1589–1592. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Kvande, I.; Chen, D.; Ronning, M. Synthesis of composite materials of carbon nanofibres and ceramic monoliths with uniform and tuneable nanofibre layer thickness. Carbon 2007, 45, 1828–1838. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Pérez-Cadenas, A.F.; Kapteijn, F.; Carrasco-Marin, F.; Maldonado-Hodar, F.J.; Moulijn, J.A. Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Appl. Catal. B Environ. 2009, 89, 411–419. [Google Scholar] [CrossRef]
- Gatica, J.M.; Rodríguez-Izquierdo, J.M.; Sánchez, D.; Ania, C.; Parra, J.B.; Vidal, H. Extension of preparation methods employed with ceramic materials to carbon honeycomb monoliths. Carbon 2004, 42, 3251–3254. [Google Scholar] [CrossRef]
- Gadkaree, K.P.; Jaroniec, M. Pore structure development in activated carbon honeycombs. Carbon 2000, 38, 983–993. [Google Scholar] [CrossRef]
- Yates, M.; Blanco, J.; Ávila, P.; Martin, M.P. Honeycomb monoliths of activated carbons for effluent gas purification. Microporous Mesoporous Mater. 2000, 37, 201–208. [Google Scholar] [CrossRef]
- Crittenden, B.; Patton, A.; Jouin, C.; Perera, S.; Tennison, S.; Botas-Echevarría, J.A. Adsorption 2005, 11, 537–541.
- Tennison, S.R. Phenolic-resin-derived activated carbons. Appl. Catal. A Gen. 1998, 173, 289–311. [Google Scholar] [CrossRef]
- Tennison, S.R.; Blackburn, A.; Rawlinson, A.; Place, R.; Crittenden, B.D.; Fair, S. Electrically regenerable monolithic adsorption system for the recovery and recycle of solvent vapours. In Proc. AIChE Spring Meeting, Houston, USA, 21–26 April 2001. Manuscript 109e.
- Liu, L.; Liu, Z.; Huang, Z.; Liu, Z.; Liu, P. Preparation of activated carbon honeycomb monolith directly from coal. Carbon 2006, 44, 1598–1601. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Yang, J.; Huang, Z.; Liu, Z. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith. Carbon 2007, 45, 2836–2842. [Google Scholar] [CrossRef]
- Thiruvenkatachari, R.; Su, S.; An, H.; Xiang Yu, X. Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog. Energ. Combust. 2009, 35, 438–455. [Google Scholar] [CrossRef]
- Valdés-Solís, T.; Linders, M.J.G.; Kapteijn, F.; Marbán, G.; Fuertes, A.B. Adsorption and breakthrough performance of carbon-coated ceramic monoliths at low concentration of n-butane. Chem. Eng. Sci. 2004, 59, 2791–2800. [Google Scholar] [CrossRef]
- Yates, M.; Blanco, J.; Ávila, P.; Martín, M.P. Honeycomb monoliths of activated carbons for effluent gas purification. Microporous Mesoporous Mater. 2000, 37, 201–208. [Google Scholar] [CrossRef]
- Yates, M.; Blanco, J.; Martín-Luengo, M. A. The dynamic adsorption behaviour of volatile organic compounds on activated carbon honeycomb monoliths. Stud. Surf. Sci. Catal. 2002, 144, 569–576. [Google Scholar]
- Yates, M.; Martín, J. A.; Martín-Luengo, M. A.; Blanco, J. Study of the efficiency of monolithic activated carbon adsorption units. Stud. Surf. Sci. Catal. 2007, 160, 583–590. [Google Scholar]
- Yates, M.; Blanco, J.; Martin-Luengo, M.A.; Martín, M.P. Vapour adsorption capacity of controlled porosity honeycomb monoliths. Microporous Mesoporous Mater. 2003, 65, 219–231. [Google Scholar] [CrossRef]
- Gatica, J.M.; Rodríguez-Izquierdo, J.M.; Sánchez, D.; Chafik, T.; Harti, S.; Zaitan, H.; Vidal, H. Originally prepared carbon-based honeycomb monoliths with potential application as VOCs adsorbents. C.R. Chimie 2006, 9, 1215–1220. [Google Scholar] [CrossRef]
- R.P. Ribeiro, R.P.; Sauer, T.P.; Lopes, F.V.; Moreira, R.F.; Grande, C.A.; Rodrigues, A.E. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith. J. Chem. Eng. Data 2008, 53, 2311–2317. [Google Scholar] [CrossRef]
- Grande, C.A.; Rodrigues, A.E. Electric swing adsorption for CO2 removal from flue gases. Int. J Greenhouse Gas Control 2008, 2, 194–202. [Google Scholar]
- Yu, F.D.; Luo, L.; Grevillot, G. Electrothermal swing adsorption of toluene on an activated carbon monolith. Experiments and parametric theoretical studies. Chem. Eng. Process. 2007, 46, 70–81. [Google Scholar] [CrossRef]
- López, D.; Hoyos, J.; Mondragón, F. Low temperature catalytic adsorption of NO on activated carbon honeycomb (ACH) monoliths. In The Annual World Conference on Carbon, Biarritz, France, 14–19 June 2009. Manuscript 137.
- Bosch, H.; Janssen, F. Monographic number on NOx removal processes. Catal. Today 1988, 2, 369–531. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Calvillo, L.; Lázaro, M.J.; Moliner, R. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature: Effect of pore structure. Appl. Catal. B: Environ. 2004, 50, 235–242. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Lázaro, M.J.; Moliner, R.; Galindo, J.F.; Sotres, J.; Baró, A.M. Structure of vanadium oxide supported on mesoporous carbon-coated monoliths and relationship with its catalytic performance in the SCR of NO at low temperatures. J. Catal. 2004, 223, 395–403. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Calvillo, L.; Lázaro, M.J.; Moliner, R. Study of configuration and coating thickness of vanadium on carbon-coated monoliths in the SCR of NO at low temperature. Ind. Eng. Chem. Res. 2004, 43, 4073–4079. [Google Scholar] [CrossRef]
- Valdés-Solís, T.; Marbán, G.; Fuertes, A.B. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Appl. Catal. B: Environ. 2003, 46, 261–271. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Lázaro, M.J.; Moliner, R.; Álvarez, P.M.; Gómez-Serrano, V.; Fierro, J.L.G. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures: Influence of the oxidation pre-treatment. Carbon 2006, 44, 407–417. [Google Scholar] [CrossRef]
- Boyano, A.; Iritia, M.C.; Malpartida, I.; Larrubia, M.A.; Alemany, L.J.; Moliner, R.; Lázaro, M.J. Vanadium-loaded carbon-based monoliths for on-board NO reduction: Influence of nature and concentration of the oxidation agent on activity. Catal. Today 2008, 137, 222–227. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Monzón, A.; Lázaro, M.J.; Moliner, R. Promotion by a second metal or SO2 over vanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at low temperature. Catal. Today 2005, 102–103, 177–182. [Google Scholar]
- Wang, Y.; Huang, Z.; Liu, Z.; Liu, Q. A novel activated carbon honeycomb for simultaneous SO2 and NO removal at low temperatures. Carbon 2004, 42, 445–448. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Zhan, L.; Huang, Z.; Liu, Q.; Ma, J. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal. Chem. Eng. Sci. 2004, 59, 5283–5290. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.; Fierro, J.L.G. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. J. Catal. 2005, 233, 166–175. [Google Scholar] [CrossRef]
- García-Bordejé, E.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2 traces in the gas feed. Appl. Catal. B: Environ. 2006, 66, 281–287. [Google Scholar] [CrossRef]
- Boyano, A.; Lázaro, M.J.; Cristiani, C.; Maldonado-Hódar, F.J.; Forzatti, P.; Moliner, R. A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for selective catalytic reduction of NO by NH3. Chem. Eng. J. 2009, 149, 173–182. [Google Scholar] [CrossRef]
- Valdés-Solís, T.; Marbán, G.; Fuertes, A.B. Low-temperature SCR of NOx with NH3 over carbon-ceramic cellular monolith-supported manganese oxide. Catal. Today 2001, 69, 259–264. [Google Scholar] [CrossRef]
- Tang, X.; Hao, J.; Yi, H.; Li, J. Low-temperature SCR of NOx with NH3 over AC/C supported manganese –based monolithic catalysts. Catal. Today 2007, 126, 406–411. [Google Scholar] [CrossRef]
- Ouzzine, M.; Cifredo, G.A.; Gatica, J.M.; Harti, S.; Chafik, T.; Vidal, H. Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effects of preparation variables. Appl. Catal. A: Gen. 2008, 342, 150–158. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Kapteijn, F.; Moulijn, J.A.; Maldonado-Hódar, F.J.; Carrasco-Marín, F.; Moreno-Castilla, C. Pd and Pt catalysts supported on carbon coated monoliths for low-temperature combustion of xylenes. Carbon 2006, 44, 2463–2468. [Google Scholar] [CrossRef]
- Perez-Cadenas, A.F.; Morales-Torres, S.; Kapteijn, F.; Maldonado-Hodar, F.J.; Carrasco-Marin, F.; Moreno-Castilla, C.; Moulijn, J.A. Carbon-based monolithic supports for palladium catalysts: The role of the porosity in the gas-phase total combustion of m-xylene. Appl. Catal. B: Environ. 2008, 77, 272–277. [Google Scholar] [CrossRef]
- Pérez-Cadenas, A.F.; Morales-Torres, S.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Carbon-based monoliths for the catalytic elimination of benzene, toluene and m-xylene. Appl. Catal. A: Gen. 2009, 366, 282–287. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moreno-Castilla, C.; Pérez-Cadenas, A.F. Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications. Materials 2010, 3, 1203-1227. https://doi.org/10.3390/ma3021203
Moreno-Castilla C, Pérez-Cadenas AF. Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications. Materials. 2010; 3(2):1203-1227. https://doi.org/10.3390/ma3021203
Chicago/Turabian StyleMoreno-Castilla, Carlos, and Agustín F. Pérez-Cadenas. 2010. "Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications" Materials 3, no. 2: 1203-1227. https://doi.org/10.3390/ma3021203
APA StyleMoreno-Castilla, C., & Pérez-Cadenas, A. F. (2010). Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications. Materials, 3(2), 1203-1227. https://doi.org/10.3390/ma3021203