A Review of Keratin-Based Biomaterials for Biomedical Applications
Abstract
:1. Introduction
2. Keratin Biology
2.1. Hair Keratins
2.2. Development of Hair Keratins
3. History of Keratin Biomaterials
3.1. Early Uses of Keratins
3.2. Keratin Research from 1940−1970
3.3. Keratin Research from 1970-Present
4. Keratin Biomaterials
4.1. Keratin Films
4.2. Keratin Sponges and Scaffolds
4.3. Keratin Fibers
5. Keratin Biomaterials in Tissue Engineering and Regenerative Medicine
6. Conclusions
References
- Moll, R.; Franke, W.W.; Schiller, D.L.; Geiger, B.; Krepler, R. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982, 31, 11–24. [Google Scholar]
- Fraser, R.D.; MacRae, T.P.; Parry, D.A.; Suzuki, E. Intermediate filaments in alpha-keratins. Proc. Natl. Acad. Sci. USA 1986, 83, 1179–1183. [Google Scholar]
- Coulombe, P.A.; Bousquet, O.; Ma, L.; Yamada, S.; Wirtz, D. The 'ins' and 'outs' of intermediate filament organization. Tr. Cell Biol. 2000, 10, 420–428. [Google Scholar] [CrossRef]
- Schweizer, J.; Bowden, P.E.; Coulombe, P.A.; Langbein, L.; Lane, E.B.; Magin, T.M.; Maltais, L.; Omary, M.B.; Parry, D.A.; Rogers, M.A.; Wright, M.W. New consensus nomenclature for mammalian keratins. J. Cell Biol. 2006, 174, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Moll, R.; Divo, M.; Langbein, L. The human keratins: Biology and pathology. Histochem. Cell Biol. 2008, 129, 705–733. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, D.; Checkla, D.M.; Freedberg, I.M.; Bertolino, A.P. Human Hair Keratins. J. Invest. Dermatol. 1993, 101, 56S–59S. [Google Scholar] [CrossRef] [PubMed]
- Crewther, W.G.; Fraser, R.D.B.; Lennox, F.G.; Lindley, H. The Chemistry of Keratins. In Advances in Protein Chemistry; Anfinsen, C.B., Anson, M.L., Edsall, J.T., Richards, F.M., Eds.; Academic Press: New York, USA, 1965; Volume 20, pp. 191–347. [Google Scholar]
- Rogers, M.A.; Langbein, L.; Praetzel-Wunder, S.; Winter, H.; Schweizer, J. Human hair keratin-associated proteins (KAPs). Int. Rev. Cytol. 2006, 251, 209–263. [Google Scholar] [PubMed]
- Stenn, K.S.; Paus, R. What controls hair follicle cycling? Exp. Dermatol. 1999, 8, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Fuchs, E. The hair cycle. J. Cell Sci. 2006, 119, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Langbein, L.; Rogers, M.A.; Winter, H.; Praetzel, S.; Beckhaus, U.; Rackwitz, H.R.; Schweizer, J. The catalog of human hair keratins. I. Expression of the nine type I members in the hair follicle. J. Biol. Chem. 1999, 274, 19874–19884. [Google Scholar] [CrossRef] [PubMed]
- Langbein, L.; Rogers, M.A.; Winter, H.; Praetzel, S.; Schweizer, J. The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J. Biol. Chem. 2001, 276, 35123–35132. [Google Scholar] [CrossRef] [PubMed]
- Langbein, L.; Schweizer, J. Keratins of the human hair follicle. Int. Rev. Cytol. 2005, 243, 1–78. [Google Scholar] [PubMed]
- Schweizer, J.; Langbein, L.; Rogers, M.A.; Winter, H. Hair follicle-specific keratins and their diseases. Exp. Cell Res. 2007, 313, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Zhen, L.S. Ben Cao Gang Mu; The Time Literature & Art Press: Changchun, Jilin, China, 2005. [Google Scholar]
- Hofmeier, J. Horn-lime plastic masses from keratin substances. German Pat. DE184915, 18 December 1905. [Google Scholar]
- Breinl, F.; Baudisch, O. The oxidative breaking up of keratin through treatment with hydrogen peroxide. Z Physiol. Chem. 1907, 52, 158–169. [Google Scholar] [CrossRef]
- Neuberg, C. Process of producing digestable substances from keratin. US Pat. 926,999, 6 July 1909. [Google Scholar]
- Lissizin, T. Behavior of keratin sulfur and cystin sulfur in the oxidation of these proteins by potassium permanganate I. Biochem. Bull. 1915, 4, 18–23. [Google Scholar]
- Zdenko, S. Solubility and digestibility of the degradation products of albumoids I. Z Physiol. Chem. 1924, 136, 160–172. [Google Scholar] [CrossRef]
- Lissizin, T. The oxidation products of keratin by oxidation with permanganate II. Z Physiol. Chem. 1928, 173, 309–311. [Google Scholar] [CrossRef]
- Goddard, D.R.; Michaelis, L. Derivatives of Keratin. J. Biol. Chem. 1935, 112, 361–371. [Google Scholar]
- Beyer, C. The keratin or horny substance of the hair. German Pat. DE22643, 14 October 1907. [Google Scholar]
- Goldsmith, B.B. Thermoplastic composition containing keratin. US Pat. 922,692, 25 May 1909. [Google Scholar]
- Dale, H.N. Keratin and other coatings for pills. Pharm. J. 1932, 129, 494–495. [Google Scholar]
- Rivett, D.E.; Ward, S.W.; Belkin, L.M.; Ramshaw, J.A.M.; Wilshire, J.F.K. Keratin and Wool Research. In The Lennox Legacy; CSIRO Publishing: Collingwood, VIC, Australia, 1996. [Google Scholar]
- van den Bergh, J.; Milo, G.J.; van Dijk, H.E.P. Keratin-resin threads, films, etc. Netherlands Pat. NL51000577, 15 December 1941. [Google Scholar]
- Orwin, D.F.G; Baumann, H.; Asquith, R.S.; Parry, D.A.D. Fibrous Proteins: Scientific, Industrial and Medical Aspects; Parry, D.A.D., Creamer, L.K., Eds.; Academic Press: New York, NY, USA, 1979; pp. 271–427. [Google Scholar]
- Earland, C.; Knight, C.S. Structure of keratin II: Amino acid content of fractions isolated from oxidized wool. Biochem. Biophys. Acta 1956, 22, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, M.; Chonan, Y.; Toyoda, H. Solubilization of keratin 6: Solubilization of feather keratin by oxidation with performic acid. Hikaku Kagaku 1974, 20, 151–162. [Google Scholar]
- Buchanan, J.H. A cystine-rich protein fraction from oxidized alpha-keratin. Biochem. J. 1977, 167, 489–491. [Google Scholar]
- Matsunga, A.; Chonan, Y.; Toyoda, H. Studies on the chemical properties of human hair keratin, Part 1: Fractionation and amino acid composition of human hair solubilized by performic acid oxidation. Hikaku Kagaku 1981, 27, 21–29. [Google Scholar]
- Anker, C.A. Method of preparing keratin-containing films and coatings. US Pat. 3,642,498, 15 February 1972. [Google Scholar]
- Kawano, Y.; Okamoto, S. Film and gels of keratin. Kagaku Seibutsu 1975, 13, 291–292. [Google Scholar]
- Okamoto, S. Formation of films from some proteins. Nippon Shokuhin Kogyo Gakkaishi 1977, 24, 40–50. [Google Scholar] [CrossRef]
- Noishiki, Y.; Ito, H.; Miyamoto, T.; Inagaki, H. Application of Denatured Wool Keratin Derivatives to an Antithrombogenic Biomaterial-Vascular Graft Coated with a Heparinized Keratin Derivative. Kobunshi Ronbunshu 1982, 39, 221–227. [Google Scholar] [CrossRef]
- Ito, H.; Miyamoto, T.; Inagaki, H.; Noishiki, Y. Biocompatibility of Denatured Keratins from Wool. Kobunshi Ronbunshu 1982, 39, 249–256. [Google Scholar] [CrossRef]
- Jarman, T.; Light, J. Prospects for novel biomaterials development. In World Biotech Report; Pinner: Middlesex, UK, 1985; Volume 1, pp. 505–512. [Google Scholar]
- Various Authors Biomaterial forefront: Keratin which can be extracted by simple chemical technique. Kogyo Zairyo 1993, 41, 106–109.
- van de Locht, M. Reconstitution of microfibrils from wool and filaments from epidermis proteins. Melliand Textilberichte 1987, 10, 780–786. [Google Scholar]
- Steinert, P.M.; Gullino, M.I. Bovine epidermal keratin filament assembly in vitor. Biochem. Biophys. Res. Commun. 1976, 70, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.; Conrads, A.; Phan, P.H.; van de Locht, M.; Zahn, H. In vitor reconstitution of wool intermediate filaments. Int. J. Biol. Macromol. 1986, 8, 258–264. [Google Scholar] [CrossRef]
- Ikkai, F.; Naito, S. Dynamic light scattering and circular dichroism studies on heat-induced gelation of hard-keratin protein aqueous solutions. Biomacromolecules 2002, 3, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Furuta, Y.; Takeshima, H.; Tanabe, T.; Yamauchi, K. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J. Biotechnol. 2002, 93, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Verma, P.; Ray, P.; Ray, A.R. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed. Mater. 2008, 3, 25007. [Google Scholar] [CrossRef]
- Magin, T.M.; Vijayaraj, P.; Leube, R.E. Structural and regulatory functions of keratins. Exp. Cell Res. 2007, 313, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- Izawa, I.; Inagaki, M. Regulatory mechanisms and functions of intermediate filaments: A study using site- and phosphorylation state-specific antibodies. Cancer Sci. 2006, 97, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Yamauchi, A.; Kusunoki, T.; Kohda, A.; Konishi, Y. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. 1996, 31, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Maniwa, M.; Mori, T. Cultivation of fibroblast cells on keratin-coated substrata. J. Biomat. Sci.-Polym. E. 1998, 9, 259–270. [Google Scholar] [CrossRef]
- Fujii, T.; Ogiwara, D.; Arimoto, M. Convenient procedures for human hair protein films and properties of alkaline phosphatase incorporated in the film. Biol. Pharm. Bull. 2004, 27, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, T.; Okitsu, N.; Tachibana, A.; Yamauchi, K. Preparation and characterization of keratin-chitosan composite film. Biomaterials 2002, 23, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Hojo, H.; Yamamoto, Y.; Tanabe, T. Enhanced cell adhesion on RGDS-carrying keratin film. Mat. Sci. Eng. C-Bio. S. 2003, 23, 467–472. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ha, W.S. DSC studies on bound water in silk fibroin/S-carboxymethyl kerateine blend films. Polymer 1999, 40, 4131–4134. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kong, S.J.; Park, W.H.; Ha, W.S.; Kwon, I.C. Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films. J. Biomater. Sci. Polym. Ed. 1998, 9, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y. Characterization of Silk/Fibroin/S-carboxymethyl Kerateine Surfaces: Evaluation of Biocompatibility by Contact Angle Measurements. Fibers Polym. 2001, 2, 71–74. [Google Scholar] [CrossRef]
- Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 2008, 9, 1299–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonin, C.; Aluigi, A.; Vineis, C.; Varesano, A.; Montarsolo, A.; Ferrero, F. Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J. Therm. Anal. Calorim. 2007, 89, 601–608. [Google Scholar] [CrossRef]
- Zoccola, M.; Montarsolo, A.; Aluigi, A.; Varesano, A.; Vineis, C.; Tonin, C. Electrospinning of polyamide 6/modified-keratin blends. E-Polym. 2007, (no. 105). [Google Scholar]
- Fujii, T.; Ide, Y. Preparation of translucent and flexible human hair protein films and their properties. Biol. Pharm. Bull. 2004, 27, 1433–1436. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Shibayama, M.; Tanabe, T.; Yamauchi, K. Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 2004, 25, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Reichl, S. Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 2009, 30, 6854–6866. [Google Scholar] [CrossRef] [PubMed]
- Kurimoto, A.; Tanabe, T.; Tachibana, A.; Yamauchi, K. Keratin sponge: Immobilization of lysozyme. J. Biosci. Bioeng. 2003, 96, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Kaneko, S.; Tanabe, T.; Yamauchi, K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 2005, 26, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, A.; Nishikawa, Y.; Nishino, M.; Kaneko, S.; Tanabe, T.; Yamauchi, K. Modified keratin sponge: Binding of bone morphogenetic protein-2 and osteoblast differentiation. J. Biosci. Bioeng. 2006, 102, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Tanabe, T.; Yamauchi, K. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 2004, 25, 4255–4262. [Google Scholar] [CrossRef] [PubMed]
- Peplow, P.V.; Dias, G.J. A study of the relationship between mass and physical strength of keratin bars in vivo. J. Mater. Sci. Mater. Med. 2004, 15, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Aluigi, A.; Varesano, A.; Montarsolo, A.; Vineis, C.; Ferrero, F.; Mazzuchetti, G.; Tonin, C. Electrospinning of keratin/poly(ethylene oxide) blend nanofibers. J. Appl. Polym. Sci. 2007, 104, 863–870. [Google Scholar] [CrossRef]
- Aluigi, A.; Vineis, C.; Varesano, A.; Mazzuchetti, G.; Ferrero, F.; Tonin, C. Structure and properties of keratin/PEO blend nanofibres. Eur. Polym. J. 2008, 44, 2465–2475. [Google Scholar] [CrossRef]
- Varesano, A.; Aluigi, A.; Vineis, C.; Tonin, C. Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J. Polym. Sci. Poly. Phys. 2008, 46, 1193–1201. [Google Scholar] [CrossRef]
- Zoccola, M.; Aluigi, A.; Vineis, C.; Tonin, C.; Ferrero, F.; Piacentino, M.G. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules 2008, 9, 2819–2825. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Shibayama, M.; Tanabe, T.; Yamauchi, K. Preparation and properties of keratin-poly(vinyl alcohol) blend fiber. J. Appl. Polym. Sci. 2004, 91, 756–762. [Google Scholar] [CrossRef]
- Wrześniewska-Tosik, K.; Wawro, D.; Ratajska, M.; Stęplewski, W. Novel composites with feather keratin. Fibres Text. East. Eur. 2007, 15, 157–162. [Google Scholar]
- Sierpinski, P.; Garrett, J.; Ma, J.; Apel, P.; Klorig, D.; Smith, T.; Koman, L.A.; Atala, A.; Van Dyke, M. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 2008, 29, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.J.; Garrett, J.P.; Sierpinski, P.; Ma, J.; Atala, A.; Smith, T.L.; Koman, L.A.; Van Dyke, M.E. Peripheral nerve regeneration using a keratin-based scaffold: Long-term functional and histological outcomes in a mouse model. J. Hand Surg. Am. 2008, 33, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Aboushwareb, T.; Eberli, D.; Ward, C.; Broda, C.; Holcomb, J.; Atala, A.; Van Dyke, M. A Keratin biomaterial gel hemostat derived from human hair: Evaluation in a rabbit model of lethal liver injury. J. Biomed. Mater. Res. B 2009, 90, 45–54. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rouse, J.G.; Van Dyke, M.E. A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials 2010, 3, 999-1014. https://doi.org/10.3390/ma3020999
Rouse JG, Van Dyke ME. A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials. 2010; 3(2):999-1014. https://doi.org/10.3390/ma3020999
Chicago/Turabian StyleRouse, Jillian G., and Mark E. Van Dyke. 2010. "A Review of Keratin-Based Biomaterials for Biomedical Applications" Materials 3, no. 2: 999-1014. https://doi.org/10.3390/ma3020999
APA StyleRouse, J. G., & Van Dyke, M. E. (2010). A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials, 3(2), 999-1014. https://doi.org/10.3390/ma3020999