Experimental Investigation of the Drying Shrinkage Performance of a Modified Ceramsite Geopolymer Concrete
<p>Spherical shale ceramsite.</p> "> Figure 2
<p>Grading curve for the fine aggregate.</p> "> Figure 3
<p>Water absorption of ceramsite treated by different methods.</p> "> Figure 4
<p>Slump levels of the concretes with different ceramsite pretreatments.</p> "> Figure 5
<p>Compressive strengths of the concretes with different ceramsite pretreatments.</p> "> Figure 6
<p>Drying shrinkage of concrete with different pretreated ceramsite materials.</p> "> Figure 7
<p>Compressive strength of MCGC at 28 d with different w/b ratios, Na<sub>2</sub>O/b ratios, and MK/b ratios.</p> "> Figure 8
<p>Drying shrinkage development of MCGCs with various w/b, Na<sub>2</sub>O/b, and MK/b ratios.</p> "> Figure 9
<p>Comparison between the experimental and predicted drying shrinkage rates of the MCGCs: (<b>a</b>) ACI-209; (<b>b</b>) CEB-FIP; (<b>c</b>) GL-2000; (<b>d</b>) CABR.</p> "> Figure 10
<p>Model validation of the prediction model developed for the MCGCs: (<b>a</b>) specimens with different w/b ratios; (<b>b</b>) specimens with different Na<sub>2</sub>O/b ratios; (<b>c</b>) specimens with different MK/b ratios.</p> ">
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Mixture Design
2.2. Materials
2.3. Testing
3. Results and Discussion
3.1. Effects of Different Ceramsite Treatment Methods on Concrete (Group 1)
3.1.1. Water Absorption
3.1.2. Slump
3.1.3. Compressive Strength
3.1.4. Drying Shrinkage
3.2. Effects of Different Factors on the MCGC (Group 2)
3.2.1. Compressive Strength
3.2.2. Drying Shrinkage
3.3. Analysis and Establishment of the Drying Shrinkage Model for the MCGC
3.3.1. Applicability of the Existing Prediction Models for MCGC
3.3.2. Establishment of the Prediction Model of Drying Shrinkage on the Basis of the MCGC
3.3.3. Verification of a Prediction Model of Drying Shrinkage for MCGC
4. Conclusions
- (1)
- Both the prewetting and silicone resin modified surfaces of the ceramsite increased the slump of the concrete. Prewetting aggravated the drying shrinkage and weakened the compressive strength before 7 d. In contrast, the silicone resin modified surface improved the compressive strength to a certain extent. Although the two samples exhibited similar drying shrinkage rates at 90 d, MCGC0.45-8-50 reduced by 16% and 10% at 3 and 7 d, respectively, indicating that the silicone resin modified surface favored the volume stability of the concrete.
- (2)
- Increases in the w/b and MK/b ratios decreased the compressive strength. However, 8% Na2O/b enhanced the compressive strength, while a relatively low compressive strength was acquired with 10% Na2O/b.
- (3)
- A high w/b/ratio enhanced the drying shrinkage characteristics. Concurrently, an analogous trend was observed with an increasing Na2O/b ratio. MCGC’s drying shrinkage rate peaked at 0.45-10-50 at 90 d among all the groups. In contrast, a low drying shrinkage behavior was observed when the MK/b ratio increased from 30% to 70%. Therefore, among all the factors, only a high MK/b ratio could significantly improve the drying shrinkage.
- (4)
- The existing prediction models for drying shrinkage were not fully applicable to MCGC. Among the common drying shrinkage prediction models, the order of prediction accuracy was GL-2000 > ACI-209 > CEB-FIP > CABR. Although GL-2000 had a high prediction accuracy, it clearly stipulated the relationship between strength and shrinkage. This approach was not applicable to the MCGC proposed in this study. Therefore, the ACI-209 model was modified by considering the w/b, Na2O/b, and MK/b ratios to establish a drying shrinkage prediction model suitable for MCGC. The prediction results of the modified model were increasingly accurate. However, due to the diversity of pretreatment methods for ceramsite and the limitations of the considered factors, the model had potential for additional enhancements.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MCGC | modified ceramsite geopolymer concrete |
MK | metakaolin |
L.O.I | loss on ignition |
w/b | water/binder ratio |
Na2O/b | sodium oxide concentration ratio |
MK/b | metakaolin content ratio |
RH | relative humidity |
References
- Li, X.; Zhu, H.; Fu, Z.; Liu, P.; Xia, C. Influence of Volume–to–Surface Area Ratio on the Creep Behavior of Steel Fiber Ceramsite Concrete Beams. Coatings 2022, 12, 977. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, Y.; Zhang, W.; Liu, B.; Viani, A.; Mácová, P. Microstructure Investigation of the Interface between Lightweight Concrete and Normal–Weight Concrete. Mater. Today Commun. 2019, 21, 100640. [Google Scholar] [CrossRef]
- Isaza, A.V.; Arcila, J.M.M.; Restrepo, J.; García, M.F.V.; Peña, L.V.W. Performance and Applications of Lightweight Geopolymer and Alkali Activated Composites with Incorporation of Ceramic, Polymeric and Lignocellulosic Wastes as Aggregates: A Review. Heliyon 2023, 9, e20044. [Google Scholar] [CrossRef] [PubMed]
- Farooq, F.; Jin, X.; Faisal Javed, M.; Akbar, A.; Izhar Shah, M.; Aslam, F.; Alyousef, R. Geopolymer Concrete as Sustainable Material: A State of the Art Review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco–Friendly Geopolymer Materials: A Review of Performance Improvement, Potential Application and Sustainability Assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Lin, C.; Lu, Y.; Li, S. Effects and mechanisms of component ratio and cross-scale fibers on drying shrinkage of geopolymer mortar. Constr. Build. Mater. 2024, 411, 134299. [Google Scholar] [CrossRef]
- Thomas, R.J.; Lezama, D.; Peethamparan, S. On Drying Shrinkage in Alkali-Activated Concrete: Improving Dimensional Stability by Aging or Heat-Curing. Cem. Concr. Res. 2017, 91, 13–23. [Google Scholar] [CrossRef]
- Han, M.Y.; Lytton, R.L. Theoretical Prediction of Drying Shrinkage of Concrete. J. Mater. Civ. Eng. 1995, 7, 204–207. [Google Scholar] [CrossRef]
- Bissonnette, B.; Pierre, P.; Pigeon, M. Influence of Key Parameters on Drying Shrinkage of Cementitious Materials. Cem. Concr. Res. 1999, 29, 1655–1662. [Google Scholar] [CrossRef]
- Gong, J.; Zeng, W.; Zhang, W. Influence of Shrinkage–Reducing Agent and Polypropylene Fiber on Shrinkage of Ceramsite Concrete. Constr. Build. Mater. 2018, 159, 155–163. [Google Scholar] [CrossRef]
- Wang, X.F.; Fang, C.; Kuang, W.Q.; Li, D.W.; Han, N.X.; Xing, F. Experimental Investigation on the Compressive Strength and Shrinkage of Concrete with Pre–Wetted Lightweight Aggregates. Constr. Build. Mater. 2017, 155, 867–879. [Google Scholar] [CrossRef]
- Dang, Y.; Shi, X.; Mery, S.; Xie, N.; Benson, A.; Yang, Z. Influence of Surface Sealers on the Properties of Internally Cured Cement Mortars Containing Saturated Fine Lightweight Aggregate. J. Mater. Civ. Eng. 2015, 27, 04015037. [Google Scholar] [CrossRef]
- Asamoto, S.; Ishida, T.; Maekawa, K. Investigations into Volumetric Stability of Aggregates and Shrinkage of Concrete as a Composite. J. Adv. Concr. Technol. 2008, 6, 77–90. [Google Scholar] [CrossRef]
- Deboodt, T.; Fu, T.; Ideker, J.H. Evaluation of FLWA and SRAs on Autogenous Deformation and Long–Term Drying Shrinkage of High Performance Concrete. Constr. Build. Mater. 2016, 119, 53–60. [Google Scholar] [CrossRef]
- Liu, J.; Shi, C.; Farzadnia, N.; Ma, X. Effects of Pretreated Fine Lightweight Aggregate on Shrinkage and Pore Structure of Ultra–High Strength Concrete. Constr. Build. Mater. 2019, 204, 276–287. [Google Scholar] [CrossRef]
- Ardeshirilajimi, A.; Mondal, P. Effects of Presoaked Lightweight Aggregate Addition on Drying Shrinkage. J. Mater. Civ. Eng. 2019, 31, 04019211. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Properties of Concrete Prepared with PVA–Impregnated Recycled Concrete Aggregates. Cement Concr. Comp. 2010, 32, 649–654. [Google Scholar] [CrossRef]
- Spaeth, V.; Djerbi Tegguer, A. Improvement of Recycled Concrete Aggregate Properties by Polymer Treatments. Int. J. Sust. Built Env. 2013, 2, 143–152. [Google Scholar] [CrossRef]
- Wan, H.W.; Xu, J.L.; Shui, Z.H.; Jiang, J. Study on the Structure and Properties of Interfacial Transition Zone (ITZ) of the Regenerated Concrete. J. Wuhan Univ. Technol. 2004, 26, 29–32. [Google Scholar]
- Katz, A. Treatments for the Improvement of Recycled Aggregate. J. Mater. Civ. Eng. 2004, 16, 597–603. [Google Scholar] [CrossRef]
- Ismail, S.; Ramli, M. Mechanical Strength and Drying Shrinkage Properties of Concrete Containing Treated Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 2014, 68, 726–739. [Google Scholar] [CrossRef]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance Enhancement of Recycled Concrete Aggregate—A Review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Chen, W.; Li, B.; Guo, M.Z.; Wang, J.; Chen, Y.T. Impact of Heat Curing Regime on the Compressive Strength and Drying Shrinkage of Alkali–Activated Slag Mortar. Dev. Built Environ. 2023, 14, 100123. [Google Scholar]
- Liu, X.; Liu, E.; Fu, Y. Reduction in Drying Shrinkage and Efflorescence of Recycled Brick and Concrete Fine Powder–Slag–Based Geopolymer. Appl. Sci. 2023, 13, 2997. [Google Scholar] [CrossRef]
- Ramagiri, K.K.; Kar, A.; De Maeijer, P.K.; Sanchez, J.R. Experimental Determination, Correlation with Microanalyses, and Development of Simplified Prediction Models for Drying Shrinkage of Alkali–Activated Concrete. J. Mater. Civ. Eng. 2022, 34, 04022161. [Google Scholar] [CrossRef]
- Sadeghian, G.; Behfarnia, K.; Teymouri, M. Drying Shrinkage of One–Part Alkali–Activated Slag Concrete. J. Build. Eng. 2022, 51, 104263. [Google Scholar]
- Ou, Z.; Feng, R.; Li, F.; Liu, G.; Li, N. Development of Drying Shrinkage Model for Alkali–Activated Slag Concrete. Constr. Build. Mater. 2022, 323, 126556. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Q.; Zhou, Y. Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water–to–Binder Ratios. Adv. Mater. Sci. Eng. 2017, 2017, 2695435. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. Autogenous and Drying Shrinkage of Alkali-activated Slag Mortars. J. Am. Cer. Soc. 2019, 102, 4963–4975. [Google Scholar] [CrossRef]
- Melo Neto, A.A.; Cincotto, M.A.; Repette, W. Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z. Influence of Fly Ash on the Pore Structure and Shrinkage Characteristics of Metakaolin–Based Geopolymer Pastes and Mortars. Constr. Build. Mater. 2017, 153, 284–293. [Google Scholar] [CrossRef]
- Samson, G.; Cyr, M.; Gao, X.X. Formulation and Characterization of Blended Alkali–Activated Materials Based on Flash–Calcined Metakaolin, Fly Ash and GGBS. Constr. Build. Mater. 2017, 144, 50–64. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cheng, Y.; Huseien, G.F.; Shah, K.W. Shrinkage Mechanisms and Shrinkage–Mitigating Strategies of Alkali–Activated Slag Composites: A Critical Review. Constr. Build. Mater. 2022, 318, 125993. [Google Scholar] [CrossRef]
- Ma, J.; Dehn, F. Shrinkage and Creep Behavior of an Alkali–Activated Slag Concrete. Struct. Concr. 2017, 18, 801–810. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying Shrinkage in Alkali–Activated Binders—A Critical Review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- GB/T 50081–2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture and Building Press: Beijing, China, 2019.
- GB/T 50082–2009; Standard for Test Methods of Long–Term Performance and Durability of Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2009.
- Yao, D.; Yu, H.; Chen, X.; Xiaolan, Y.; Yao, J.; Zheng, X.; Zhang, C.; Gong, L. Effect of Surface Modification on Properties of Steel Slag Aggregate and Mixture. Constr. Build. Mater. 2023, 402, 133058. [Google Scholar] [CrossRef]
- Stefanidou, M.; Matziaris, K.; Karagiannis, G. Hydrophobization by Means of Nanotechnology on Greek Sandstones Used as Building Facades. Geosciences 2013, 3, 30–45. [Google Scholar] [CrossRef]
- Liu, J.; Ju, B.; Xie, W.; Zhou, T.; Xiao, H.; Dong, S.; Yang, W. Evaluation of the Effects of Surface Treatment Methods on the Properties of Coral Aggregate and Concrete. Materials 2021, 14, 6784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Gjørv, O.E. Microstructure of the Interfacial Zone between Lightweight Aggregate and Cement Paste. Cem. Concr. Res. 1990, 20, 610–618. [Google Scholar] [CrossRef]
- Liu, B.; Shi, J.; Sun, M.; He, Z.; Xu, H.; Tan, J. Mechanical and Permeability Properties of Polymer–Modified Concrete Using Hydrophobic Agent. J. Build. Eng. 2020, 31, 101337. [Google Scholar] [CrossRef]
- Singh, B.; Rahman, M.R.; Paswan, R.; Bhattacharyya, S.K. Effect of Activator Concentration on the Strength, ITZ and Drying Shrinkage of Fly Ash/Slag Geopolymer Concrete. Constr. Build. Mater. 2016, 118, 171–179. [Google Scholar] [CrossRef]
- Cusson, D.; Hoogeveen, T. Internal Curing of High–Performance Concrete with Pre–Soaked Fine Lightweight Aggregate for Prevention of Autogenous Shrinkage Cracking. Cem. Concr. Res. 2008, 38, 757–765. [Google Scholar] [CrossRef]
- Bogas, J.A.; Nogueira, R.; Almeida, N.G. Influence of Mineral Additions and Different Compositional Parameters on the Shrinkage of Structural Expanded Clay Lightweight Concrete. Mater. Des. 2014, 56, 1039–1048. [Google Scholar] [CrossRef]
- Zhang, J.; Luosun, Y.; Wang, J.; Han, Y. Shrinkage of High–Strength Calcium Sulfoaluminate Cement Concrete with Impact of Pre–Soaked Lightweight Aggregate Internal Curing. Mag. Concr. Res. 2015, 67, 1204–1213. [Google Scholar] [CrossRef]
- Ou, Z.; Feng, R.; Mao, T.; Li, N. Influence of Mixture Design Parameters on the Static and Dynamic Compressive Properties of Slag–Based Geopolymer Concrete. J. Build. Eng. 2022, 53, 104564. [Google Scholar] [CrossRef]
- Sun, B.; Sun, Y.; Ye, G.; De Schutter, G. A Mix Design Methodology of Slag and Fly Ash–Based Alkali–Activated Paste. Cem. Concr. Res. 2022, 126, 104368. [Google Scholar] [CrossRef]
- Wang, S.D.; Scrivener, K.L.; Pratt, P.L. Factors Affecting the Strength of Alkali–Activated Slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H. Analysing the Relation between Pore Structure and Permeability of Alkali–Activated Concrete Binders. In Handbook of Alkali–Activated Cements, Mortars and Concretes; Woodhead Publishing: Southton, UK, 2015; pp. 235–264. [Google Scholar]
- Shekhovtsova, J.; Kearsley, E.P.; Kovtun, M. Effect of Activator Dosage, Water–to–Binder–Solids Ratio, Temperature and Duration of Elevated Temperature Curing on the Compressive Strength of Alkali–Activated Fly Ash Cement Pastes. J. S. Afr. Inst. Civ. Eng. 2014, 56, 44–52. [Google Scholar]
- Borges, P.H.R.; Banthia, N.; Alcamand, H.A.; Vasconcelos, W.L.; Nunes, E.H.M. Performance of Blended Metakaolin/Blastfurnace Slag Alkali–Activated Mortars. Cem. Concr. Compos. 2016, 71, 42–52. [Google Scholar] [CrossRef]
- Bernal, S.A.; de Gutierrez, R.M.; Provis, J.L.; Rose, V. Effect of Silicate Modulus and Metakaolin Incorporation on the Carbonation of Alkali Silicate–Activated Slags. Cem. Concr. Res. 2010, 40, 898–907. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Rose, V.; Mejía de Gutierrez, R. Evolution of Binder Structure in Sodium Silicate–Activated Slag–Metakaolin Blends. Cement Concr. Comp. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Shi, Z.; Shi, C.; Wan, S.; Zhang, Z. Effects of Alkali Dosage and Silicate Modulus on Alkali–Silica Reaction in Alkali–Activated Slag Mortars. Cem. Concr. Res. 2018, 111, 104–115. [Google Scholar] [CrossRef]
- Puertas, F.; Martínez–Ramírez, S.; Alonso, S.; Vázquez, T. Alkali–Activated Fly Ash/Slag Cements: Strength Behaviour and Hydration Products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Alahverdi, A.; Najafkani, E.; Bezanjani, S. Effects of Silica Modulus and Alkali Concentration on Activation of Blast–Furnace Slag. Iran. J. Mater. Sci. Eng. 2008, 5, 32–35. [Google Scholar]
- Lee, N.K.; Jang, J.G.; Lee, H.K. Shrinkage Characteristics of Alkali–Activated Fly Ash/Slag Paste and Mortar at Early Ages. Cem. Concr. Comp. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Effect of Pore Size Distribution on Drying Shrinking of Alkali–Activated Slag Concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Hojati, M.; Rajabipour, F.; Radlińska, A. Drying Shrinkage of Alkali–Activated Cements: Effect of Humidity and Curing Temperature. Mater. Struct. 2019, 52, 118. [Google Scholar] [CrossRef]
- Taghvayi, H.; Behfarnia, K.; Khalili, M. The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali–Activated Slag Concrete. J. Adv. Concr. Technol. 2018, 16, 293–305. [Google Scholar] [CrossRef]
- Cai, A.; Huang, Y.; Yan, S.; Xu, Z.; Deng, M. Relationship Between the Microstructure, Composition and Drying Shrinkage of Cement Pastes. J. Mater. Sci. Eng. 2005, 23, 574–577. (In Chinese) [Google Scholar] [CrossRef]
- Chen, W.; Brouwers, H.J.H. The Hydration of Slag, Part 1: Reaction Models for Alkali–Activated Slag. J. Mater. Sci. 2007, 42, 428–443. [Google Scholar] [CrossRef]
- Yuan, J.; He, P.; Jia, D.; Yang, C.; Zhang, Y.; Yan, S.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. Effect of Curing Temperature and SiO2/K2O Molar Ratio on the Performance of Metakaolin–Based Geopolymers. Ceram. Int. 2016, 42, 16184–16190. [Google Scholar] [CrossRef]
- Li, Z.; Nedeljković, M.; Chen, B.; Ye, G. Mitigating the Autogenous Shrinkage of Alkali–Activated Slag by Metakaolin. Cem. Concr. Res. 2019, 122, 30–41. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving Strength, Drying Shrinkage, and Pore Structure of Concrete Using Metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. Quantitative Analysis of Phase Assemblage and Chemical Shrinkage of Alkali–Activated Slag. J. Adv. Concr. Technol. 2016, 14, 245–260. [Google Scholar] [CrossRef]
- Kuenzel, C.; Vandeperre, L.J.; Donatello, S.; Boccaccini, A.R.; Cheeseman, C. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin–Based Geopolymers. J. Am. Cer. Soc. 2012, 95, 3270–3277. [Google Scholar] [CrossRef]
- ACI 209 R–92; Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures, Reported by ACI Committee 209. American Concrete Institute: Farmington Hills, MI, USA, 1992.
- Comite Euro–International du Beton. CEB–FIP Model Code 1990; Thomas Telford Ltd.: London, UK, 1993. [Google Scholar]
- Gardner, N.J.; Lockman, M.J. Design Provisions for Drying Shrinkage and Creep of Normal–Strength Concrete. ACI Mater. J. 2001, 30, 159–167. [Google Scholar]
- Gong, L.S.; Hui, M.Y.; Yang, B. Practical Mathematical Expressions for Creep and Shrinkage of Concrete. J. Build. Struct. 1988, 9, 37–42. (In Chinese) [Google Scholar]
Group | No. | Pretreatment | Shale Ceramsite, kg/m3 | Sand, kg/m3 | Binder, kg/m3 | w/b | Na2O/b | |
---|---|---|---|---|---|---|---|---|
Slag | MK | |||||||
Group 1 | UCGC0.45-8-50 | U | 461 | 750 | 240 | 240 | 0.45 | 8 |
WCGC0.45-8-50 | W | 461 | 750 | 240 | 240 | 0.45 | 8 | |
MCGC0.45-8-50 | M | 461 | 750 | 240 | 240 | 0.45 | 8 | |
Group 2 | MCGC0.40-8-50 | M | 461 | 750 | 240 | 240 | 0.40 | 8 |
MCGC0.45-8-50 | M | 461 | 750 | 240 | 240 | 0.45 | 8 | |
MCGC0.50-8-50 | M | 461 | 750 | 240 | 240 | 0.50 | 8 | |
MCGC0.45-6-50 | M | 461 | 750 | 240 | 240 | 0.45 | 6 | |
MCGC0.45-10-50 | M | 461 | 750 | 240 | 240 | 0.45 | 10 | |
MCGC0.45-8-30 | M | 461 | 750 | 144 | 336 | 0.45 | 8 | |
MCGC0.45-8-70 | M | 461 | 750 | 336 | 144 | 0.45 | 8 |
Grain Size, mm |
Bulk Density, kg/m3 |
Cylinder Compressive Strength, MPa |
Appearance Density, kg/m3 |
Absorption Rate, % |
---|---|---|---|---|
5–16 | 548 | 4.6 | 1347 | 8.6 |
pH | Solid Content, % | Density, g/cm3 | Water Absorption in 48 h, % | Penetration Depth, cm |
---|---|---|---|---|
10.50 | 35.00 | 1.07 | 12.00 | 3.00 |
Materials | SiO2 | Al2O3 | CaO | MgO | SO3 | Fe2O3 | TiO2 | Na2O | K2O | L.O.I. |
---|---|---|---|---|---|---|---|---|---|---|
Slag | 33.21 | 15.76 | 37.05 | 8.51 | 2.57 | 0.41 | 1.35 | 0.29 | 0.32 | 0.46 |
MK | 49.67 | 42.54 | 0.19 | 0.14 | 0.27 | 0.68 | 0.63 | 0.12 | 0.18 | 0.62 |
Model | Equation | Time-Varying Function | Correlation Parameters |
---|---|---|---|
ACI-209R-92 | t | ||
CEB-FIP | t, h | ||
GL-2000 | t, V, S | ||
CABR | t |
Influence Coefficient of the MCGC | |||||
---|---|---|---|---|---|
No. | A (×10−6) | C | R2 | R2 | |
MCGC0.40-8-50 | 840 | 0.3927 | 0.98682 | 1.15915 | 0.98642 |
MCGC0.45-8-50 | 920 | 0.39469 | 0.98611 | 1.24338 | 0.97837 |
MCGC0.50-8-50 | 1094 | 0.39382 | 0.98508 | 1.41553 | 0.98279 |
MCGC0.45-6-50 | 795 | 0.39115 | 0.98666 | 1.10996 | 0.99163 |
MCGC0.45-10-50 | 1137 | 0.40677 | 0.97485 | 1.46005 | 0.98563 |
MCGC0.45-8-30 | 1169 | 0.39181 | 0.98529 | 1.48491 | 0.98570 |
MCGC0.45-8-70 | 759 | 0.40446 | 0.97836 | 1.07752 | 0.97468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, P.; Wang, X.; Guo, J.; Liu, Y.; Zheng, Q. Experimental Investigation of the Drying Shrinkage Performance of a Modified Ceramsite Geopolymer Concrete. Materials 2025, 18, 915. https://doi.org/10.3390/ma18040915
Deng P, Wang X, Guo J, Liu Y, Zheng Q. Experimental Investigation of the Drying Shrinkage Performance of a Modified Ceramsite Geopolymer Concrete. Materials. 2025; 18(4):915. https://doi.org/10.3390/ma18040915
Chicago/Turabian StyleDeng, Peng, Xuening Wang, Jian Guo, Yan Liu, and Qi Zheng. 2025. "Experimental Investigation of the Drying Shrinkage Performance of a Modified Ceramsite Geopolymer Concrete" Materials 18, no. 4: 915. https://doi.org/10.3390/ma18040915
APA StyleDeng, P., Wang, X., Guo, J., Liu, Y., & Zheng, Q. (2025). Experimental Investigation of the Drying Shrinkage Performance of a Modified Ceramsite Geopolymer Concrete. Materials, 18(4), 915. https://doi.org/10.3390/ma18040915