Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete
<p>Preparation of structural biological concrete specimens: (<b>A</b>) placement of reinforcement; (<b>B</b>) dry components in a rotating pan mixer; (<b>C</b>) specimens after casting.</p> "> Figure 2
<p>Preparation of BSHC samples: (<b>A</b>) specimens of Test Series 1; (<b>B</b>) specimens of Test Series 2.</p> "> Figure 3
<p>Evaluation of healing: (<b>A</b>) crack measurement scheme; (<b>B</b>) healing conditions.</p> "> Figure 4
<p>Bacterial viability tests: (<b>A</b>) specimens used for FT and temperature fluctuation tests; (<b>B</b>) schematic illustration of viability tests.</p> "> Figure 5
<p>Survival of bacteria in concrete from Test Series 1: (<b>A</b>) changes in CFU due to low-temperature cycles; (<b>B</b>) changes in CFU due to FT cycles. Continuous lines represent the average values of the calculated CFU/g, whereas the shaded areas show the 95% confidence intervals.</p> "> Figure 6
<p>Bacterial viability in early-age concrete. Solid lines depict the mean values of the determined CFU/g, while the shaded regions indicate the 95% confidence intervals.</p> "> Figure 7
<p>Variation in the healing ratio over time: (<b>A</b>) results of Test Series 1; (<b>B</b>) results of Test Series 2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Healing Agent Preparation
2.1.1. Bacterial Growth and Spore Preparation
2.1.2. Bacteria Immobilization into Expanded Clay
2.2. Preparation of BSHC Samples
2.2.1. Preparation of BSCH Samples
2.2.2. Crack Opening in BSCH Specimens
2.3. Freeze–Thaw Testing
2.4. Bacterial Viability Testing
2.5. Variation of Concrete Curing Conditions
3. Results and Discussion
3.1. Survival of Bacteria in Cold Environments and During Freezing and Thawing Processes
3.2. Effect of the Curing Conditions
3.3. Crack Healing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, D.; Lark, R.; Jefferson, T.; Davies, R. A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Stud. Constr. Mater. 2018, 8, 238–247. [Google Scholar] [CrossRef]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Jonkers, H.M. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Wang, J.; Ersan, Y.C.; Boon, N.; De Belie, N. Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 2016, 100, 2993–3007. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 0008–8846. [Google Scholar] [CrossRef]
- Tan, L.; Reeksting, B.; Ferrandiz-Mas, V.; Heath, A.; Gebhard, S.; Paine, K. Effect of carbonation on bacteria-based self-healing of cementitious composites. Constr. Build. Mater. 2020, 257, 119501. [Google Scholar] [CrossRef]
- Maddalena, R.; Taha, H.; Gardner, D. Self-healing potential of supplementary cementitious materials in cement mortars: Sorptivity and pore structure. Dev. Built Environ. 2021, 6, 100044. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Feng, T.; Zhou, M.; Zhao, L.; Zhou, A.; Li, Z. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr. Build. Mater. 2017, 148, 610–617. [Google Scholar] [CrossRef]
- Tziviloglou, E.; Wiktor, V.; Jonkers, H.M.; Schlangen, E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr. Build. Mater. 2016, 122, 118–125. [Google Scholar] [CrossRef]
- Ivaškė, A.; Gribniak, V.; Jakubovskis, R.; Urbonavičius, J. Bacterial viability in self-healing concrete: A case study of non-ureolytic Bacillus species. Microorganisms 2023, 11, 2402. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Golewski, G.L. Determination of Fracture Mechanic Parameters of Concretes Based on Cement Matrix Enhanced by Fly Ash and Nano-Silica. Materials 2024, 17, 4230. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Jiang, L.; Liu, Q.; Chen, W.; Ding, Q. Study on the Influence of Thermoplastic Microcapsules on the Sulfate Resistance and Self-Healing Performance of Limestone Calcined Clay Cement Concrete. Molecules 2024, 29, 4797. [Google Scholar] [CrossRef] [PubMed]
- Ersan, Y.; de Belie, N.; Boon, N. Microbially induced CaCO3 precipitation through denitrification: An optimization study in minimal nutrient environment. Biochem. Eng. J. 2015, 101, 108–118. [Google Scholar] [CrossRef]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 2010, 36, 230–235. [Google Scholar] [CrossRef]
- De Belie, N. Application of bacteria in concrete: A critical evaluation of the current status. RILEM Tech. Lett. 2016, 1, 56–61. [Google Scholar] [CrossRef]
- Sharma, T.; Alazhari, M.; Heath, A.; Paine, K.; Cooper, R. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J. Appl. Microbiol. 2017, 122, 1233–1244. [Google Scholar] [CrossRef]
- Justo-Reinoso, I.; Reeksting, B.J.; Hamley-Bennett, C.; Heath, A.; Gebhard, S.; Paine, K. Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious composites: Healing evaluation of early and later-age cracks. Constr. Build. Mater. 2022, 327, 126877. [Google Scholar] [CrossRef]
- Paine, K. Bacteria-based self-healing concrete: Effects of environment, exposure and crack size. In RILEM Conference on Microorganisms-Cementitious Materials Interactions; RILEM publications SARL: Bagneux, France, 2016; Volume 1, pp. 1–15. [Google Scholar]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Ivaškė, A.; Malaiškienė, J.; Urbonavičius, J. Impact of Portland cement type on bacterial viability in biological concrete. Cem. Concr. Compos. 2022, 127, 104413. [Google Scholar] [CrossRef]
- Tang, Y.; Xu, J. Application of microbial precipitation in self-healing concrete: A review on the protection strategies for bacteria. Constr. Build. Mater. 2021, 306, 124950. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Jankutė, A.; Guobužaitė, S.; Boris, R.; Urbonavičius, J. Prolonging bacterial viability in biological concrete: Coated expanded clay particles. Materials 2021, 14, 2719. [Google Scholar] [CrossRef] [PubMed]
- De Giulio, B.; Orlando, P.; Barba, G.; Xoppola, R.; De Rosa, M.; Sada, A.; De Pricso, P.P.; Nazzaro, F. Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World J. Microbiol. Biotechnol. 2005, 21, 739–746. [Google Scholar] [CrossRef]
- Rault, A.; Béal, C.; Ghorbal, S.; Ogier, J.-C.; Bouix, M. Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 2007, 55, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Asadishad, B.; Olsson, A.L.; Dusane, D.H.; Ghoshal, S.; Tufenkji, N. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze–thaw. Water Res. 2014, 58, 239–247. [Google Scholar] [CrossRef]
- Morley, C.R.; Trofymow, J.A.; Coleman, D.C.; Cambardella, C. Effects of freeze-thaw stress on bacterial populations in soil microcosms. Microb. Ecol. 1983, 9, 329–340. [Google Scholar] [CrossRef]
- Shen, T.; Benet, G.U.; Brul, S.; Knorr, D. Influence of high-pressure–low-temperature treatment on the inactivation of Bacillus subtilis cells. Innov. Food Sci. Emerg. Technol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Männistö, M.K.; Tiirola, M.; Häggblom, M.M. Effect of freeze-thaw cycles on bacterial communities of Arctic tundra soil. Microb. Ecol. 2009, 58, 621–631. [Google Scholar] [CrossRef]
- Mondal, S.; Das, P.; Datta, P.; Ghosh, A.D. Deinococcus radiodurans: A novel bacterium for crack remediation of concrete with special applicability to low-temperature conditions. Cem. Concr. Compos. 2020, 108, 103523. [Google Scholar] [CrossRef]
- Su, Y.; Feng, J.; Zhan, Q.; Zhang, Y.; Qian, C. Non-ureolytic microbial self-repairing concrete for low temperature environment. Smart Mater. Struct. 2019, 28, 075041. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, G.; Wang, Y.; Li, Z. Optimization of sporulation and germination conditions of functional bacteria for concrete crack-healing and evaluation of their repair capacity. ACS Appl. Mater. Interfaces 2020, 1, 10938–10948. [Google Scholar] [CrossRef]
- Jakubovskis, R.; Jankutė, A.; Urbonavičius, J.; Gribniak, V. Analysis of mechanical performance and durability of self-healing biological concrete. Constr. Build. Mater. 2020, 260, 119822. [Google Scholar] [CrossRef]
- Schaeffer, A.B.; Fulton, M.D. A simplified method of staining endospores. Science 1933, 77, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.L.; Lu, W.; Wang, W.; Zhang, Y.; Han, Q.; Li, Z. Mechanical properties and frost resistance of self-healing concrete based on expended perlite immobilized bacteria. Constr. Build. Mater. 2022, 348, 128652. [Google Scholar] [CrossRef]
- Zheng, T.; Qian, C.; Su, Y. Influences of different calcium sources on the early age cracks of self-healing cementitious mortar. Biochem. Eng. J. 2021, 166, 107849. [Google Scholar] [CrossRef]
- Wang, J.; Dewanckele, J.; Cnudde, V.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem. Concr. Compos. 2014, 53, 289–304. [Google Scholar] [CrossRef]
- Sokolov, A.; Rumsys, D.; Sakalauskas, K.; Bacinskas, D.; Kaklauskas, G. Experimental Investigations of Cracking in Reinforced Concrete Beams of Different Depth. In International RILEM Conference on Early-Age and Long-Term Cracking in RC Structures; Springer: Cham, Switzerland, 2021; pp. 89–100. [Google Scholar]
- Alazhari, M.; Sharma, T.; Heath, A.; Cooper, R.; Paine, K. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Constr. Build. Mater. 2018, 160, 610–619. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, C. Engineering application of microbial self-healing concrete in lock channel wall. Mar. Georesources Geotechnol. 2022, 40, 96–103. [Google Scholar] [CrossRef]
Material | kg/m3 | Mass Percentage |
---|---|---|
Portland cement CEM I 52.5 R (Aalborg White®) | 463 | 26 |
Sand (0/4 mm) | 855 | 49 |
Coated expanded clay particles with bacteria | 270 | 15 |
Water | 168 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivaškė, A.; Jakubovskis, R.; Boris, R.; Urbonavičius, J. Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete. Materials 2024, 17, 5797. https://doi.org/10.3390/ma17235797
Ivaškė A, Jakubovskis R, Boris R, Urbonavičius J. Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete. Materials. 2024; 17(23):5797. https://doi.org/10.3390/ma17235797
Chicago/Turabian StyleIvaškė, Augusta, Ronaldas Jakubovskis, Renata Boris, and Jaunius Urbonavičius. 2024. "Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete" Materials 17, no. 23: 5797. https://doi.org/10.3390/ma17235797
APA StyleIvaškė, A., Jakubovskis, R., Boris, R., & Urbonavičius, J. (2024). Effects of Low Temperature, Freeze–Thaw Cycles, and Healing Conditions on Viability of Non-Ureolytic Bacteria in Biological Self-Healing Concrete. Materials, 17(23), 5797. https://doi.org/10.3390/ma17235797