Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models
<p>Flowchart for the computational prediction of lattice constants in the NiTi-based HESMAs.</p> "> Figure 2
<p>The predicted versus actual lattice constants of a<sub>m</sub> (<b>a</b>), b<sub>m</sub> (<b>b</b>), c<sub>m</sub> (<b>c</b>), and β<sub>m</sub> (<b>d</b>) modeled by LR. Those of a<sub>m</sub> (<b>e</b>), b<sub>m</sub> (<b>f</b>), c<sub>m</sub> (<b>g</b>), and β<sub>m</sub> (<b>h</b>) modeled by RF. Those of a<sub>m</sub> (<b>i</b>), b<sub>m</sub> (<b>j</b>), c<sub>m</sub> (<b>k</b>), and β<sub>m</sub> (<b>l</b>) modeled by SVR in the ZrO<sub>2</sub>-based SMCs. The solid black line depicts the perfect match between the predicted versus actual values of lattice constants.</p> "> Figure 3
<p>The predicted versus actual lattice constants of a<sub>m</sub> (<b>a</b>), b<sub>m</sub> (<b>b</b>), c<sub>m</sub> (<b>c</b>), β<sub>m</sub> (<b>d</b>), and a<sub>c</sub> (<b>e</b>) modeled by LR. Those of a<sub>m</sub> (<b>f</b>), b<sub>m</sub> (<b>g</b>), c<sub>m</sub> (<b>h</b>), β<sub>m</sub> (<b>i</b>), and a<sub>c</sub> (<b>j</b>) modeled by RF. Those of a<sub>m</sub> (<b>k</b>), b<sub>m</sub> (<b>l</b>), c<sub>m</sub> (<b>m</b>), β<sub>m</sub> (<b>n</b>), and a<sub>c</sub> (<b>o</b>) modeled by SVR in the NiTi-based HESMAs. The solid black line depicts the perfect match between the predicted versus actual values of lattice constants.</p> "> Figure 4
<p>The test RMSE values among three ML models in computing the predicted lattice parameters of a<sub>m</sub>, b<sub>m</sub>, c<sub>m</sub>, and β<sub>m</sub> in the ZrO<sub>2</sub>-based SMCs (<b>a</b>). Those of a<sub>c</sub>, a<sub>m</sub>, b<sub>m</sub>, c<sub>m</sub>, and β<sub>m</sub> in the NiTi-based HESMAs (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhaumik, S.K. Progress in the understanding of NiTi shape memory alloys. Trans. Indian Inst. Met. 2008, 61, 435–445. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Ma, J.; Karaman, I.; Noebe, R.D. High temperature shape memory alloys. Int. Mater. Rev. 2013, 55, 257–315. [Google Scholar] [CrossRef]
- Chang, S.H.; Lin, P.T.; Tsai, C.W. High-temperature martensitic transformation of CuNiHfTiZr high- entropy alloys. Sci. Rep. 2019, 9, 19598. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Kao, W.-P.; Hsiao, K.-Y.; Yeh, J.-W.; Lu, M.-Y.; Tsai, C.-W. High-temperature shape memory properties of Cu15Ni35Ti25Hf12.5Zr12.5 high-entropy alloy. J. Mater. Res. Technol. 2021, 14, 1235–1242. [Google Scholar] [CrossRef]
- Frenzel, J.; Wieczorek, A.; Opahle, I.; Maaß, B.; Drautz, R.; Eggeler, G. On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater. 2015, 90, 213–231. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Jui, C.-Y.; Lee, W.-J.; Yeh, A.-C. Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning. JOM 2019, 71, 3433–3442. [Google Scholar] [CrossRef]
- Huang, E.W.; Lee, W.-J.; Singh, S.S.; Kumar, P.; Lee, C.-Y.; Lam, T.-N.; Chin, H.-H.; Lin, B.-H.; Liaw, P.K. Machine-learning and high-throughput studies for high-entropy materials. Mater. Sci. Eng. R Rep. 2022, 147, 100645. [Google Scholar] [CrossRef]
- Pang, E.L.; Olson, G.B.; Schuh, C.A. Low-hysteresis shape-memory ceramics designed by multimode modelling. Nature 2022, 610, 491–495. [Google Scholar] [CrossRef]
- Thapa, S.; Lomholt, M.A.; Krog, J.; Cherstvy, A.G.; Metzler, R. Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: Maximum-likelihood model selection applied to stochastic-diffusivity data. Phys. Chem. Chem. Phys. 2018, 20, 29018–29037. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, W.; Dong, R.; Hu, J. Mlatticeabc: Generic Lattice Constant Prediction of Crystal Materials Using Machine Learning. ACS Omega 2021, 6, 11585–11594. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Xue, D.; Yuan, R.; Zhou, Y.; Balachandran, P.V.; Ding, X.; Sun, J.; Lookman, T. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 2017, 125, 532–541. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Guo, J.K.; Liu, H.B.; Zhu, M.; Zhou, X.; Wu, P.; Li, C.H. Prediction of lattice constant in cubic perovskites. J. Phys. Chem. Solids 2006, 67, 1531–1536. [Google Scholar] [CrossRef]
- Majid, A.; Khan, A.; Choi, T.-S. Predicting lattice constant of complex cubic perovskites using computational intelligence. Comput. Mater. Sci. 2011, 50, 1879–1888. [Google Scholar] [CrossRef]
- Cao, Z.; Dan, Y.; Xiong, Z.; Niu, C.; Li, X.; Qian, S.; Hu, J. Convolutional Neural Networks for Crystal Material Property Prediction Using Hybrid Orbital-Field Matrix and Magpie Descriptors. Crystals 2019, 9, 191. [Google Scholar] [CrossRef]
- Takahashi, K.; Takahashi, L.; Baran, J.D.; Tanaka, Y. Descriptors for predicting the lattice constant of body centered cubic crystal. J. Chem. Phys. 2017, 146, 204104. [Google Scholar] [CrossRef]
- Azeem, M.A. Diffraction Investigations of High Temperature Shape Memory Alloys. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Benafan, O.; Bigelow, G.S.; Garg, A.; Noebe, R.D.; Gaydosh, D.J.; Rogers, R.B. Processing and Scalability of NiTiHf High-Temperature Shape Memory Alloys. Shape Mem. Superelasticity 2021, 7, 109–165. [Google Scholar] [CrossRef]
- Bertheville, B. Powder metallurgical processing of ternary Ni50Ti50−xZrx (x = 5, 10at.%) alloys. J. Alloys Compd. 2005, 398, 94–99. [Google Scholar] [CrossRef]
- Bricknell, R.H.; Melton, K.N.; Mercier, O. The Structure of NiTiCu Shape Memory Alloys. Metall. Trans. A 1979, 10, 693–697. [Google Scholar] [CrossRef]
- Dalle, F.; Perrin, E.; Vermaut, P.; Masse, M.; Portier, R. Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy. Acta Mater. 2002, 50, 3557–3565. [Google Scholar] [CrossRef]
- Evirgen, A.; Karaman, I.; Santamarta, R.; Pons, J.; Hayrettin, C.; Noebe, R.D. Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater. 2016, 121, 374–383. [Google Scholar] [CrossRef]
- Goryczka, T.; Pisarski, W.A.; Morawiec, H.; Humbeeck, J.V. Structure and transformation sequence of NiTiCu shape memory alloys obtained by powder technology. In Applied Crystallography; World Scientific: Singapore, 2001; pp. 200–205. [Google Scholar]
- Han, X.D.; Zou, W.H.; Wang, R.; Zhang, Z.; Yang, D.Z. Structure and substructure of martensite in a Ti36.5Ni48.5Hf15 high temperature shape memory alloy. Acta Mater. 1996, 44, 3711–3721. [Google Scholar] [CrossRef]
- Hsieh, S.F.; Wu, S.K. A study on lattice parameters of martensite in Ti50.5−xNi49.5Zrx shape memory alloys. J. Alloys Compd. 1998, 270, 237–241. [Google Scholar] [CrossRef]
- Khalil-Allafi, J.; Schmahl, W.W.; Wagner, M.; Sitepu, H.; Toebbens, D.M.; Eggeler, G. The influence of temperature on lattice parameters of coexisting phases in NiTi shape memory alloys—A neutron diffraction study. Mater. Sci. Eng. A 2004, 378, 161–164. [Google Scholar] [CrossRef]
- Kim, W.C.; Kim, Y.J.; Kim, J.S.; Kim, Y.S.; Na, M.Y.; Kim, W.T.; Kim, D.H. Correlation between the thermal and superelastic behavior of Ni50−xTi35Zr15Cux shape memory alloys. Intermetallics 2019, 107, 24–33. [Google Scholar] [CrossRef]
- Lee, J.; Ikeda, Y.; Tanaka, I. Solution effect on improved structural compatibility of NiTi-based alloys by systematic first-principles calculations. J. Appl. Phys. 2019, 125, 055106. [Google Scholar] [CrossRef]
- Li, S.; Cong, D.; Chen, Z.; Li, S.; Song, C.; Cao, Y.; Nie, Z.; Wang, Y. A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery. Mater. Res. Lett. 2021, 9, 263–269. [Google Scholar] [CrossRef]
- Liu, Y. Some factors affecting the transformation hysteresis in shape memory alloys. Shape Mem. Alloys 2010, 369, 361–369. [Google Scholar]
- Malvasio, B.F.; Isola, L.M.; Giordana, M.F.; Malarria, J.A. Shape memory behavior of sputter-deposited Ni46.2Ti51.1Co2.7 (at.%) thin films. J. Alloys Compd. 2022, 918, 165671. [Google Scholar] [CrossRef]
- Mironov, Y.P. Motion picture x-ray diffraction investigation of the martensitic transformation in nickel-titanium alloy. Russ. Phys. J. 1994, 37, 741–745. [Google Scholar] [CrossRef]
- Miyazaki, S.; Hashinaga, T.; Ishida, A. Martensitic transformations in sputter-deposited Ti−Ni−Cu shape memory alloy thin films. Thin Solid. Film. 1996, 281–282, 364–367. [Google Scholar] [CrossRef]
- Patriarca, L.; Sehitoglu, H.; Panchenko, E.Y.; Chumlyakov, Y.I. High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy. Acta Mater. 2016, 106, 333–343. [Google Scholar] [CrossRef]
- Peltier, L.; Lohmuller, P.; Meraghni, F.; Berveiller, S.; Patoor, E.; Laheurte, P. Investigation and Composition Characterization of a “NiTi-like” Alloy Combining High Temperature Shape Memory and High Entropy. Shape Mem. Superelasticity 2020, 6, 273–283. [Google Scholar] [CrossRef]
- Potapov, P.L.; Shelyakov, A.V.; Gulyaev, A.A.; Svistunov, E.L.; Matveeva, N.M.; Hodgson, D. Effect of Hf on the structure of Ni-Ti martensitic alloys. Mater. Lett. 1997, 32, 247–250. [Google Scholar] [CrossRef]
- Prasher, M.; Sen, D.; Tewari, R.; Krishna, P.S.R.; Babu, P.D.; Krishnan, M. Effect of Hf solute addition on the phase transformation behavior and hardness of a Ni-rich NiTi alloy. Mater. Chem. Phys. 2020, 247, 122890. [Google Scholar] [CrossRef]
- Prokoshkin, S.D.; Korotitskiy, A.V.; Gundyrev, V.M.; Zeldovich, V.I. Low-temperature X-ray diffraction study of martensite lattice parameters in binary Ti–Ni alloys. Mater. Sci. Eng. A 2008, 481–482, 489–493. [Google Scholar] [CrossRef]
- Pushin, V.; Kuranova, N.; Marchenkova, E.; Pushin, A. Design and Development of Ti-Ni, Ni-Mn-Ga and Cu-Al-Ni-based Alloys with High and Low Temperature Shape Memory Effects. Materials 2019, 12, 2616. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Sehitoglu, H. Interatomic potential for the NiTi alloy and its application. Comput. Mater. Sci. 2016, 123, 19–25. [Google Scholar] [CrossRef]
- Sanjabi, S.; Cao, Y.Z.; Sadrnezhaad, S.K.; Barber, Z.H. Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets. J. Vac. Sci. Technol. A 2005, 23, 1425–1429. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, F.; Tian, B.; Li, L.; Zheng, Y. Microstructure and martensitic transformation of Ti49Ni51−xHfx high temperature shape memory alloys. Mater. Lett. 2009, 63, 1869–1871. [Google Scholar] [CrossRef]
- Tong, Y.; Shuitcev, A.; Zheng, Y. Recent Development of TiNi-Based Shape Memory Alloys with High Cycle Stability and High Transformation Temperature. Adv. Eng. Mater. 2020, 22, 1900496. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Ma, Z.; Ren, Y.; Jiang, D.; Cui, L.; Yu, K. Small stress-hysteresis in a nanocrystalline TiNiCuFe alloy for elastocaloric applications over wide temperature window. J. Alloys Compd. 2022, 928, 167195. [Google Scholar] [CrossRef]
Materials | Phase | Predicted Lattice Parameters | ML Model | Test RMSE | Test RMSE [9] |
---|---|---|---|---|---|
ZrO2-based SMCs | Monoclinic (B19′) | am | Linear regression | 0.0041 | 0.0041 |
Random forest | 0.0044 | ||||
Support vector regression | 0.04 | ||||
Monoclinic (B19′) | bm | Linear regression | 0.0053 | 0.0053 | |
Random forest | 0.0036 | ||||
Support vector regression | 0.0381 | ||||
Monoclinic (B19′) | cm | Linear regression | 0.0044 | 0.0045 | |
Random forest | 0.0054 | ||||
Support vector regression | 0.0314 | ||||
Monoclinic (B19′) | βm | Linear regression | 0.0646 | 0.066 | |
Random forest | 0.049 | ||||
Support vector regression | 0.1273 | ||||
NiTi-based HESMAs | Monoclinic (B19′) | am | Linear regression | 0.0777 | |
Random forest | 0.0919 | ||||
Support vector regression | 0.1252 | ||||
Monoclinic (B19′) | bm | Linear regression | 0.0326 | ||
Random forest | 0.0488 | ||||
Support vector regression | 0.0785 | ||||
Monoclinic (B19′) | cm | Linear regression | 0.0403 | ||
Random forest | 0.0437 | ||||
Support vector regression | 0.0896 | ||||
Monoclinic (B19′) | βm | Linear regression | 0.9571 | ||
Random forest | 0.7355 | ||||
Support vector regression | 2.0401 | ||||
Cubic (B2) | ac | Linear regression | 0.0076 | ||
Random forest | 0.0081 | ||||
Support vector regression | 0.0520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, T.-N.; Jiang, J.; Hsu, M.-C.; Tsai, S.-R.; Luo, M.-Y.; Hsu, S.-T.; Lee, W.-J.; Chen, C.-H.; Huang, E.-W. Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models. Materials 2024, 17, 4754. https://doi.org/10.3390/ma17194754
Lam T-N, Jiang J, Hsu M-C, Tsai S-R, Luo M-Y, Hsu S-T, Lee W-J, Chen C-H, Huang E-W. Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models. Materials. 2024; 17(19):4754. https://doi.org/10.3390/ma17194754
Chicago/Turabian StyleLam, Tu-Ngoc, Jiajun Jiang, Min-Cheng Hsu, Shr-Ruei Tsai, Mao-Yuan Luo, Shuo-Ting Hsu, Wen-Jay Lee, Chung-Hao Chen, and E-Wen Huang. 2024. "Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models" Materials 17, no. 19: 4754. https://doi.org/10.3390/ma17194754