Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Range
"> Figure 1
<p>Comparison of traditional and continuous plastics processes.</p> "> Figure 2
<p>Material characterization ways. In the figure, the blue dots represent the measurement points, while the red lines correspond to the potential trend curves. Each curve’s general equations are displayed, and the figure indicates the indices 1 and 2 for the different curve variants fitted to the traditional measurement data.</p> "> Figure 3
<p>Experimental setup. Experimental steps: (<b>A</b>)—taking a sample from the stock (1—roboot, 2—linear slide, 3—sample magazine, 4—testing machine), (<b>B</b>–<b>D</b>)—robot positioning, (<b>E</b>,<b>F</b>)—fixing the sample in the measuring holder/removal of the tested sample, (<b>G</b>)—end step, taking a new sample.</p> "> Figure 4
<p>Flexural characteristics of PLA/TPU blends as a function of TPU content (0–100%), performed by the robot (data cloud)—628 data points. Flexural strength.</p> "> Figure 5
<p>Flexural characteristics of PLA/TPU blends as a function of TPU content (0–100%), performed by the robot (data cloud)—628 data points. Flexural stiffness.</p> "> Figure 6
<p>The effects of TPU content on the thermal decomposition of PLA and PLA/TPU blends: DTG (<b>A</b>) and TGA (<b>B</b>)—N<sub>2</sub> atmosphere.</p> "> Figure 7
<p>Changes in the surface appearance (<b>1</b>) and structure of the samples (<b>2</b>) as a result of interaction shearing forces under flexure, from the brittle failure of PLA to the elastic deformation of TPU; (<b>A</b>)—PLA, (<b>B</b>)—25% TPU, (<b>C</b>)—40% TPU, (<b>D</b>)—70% TPU, (<b>E</b>)—TPU (magnification 100×).</p> "> Figure 8
<p>Macroscopic images of selected samples: 1—PLA neat, 2—10% TPU, 3—25% TPU, 4—40% TPU, 5—70% TPU, 6—90% TPU, 7—TPU neat.</p> "> Figure 9
<p>Water contact angle [°] of PLA/TPU blends.</p> "> Figure 10
<p>DSC curves recorded for the second heating cycle.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA/TPU Blends
2.3. Characterization Methods
2.4. Experimental Workstation Setup Design for Automated Robotic Flexural Tests
3. Results and Discussion
3.1. Flexural Behavior Analysis
3.2. Thermal Analysis Results
3.3. PLA/TPU Blends Microstructure Evaluation—Optical Microscopy Observations (MO)
3.4. Contact Angle Analysis Results
3.5. Differential Scanning Calorimetry (DSC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Ferreira Da Silva, R.; Livny, M.; et al. Pegasus, a Workflow Management System for Science Automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [Google Scholar] [CrossRef]
- Stein, H.S.; Gregoire, J.M. Progress and Prospects for Accelerating Materials Science with Automated and Autonomous Workflows. Chem. Sci. 2019, 10, 9640–9649. [Google Scholar] [CrossRef]
- Langer, M.; Landers, R.N. The Future of Artificial Intelligence at Work: A Review on Effects of Decision Automation and Augmentation on Workers Targeted by Algorithms and Third-Party Observers. Comput. Hum. Behav. 2021, 123, 106878. [Google Scholar] [CrossRef]
- AbouRizk, S. Role of Simulation in Construction Engineering and Management. J. Constr. Eng. Manag. 2010, 136, 1140–1153. [Google Scholar] [CrossRef]
- Lukaszewicz, D.H.-J.A.; Ward, C.; Potter, K.D. The Engineering Aspects of Automated Prepreg Layup: History, Present and Future. Compos. B Eng. 2012, 43, 997–1009. [Google Scholar] [CrossRef]
- King, R.D.; Rowland, J.; Oliver, S.G.; Young, M.; Aubrey, W.; Byrne, E.; Liakata, M.; Markham, M.; Pir, P.; Soldatova, L.N.; et al. The Automation of Science. Science 2009, 324, 85–89. [Google Scholar] [CrossRef]
- Yarkoni, T.; Eckles, D.; Heathers, J.A.J.; Levenstein, M.C.; Smaldino, P.E.; Lane, J. Enhancing and Accelerating Social Science via Automation: Challenges and Opportunities. Harv. Data Sci. Rev. 2021, 3, 1–40. [Google Scholar] [CrossRef]
- Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A Survey of Research on Cloud Robotics and Automation. IEEE Trans. Automat. Sci. Eng. 2015, 12, 398–409. [Google Scholar] [CrossRef]
- Rossit, D.A.; Tohmé, F.; Frutos, M. Production Planning and Scheduling in Cyber-Physical Production Systems: A Review. Int. J. Comput. Integr. Manuf. 2019, 32, 385–395. [Google Scholar] [CrossRef]
- Verma, P.K.; Verma, R.; Prakash, A.; Agrawal, A.; Naik, K.; Tripathi, R.; Alsabaan, M.; Khalifa, T.; Abdelkader, T.; Abogharaf, A. Machine-to-Machine (M2M) Communications: A Survey. J. Netw. Comput. Appl. 2016, 66, 83–105. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Avasthi, V.; Goundar, S. Cyber Security Attacks on Robotic Platforms. Netw. Secur. 2019, 2019, 13–19. [Google Scholar] [CrossRef]
- Dawson, M. Cyber Security in Industry 4.0: The Pitfalls of Having Hyperconnected Systems. J. Strateg. Manag. Stud. 2018, 10, 19–28. [Google Scholar]
- Kaber, D.B.; Endsley, M.R. The Effects of Level of Automation and Adaptive Automation on Human Performance, Situation Awareness and Workload in a Dynamic Control Task. Theor. Issues Ergon. Sci. 2004, 5, 113–153. [Google Scholar] [CrossRef]
- Goh, G.D.; Toh, W.; Yap, Y.L.; Ng, T.Y.; Yeong, W.Y. Additively manufactured continuous carbon fiber-reinforced thermoplastic for topology optimized unmanned aerial vehicle structures. Compos B Eng. 2021, 216, 108840. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Tian, Y.; Zhu, W.; Yan, C.; Shi, Y.; Kong, L.B.; Qi, H.J.; Zhou, K. 3D-Printed anisotropic polymer materials for functional applications. Adv. Mater. 2022, 34, 2102877. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L.; Wang, F.; Sanjayan, J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr. Build. Mater. 2019, 202, 770–783. [Google Scholar] [CrossRef]
- Ordu, M.; Der, O. Polymeric Materials Selection for Flexible Pulsating Heat Pipe Manufacturing Using a Comparative Hybrid MCDM Approach. Polymers 2023, 15, 2933. [Google Scholar] [CrossRef] [PubMed]
- Mastura, M.T.; Sapuan, S.M.; Mansor, M.R.; Nuraini, A.A. Materials selection of thermoplastic matrices for ‘green’ natural fibre composites for automotive anti-roll bar with particular emphasis on the environment. Int. J. Precis. Eng. Manuf.-Green Tech. 2018, 5, 111–119. [Google Scholar] [CrossRef]
- Singh, N.; Ogunseitan, O.A.; Wong, M.H.; Tang, Y. Sustainable Materials Alternative to Petrochemical Plastics Pollution: A Review Analysis. Sustain. Horiz. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Thakur, V.K.; Singha, A.S.; Mehta, I.K. Renewable Resource-Based Green Polymer Composites: Analysis and Characterization. Int. J. Polym. Anal. Charact. 2010, 15, 137–146. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S.; et al. Circular Economy in Biocomposite Development: State-of-the-Art, Challenges and Emerging Trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable Polymers from Renewable Resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Sharif, A.; Hoque, M.E. Renewable Resource-Based Polymers. In Bio-based Polymers and Nanocomposites; Sanyang, M.L., Jawaid, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–28. ISBN 978-3-030-05824-1. [Google Scholar]
- Srivastava, A.; Srivasatva, A.K.; Singh, A.; Singh, P.; Verma, S.; Vats, M.; Sagadevan, S. Biopolymers as Renewable Polymeric Materials for Sustainable Development—An Overview. Polimery 2022, 67, 185–196. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.R.; Khosravi, F.; Saedi Ardahaei, A.S.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef]
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A Review on Poly Lactic Acid (PLA) as a Biodegradable Polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(Lactic Acid) (PLA) and Polyhydroxyalkanoates (PHAs), Green Alternatives to Petroleum-Based Plastics: A Review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef] [PubMed]
- Lubrizol. Available online: https://www.lubrizol.com/Engineered-Polymers/About/Why-Lubrizol-TPU (accessed on 11 September 2023).
- Datta, J.; Kasprzyk, P. Thermoplastic Polyurethanes Derived from Petrochemical or Renewable Resources: A Comprehensive Review. Polym. Eng. Sci. 2018, 58, E14–E35. [Google Scholar] [CrossRef]
- Eceiza, A.; Martin, M.D.; De La Caba, K.; Kortaberria, G.; Gabilondo, N.; Corcuera, M.A.; Mondragon, I. Thermoplastic Polyurethane Elastomers Based on Polycarbonate Diols with Different Soft Segment Molecular Weight and Chemical Structure: Mechanical and Thermal Properties. Polym. Eng. Sci. 2008, 48, 297–306. [Google Scholar] [CrossRef]
- Sánchez-Adsuar, M.S. Influence of the Composition on the Crystallinity and Adhesion Properties of Thermoplastic Polyurethane Elastomers. Int. J. Adhes. Adhes. 2000, 20, 291–298. [Google Scholar] [CrossRef]
- Xiao, S.; Sue, H.-J. Effect of Molecular Weight on Scratch and Abrasive Wear Behaviors of Thermoplastic Polyurethane Elastomers. Polymer 2019, 169, 124–130. [Google Scholar] [CrossRef]
- Parcheta, P.; Głowińska, E.; Datta, J. Effect of Bio-Based Components on the Chemical Structure, Thermal Stability and Mechanical Properties of Green Thermoplastic Polyurethane Elastomers. Eur. Polym. J. 2020, 123, 109422. [Google Scholar] [CrossRef]
- Głowińska, E.; Wolak, W.; Datta, J. Eco-Friendly Route for Thermoplastic Polyurethane Elastomers with Bio-Based Hard Segments Composed of Bio-Glycol and Mixtures of Aromatic–Aliphatic and Aliphatic–Aliphatic Diisocyanate. J. Polym. Environ. 2021, 29, 2140–2149. [Google Scholar] [CrossRef]
- Fuensanta, M.; Martín-Martínez, J.M. Thermoplastic Polyurethane Coatings Made with Mixtures of Polyethers of Different Molecular Weights with Pressure Sensitive Adhesion Property. Prog. Org. Coat. 2018, 118, 148–156. [Google Scholar] [CrossRef]
- Pan, W.; Wang, J.; Li, Y.-P.; Sun, X.-B.; Wang, J.-P.; Wang, X.-X.; Zhang, J.; You, H.-D.; Yu, G.-F.; Long, Y.-Z. Facile Preparation of Highly Stretchable TPU/Ag Nanowire Strain Sensor with Spring-Like Configuration. Polymers 2020, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Wongsamut, C.; Suwanpreedee, R.; Manuspiya, H. Thermoplastic Polyurethane-Based Polycarbonate Diol Hot Melt Adhesives: The Effect of Hard-Soft Segment Ratio on Adhesion Properties. Int. J. Adhes. Adhes. 2020, 102, 102677. [Google Scholar] [CrossRef]
- Korger, M.; Glogowsky, A.; Sanduloff, S.; Steinem, C.; Huysman, S.; Horn, B.; Ernst, M.; Rabe, M. Testing Thermoplastic Elastomers Selected as Flexible Three-Dimensional Printing Materials for Functional Garment and Technical Textile Applications. J. Eng. Fibers Fabr. 2020, 15, 155892502092459. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Lin, X.; Gao, L.; Liu, T.; Lu, Y.; Wang, R. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method. Polymers 2020, 12, 2492. [Google Scholar] [CrossRef]
- Ahad, N.A. A Recent Blend of Thermoplastic Polyurethane (TPU). IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012045. [Google Scholar] [CrossRef]
- Jiang, S.; Duan, G.; Zussman, E.; Greiner, A.; Agarwal, S. Highly Flexible and Tough Concentric Triaxial Polystyrene Fibers. ACS Appl. Mater. Interfaces 2014, 6, 5918–5923. [Google Scholar] [CrossRef]
- Ajili, S.H.; Ebrahimi, N.G.; Khorasani, M.T. Study on Thermoplastic Polyurethane/Polypropylene (TPU/PP) Blend as a Blood Bag Material. J. Appl. Polym. Sci. 2003, 89, 2496–2501. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Mark, L.H.; Wang, G.; Yu, K.; Wang, C.; Park, C.B.; Zhao, G. Ultra-Tough and Super Thermal-Insulation Nanocellular PMMA/TPU. Chem. Eng. J. 2017, 325, 632–646. [Google Scholar] [CrossRef]
- Tehran, A.C.; Shelesh-Nezhad, K.; Barazandeh, F.J. Mechanical and Thermal Properties of TPU-Toughened PBT/CNT Nanocomposites. J. Thermoplast. Compos. Mater. 2019, 32, 815–830. [Google Scholar] [CrossRef]
- Nofar, M.; Mohammadi, M.; Carreau, P.J. Effect of TPU Hard Segment Content on the Rheological and Mechanical Properties of PLA/TPU Blends. J. Appl. Polym. Sci. 2020, 137, 49387. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Baghani, M. 3D Printing of PLA-TPU with Different Component Ratios: Fracture Toughness, Mechanical Properties, and Morphology. J. Mater. Res. Technol. 2022, 21, 3970–3981. [Google Scholar] [CrossRef]
- Dogan, S.K.; Boyacioglu, S.; Kodal, M.; Gokce, O.; Ozkoc, G. Thermally Induced Shape Memory Behavior, Enzymatic Degradation and Biocompatibility of PLA/TPU Blends: “Effects of Compatibilization”. J. Mech. Behav. Biomed. Mater. 2017, 71, 349–361. [Google Scholar] [CrossRef]
- Kahraman, Y.; Özdemir, B.; Kılıç, V.; Goksu, Y.A.; Nofar, M. Super Toughened and Highly Ductile PLA/TPU Blend Systems by in Situ Reactive Interfacial Compatibilization Using Multifunctional Epoxy-based Chain Extender. J. Appl. Polym. Sci. 2021, 138, 50457. [Google Scholar] [CrossRef]
- Dogan, S.K.; Reyes, E.A.; Rastogi, S.; Ozkoc, G. Reactive Compatibilization of PLA/TPU Blends with a Diisocyanate. J. Appl. Polym. Sci. 2014, 131, 40251. [Google Scholar] [CrossRef]
- PN-EN ISO 20753:2019-01; Plastics—Test specimens. ISO: Geneva, Switzerland, 2019.
- Yazdaninia, A.; Jafari, S.H.; Ehsani, M.; Khajavi, R.; Khonakdar, H.A. An Assessment on the Effect of Trifluoropropyl-POSS and Blend Composition on Morphological, Thermal and Thermomechanical Properties of PLA/TPU. J. Therm. Anal. Calorim. 2020, 139, 279–292. [Google Scholar] [CrossRef]
- Jasmee, S.; Omar, G.; Masripan, N.A.B.; Kamarolzaman, A.A.; Ashikin, A.S.; Che Ani, F. Hydrophobicity Performance of Polyethylene Terephthalate (PET) and Thermoplastic Polyurethane (TPU) with Thermal Effect. Mater. Res. Express 2018, 5, 096304. [Google Scholar] [CrossRef]
- Honarkar, H. Waterborne Polyurethanes: A Review. J. Dispers. Sci. Technol. 2018, 39, 507–516. [Google Scholar] [CrossRef]
- Mi, H.Y.; Salick, M.R.; Jing, X.; Jacques, B.R.; Crone, W.C.; Peng, X.F.; Turng, L.S. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mater. Sci. Eng. C 2013, 33, 4767–4776. [Google Scholar] [CrossRef] [PubMed]
Operator Type | Weekly Working Time 1,2 [h] | Single Measuring Time [h] | Number of Samples Tested per Hour [pcs] | Sample Mounting Time [h] |
---|---|---|---|---|
human | 30 | 0.10 | 250 | 0.02 |
robot | 138 | 0.10 | 1340 | 0.003 |
Temperature (°C) | Nozzle | Zone 3 | Zone 2 | Zone 1 | Feed | ||
210 | 205 | 205 | 200 | 40 | |||
Mold temperature (°C) | 25 | ||||||
Holding pressure | t (s) | 0 | 11 | ||||
p (bar) | 700 | 1100 | |||||
Clamping force (kN) | Holding pressure time (s) | Cooling time (s) | Screw diameter (mm) | ||||
800 | 11 | 60 | 25 |
T5% [°C] | 1st Stage | 2nd Stage | |||
---|---|---|---|---|---|
T1onset [°C] | [°C] | T2onset [°C] | T2max [°C] | ||
PLA | 309.0 | 330.5 | 343.0 | - | - |
25% TPU | 301.5 | 301.8 | 333.2 | - | 353.0 |
40% TPU | 300.8 | 309.3 | 326.5 | 356.8 | 366.1 |
70% TPU | 296.0 | 301.7 | 315.9 | 343.0 | 370.3 |
TPU | 293.5 | 309.9 | 338.7 | 382.8 | 398.4 |
Tg [°C] | Tcc [°C] | Tm [°C] | ||||
---|---|---|---|---|---|---|
Cycle | First | Second | First | Second | First | Second |
PLA | 59.9 | 61.9 | 115.9 | 127.6 | 154.9 | 153.8 |
10% TPU | 59.9 | 61.5 | 107.6 | 110.6 | 155.4 | 149.9/154.8 |
25% TPU | 60.7 | 61.6 | 106.8 | 109.7 | 150.9 | 149.3 |
40% TPU | 60.7 | 61.6 | 109.5 | 111.5 | 151.3 | 149.7 |
55% TPU | 60.5 | 62.0 | 107.2 | 112.6 | 149.8 | 151.0 |
70% TPU | 59.4 | 61.4 | 107.4 | 111.6 | 150.3 | 150.0 |
90% TPU | - | - | - | - | - | - |
TPU | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głowacka, J.; Derpeński, Ł.; Frydrych, M.; Sztorch, B.; Bartoszewicz, B.; Przekop, R.E. Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Range. Materials 2023, 16, 6927. https://doi.org/10.3390/ma16216927
Głowacka J, Derpeński Ł, Frydrych M, Sztorch B, Bartoszewicz B, Przekop RE. Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Range. Materials. 2023; 16(21):6927. https://doi.org/10.3390/ma16216927
Chicago/Turabian StyleGłowacka, Julia, Łukasz Derpeński, Miłosz Frydrych, Bogna Sztorch, Błażej Bartoszewicz, and Robert E. Przekop. 2023. "Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Range" Materials 16, no. 21: 6927. https://doi.org/10.3390/ma16216927
APA StyleGłowacka, J., Derpeński, Ł., Frydrych, M., Sztorch, B., Bartoszewicz, B., & Przekop, R. E. (2023). Robotization of Three-Point Bending Mechanical Tests Using PLA/TPU Blends as an Example in the 0–100% Range. Materials, 16(21), 6927. https://doi.org/10.3390/ma16216927