Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications
<p>Exploded view of an axial flux modulation machine’s active components. Static parts: two copper armatures and one High-Temperature Superconductor (HTS) coil. Rotating parts: a set of HTS bulks.</p> "> Figure 2
<p>Simulation of the amplitude of the flux modulation fundamental harmonic in the air gap versus the bulk critical current density for applied magnetic fields of 1, 2, 3, and <math display="inline"><semantics> <mrow> <mn>4</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">T</mi> </mrow> </semantics></math>. The machine torque is proportional to the first harmonic of the air gap magnetic field.</p> "> Figure 3
<p>Ratio of current distribution to critical current in a bulk subjected to an applied field of <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">T</mi> </mrow> </semantics></math> for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mi>c</mi> </msub> <mo>=</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mn>500</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">A</mi> <mo>/</mo> <msup> <mi mathvariant="normal">mm</mi> <mn>2</mn> </msup> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mi>c</mi> </msub> <mo>=</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mn>2000</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">A</mi> <mo>/</mo> <msup> <mi mathvariant="normal">mm</mi> <mn>2</mn> </msup> </mrow> </semantics></math> simulated using Comsol Multiphysics.</p> "> Figure 4
<p>Modulation of the applied magnetic field by the bulk for (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mi>c</mi> </msub> <mo>=</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mn>500</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">A</mi> <mo>/</mo> <msup> <mi mathvariant="normal">mm</mi> <mn>2</mn> </msup> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>J</mi> <mi>c</mi> </msub> <mo>=</mo> </mrow> </semantics></math> <math display="inline"><semantics> <mrow> <mn>2000</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">A</mi> <mo>/</mo> <msup> <mi mathvariant="normal">mm</mi> <mn>2</mn> </msup> </mrow> </semantics></math> simulated using Comsol Multiphysics.</p> "> Figure 5
<p>Simulation of the quality of the modulation versus the bulk critical current density for applied fields of 1, 2, 3, and 4 T.</p> "> Figure 6
<p>Simulated amplitude of the flux modulation fundamental harmonic in the air gap versus applied magnetic field for different superconducting materials. The material properties are extracted from the works in [<a href="#B33-materials-14-02847" class="html-bibr">33</a>,<a href="#B41-materials-14-02847" class="html-bibr">41</a>,<a href="#B45-materials-14-02847" class="html-bibr">45</a>,<a href="#B47-materials-14-02847" class="html-bibr">47</a>,<a href="#B49-materials-14-02847" class="html-bibr">49</a>,<a href="#B50-materials-14-02847" class="html-bibr">50</a>].</p> "> Figure 7
<p>Simulation of the generated magnetic field at the center of a YBCO coil function of its weight for a coil of 352 mm in diameter and 107 mm in length.</p> "> Figure 8
<p>Superconducting rotor of the flux modulation machine prototype.</p> "> Figure 9
<p><b>Left</b>: Picture of the multi-seeded commercial bulk from ATZ of the 50 kW prototype before the polishing phase. <b>Right</b>: Geometry of the MG model considering a reduced critical current density on the grain boundaries.</p> "> Figure 10
<p>Comparison of the flux modulation calculated by the Single-Grain model (SG) and the Multi-Grain model (MG) with the measured flux modulation in the prototype for an applied magnetic flux density of <math display="inline"><semantics> <mrow> <mn>0.55</mn> <mspace width="0.277778em"/> <mi mathvariant="normal">T</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p>Simulated amplitude of the flux modulation fundamental harmonic in the air gap versus applied magnetic flux density for the SG and MG models.</p> "> Figure 12
<p>Representation of possible topologies of flux modulation inductors with the different bulk shapes. (<b>a</b>) Axial flux topology with disc-shaped bulks. (<b>b</b>) Axial flux topology with ring segment-shaped bulks. (<b>c</b>) Radial flux topology with cuboid-shaped bulks. (<b>d</b>) Radial flux topology with tile-shaped bulks.</p> "> Figure 13
<p><b>Left</b>: Picture of a commercial ring segment shaped GdBaCuO bulk from can superconductors. <b>Right</b>: Corresponding measured trapped field map <math display="inline"><semantics> <msub> <mi>B</mi> <mi>t</mi> </msub> </semantics></math> of the bulk magnetized by field cooling with a permanent magnet in liquid nitrogen at 77 K.</p> "> Figure 14
<p><b>Left</b>: Picture of a GdBaCuO commercial bulk produced by Nippon Steel. It has been cut and then welded with an ErBaCuO+Ag welding delimited by the dashed lines. <b>Right</b>: Corresponding measured trapped field map <math display="inline"><semantics> <msub> <mi>B</mi> <mi>t</mi> </msub> </semantics></math> of the welded bulk magnetized by field cooling with a permanent magnet in liquid nitrogen at 77 K.</p> ">
Abstract
:1. Introduction
- The Pnictide and Chalcogen families of Iron-based superconductors (IBS) [25,26,27,28] with as high as for the NaFeSe [29,30] and for the Sr Sm FeAsF [31] compound. The IBS also show very high critical magnetic field () [32] and promising critical current density () at liquid hydrogen temperature [33].
2. Critical Current Density and Magnetic Shielding Properties
3. Impact of the Synthesis Process on Performances
- Single-Grain model (SG): A time-dependent -formulation model, where the superconductors have homogeneous properties. Its critical current density is fixed to . This model is used as a reference and corresponds to a single-seeded bulk.
- Multi-Grain model (MG): A model considering a significant drop of the at the grain boundaries of the bulk. Figure 9 shows one of the prototype’s bulk with the four seeds used and the representation of the MG model with the grain boundaries regions. To simplify, the change of the critical current density is considered sinusoidal over the boundary region. The minimal in the frontier is fixed at to best fit the measurements.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haran, K.S.; Loder, D.; Deppen, T.O.; Zheng, L. Actively shielded high-field air-core superconducting machines. IEEE Trans. Appl. Supercond. 2016, 26, 98–105. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, M.; Wang, W.; Coombs, T.A. Trial test of a bulk-type fully HTS synchronous motor. IEEE Trans. Appl. Supercond. 2013, 24, 4602605. [Google Scholar]
- Manolopoulos, C.D.; Iacchetti, M.F.; Smith, A.C.; Berger, K.; Husband, M.; Miller, P. Stator Design and Performance of Superconducting Motors for Aerospace Electric Propulsion Systems. IEEE Trans. Appl. Supercond. 2018, 28, 5207005. [Google Scholar] [CrossRef] [Green Version]
- Yazdani-Asrami, M.; Zhang, M.; Yuan, W. Challenges for developing high temperature superconducting ring magnets for rotating electric machine applications in future electric aircrafts. J. Magn. Magn. Mat. 2021, 522, 167543. [Google Scholar] [CrossRef]
- Douine, B.; Berger, K.; Ivanov, N. Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application. Materials 2021, 14, 1636. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Yun, K.; Iwakuma, M.; Miura, S.; Sato, S.; Yoshida, K.; Tomioka, A.; Konno, M.; Izumi, T. Design Study of 2-MW Fully Superconducting Synchronous Motors. IEEE Trans. Appl. Supercond. 2018, 28, 5207806. [Google Scholar] [CrossRef]
- Weng, F.; Zhang, M.; Lan, T.; Wang, Y.; Yuan, W. Fully superconducting machine for electric aircraft propulsion: Study of AC loss for HTS stator. Supercond. Sci. Technol. 2020, 33, 104002. [Google Scholar] [CrossRef]
- Torrey, D.; Parizh, M.; Bray, J.; Stautner, W.; Tapadia, N.; Xu, M.; Wu, A.; Zierer, J. Superconducting Synchronous Motors for Electric Ship Propulsion. IEEE Trans. Appl. Supercond. 2020, 30, 5204708. [Google Scholar] [CrossRef]
- Haran, K.S.; Kalsi, S.; Arndt, T.; Karmaker, H.; Badcock, R.; Buckley, B.; Haugan, T.; Izumi, M.; Loder, D.; Bray, J.W.; et al. High Power Density Superconducting Rotating Machines—Development Status and Technology Roadmap. Supercond. Sci. Technol. 2017, 30, 123002. [Google Scholar] [CrossRef]
- Masson, P.J.; Luongo, C.A. High power density superconducting motor for all-electric aircraft propulsion. IEEE Trans. Appl. Supercond. 2005, 15, 2226–2229. [Google Scholar] [CrossRef]
- Boll, M.; Corduan, M.; Biser, S.; Filipenko, M.; Pham, Q.H.; Schlachter, S.; Rostek, P.; Noe, M. A Holistic System Approach for Short Range Passenger Aircraft with Cryogenic Propulsion System. Supercond. Sci. Technol. 2020, 33, 044014. [Google Scholar] [CrossRef]
- Wang, H.; Deng, Z.; Ma, S.; Sun, R.; Li, H.; Li, J. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment. IEEE Trans. Appl. Supercond. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Golovanov, D.; Gerada, D.; Sala, G.; Degano, M.; Trentin, A.; Connor, P.H.; Xu, Z.; La Rocca, A.; Galassini, A.; Tarisciotti, L.; et al. 4MW Class High Power Density Generator for Future Hybrid-Electric Aircraft. IEEE Trans. Transp. Electrif. 2021. [Google Scholar] [CrossRef]
- Filipenko, M.; Kühn, L.; Gleixner, T.; Thummet, M.; Lessmann, M.; Möller, D.; Böhm, M.; Schröter, A.; Häse, K.; Grundmann, J.; et al. Concept Design of a High Power Superconducting Generator for Future Hybrid-Electric Aircraft. Supercond. Sci. Technol. 2020, 33, 054002. [Google Scholar] [CrossRef]
- Corduan, M.; Boll, M.; Bause, R.; Oomen, M.P.; Filipenko, M.; Noe, M. Topology comparison of superconducting ac machines for hybrid electric aircraft. IEEE Trans. Appl. Supercond. 2020, 30, 5200810. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, H.; Kimura, Y.; Ohtani, I.; Izumi, M.; Ida, T.; Akita, Y.; Sugimoto, H.; Miki, M.; Kitano, M. An Axial Gap-Type HTS Bulk Synchronous Motor Excited by Pulsed-Field Magnetization with Vortex-Type Armature Copper Windings. IEEE Trans. Appl. Supercond. 2005, 15, 2222–2225. [Google Scholar] [CrossRef]
- Grilli, F.; Benkel, T.; Hänisch, J.; Lao, M.; Reis, T.; Berberich, E.; Wolfstädter, S.; Schneider, C.; Miller, P.; Palmer, C.; et al. Superconducting Motors for Aircraft Propulsion: The Advanced Superconducting Motor Experimental Demonstrator Project. J. Phys. Conf. Ser. 2020, 1590, 012051. [Google Scholar] [CrossRef]
- Malé, G.; Lubin, T.; Mezani, S.; Lévêque, J. Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor. Math. Comput. Simul. 2013, 90, 230–243. [Google Scholar] [CrossRef]
- Masson, P.J.; Breschi, M.; Tixador, P.; Luongo, C.A. Design of HTS axial flux motor for aircraft propulsion. IEEE Trans. Appl. Supercond. 2007, 17, 1533–1536. [Google Scholar] [CrossRef]
- Masson, P.J.; Pienkos, J.E.; Luongo, C.A. Scaling up of HTS motor based on trapped flux and flux concentration for large aircraft propulsion. IEEE Trans. Appl. Supercond. 2007, 17, 1579–1582. [Google Scholar] [CrossRef]
- Colle, A.; Lubin, T.; Ayat, S.; Gosselin, O.; Lévêque, J. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine. IEEE Trans. Mag. 2019, 55, 8107309. [Google Scholar] [CrossRef] [Green Version]
- Colle, A.; Lubin, T.; Ayat, S.; Gosselin, O.; Lévêque, J. Test of a Flux Modulation Superconducting Machine for Aircraft. J. Phys. Conf. Ser. 2020, 1590, 012052. [Google Scholar] [CrossRef]
- Filipenko, M.; Biser, S.; Boll, M.; Corduan, M.; Noe, M.; Rostek, P. Comparative analysis and optimization of technical and weight parameters of turbo-electric propulsion systems. Aerospace 2020, 7, 107. [Google Scholar] [CrossRef]
- Hsu, F.C.; Luo, J.Y.; Yeh, K.W.; Chen, T.K.; Huang, T.W.; Wu, P.M.; Lee, Y.C.; Huang, Y.L.; Chu, Y.Y.; Yan, D.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, D.C. The Puzzle of High Temperature Superconductivity in Layered Iron Pnictides and Chalcogenides. Adv. Phys. 2010, 59, 803–1061. [Google Scholar] [CrossRef] [Green Version]
- Paglione, J.; Greene, R.L. High-Temperature Superconductivity in Iron-Based Materials. Nat. Phys. 2010, 6, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.R. Superconductivity in Iron Compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Jin, S.; Wu, X.; Huang, Q.; Wu, H.; Ying, T.; Fan, X.; Sun, R.; Zhao, L.; Chen, X. Two New Parent Compounds for FeSe-Based Superconducting Phases. arXiv 2016, arXiv:1607.01103. [Google Scholar]
- Ying, T.P.; Chen, X.L.; Wang, G.; Jin, S.F.; Zhou, T.T.; Lai, X.F.; Zhang, H.; Wang, W.Y. Observation of Superconductivity at 30∼46K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2012, 2, 426. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Xie, Y.L.; Chen, H.; Zhong, M.; Liu, R.H.; Shi, B.C.; Li, Q.J.; Wang, X.F.; Wu, T.; Yan, Y.J.; et al. Superconductivity at 56 K in Samarium-Doped SrFeAsF. J. Phys. Condens. Matter 2009, 21, 142203. [Google Scholar] [CrossRef] [Green Version]
- Tarantini, C.; Gurevich, A.; Jaroszynski, J.; Balakirev, F.; Bellingeri, E.; Pallecchi, I.; Ferdeghini, C.; Shen, B.; Wen, H.H.; Larbalestier, D.C. Significant Enhancement of Upper Critical Fields by Doping and Strain in Iron-Based Superconductors. Phys. Rev. B 2011, 84, 184522. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, T.; Takeya, H.; Okazaki, H.; Deguchi, K.; Demura, S.; Kawasaki, Y.; Hara, H.; Watanabe, T.; Yamaguchi, T.; Takano, Y. One-Step Synthesis of KxFe2Se2 Single Crystal for High Critical Current Density. EPL 2012, 98, 27002. [Google Scholar] [CrossRef]
- Murakami, M.; Sakai, N.; Higuchi, T.; Yoo, S.I. Melt-processed light rare earth element-Ba-Cu-O. Supercond. Sci. Technol. 1996, 9, 1015–1032. [Google Scholar] [CrossRef]
- Murakami, M. Processing of bulk YBaCuO. Supercond. Sci. Technol. 1992, 5, 185. [Google Scholar] [CrossRef]
- Nariki, S.; Sakai, N.; Murakami, M. Melt-processed Gd-Ba-Cu-O superconductor with trapped field of 3 T at 77 K. Supercond. Sci. Technol. 2004, 18, S126. [Google Scholar] [CrossRef]
- Tomita, M.; Murakami, M.; Tomita, M.; Murakami, M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature 2003, 421, 517–520. [Google Scholar] [CrossRef]
- Durrell, J.H.; Dennis, A.R.; Jaroszynski, J.; Ainslie, M.D.; Palmer, K.G.; Shi, Y.H.; Campbell, A.M.; Hull, J.; Strasik, M.; Hellstrom, E.E.; et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond. Sci. Technol. 2014, 27, 082001. [Google Scholar] [CrossRef]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in Magnesium Diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Kumakura, H.; Takano, Y.; Fujii, H.; Togano, K.; Kito, H.; Ihara, H. Critical current densities and irreversibility fields of MgB2 bulks. Phys. C Supercond. 2001, 363, 179–183. [Google Scholar] [CrossRef]
- Noudem, J.G.; Xing, Y.; Bernstein, P.; Retoux, R.; Higuchi, M.; Arvapalli, S.; Muralidhar, M.; Murakami, M. Improvement of critical current density of MgB2 bulk superconductor processed by Spark Plasma Sintering. J. Am. Ceram Soc. 2020, 103, 6169–6175. [Google Scholar] [CrossRef]
- Badica, P.; Aldica, G.; Grigoroscuta, M.A.; Burdusel, M.; Pasuk, I.; Batalu, D.; Berger, K.; Koblischka-Veneva, A.; Koblischka, M.R. Reproducibility of Small Ge2C6H10O7-Added MgB2 Bulks Fabricated by Ex Situ Spark Plasma Sintering Used in Compound Bulk Magnets with a Trapped Magnetic Field above 5 T. Sci. Rep. 2020, 10, 10538. [Google Scholar] [CrossRef]
- Berger, K.; Koblischka, M.R.; Douine, B.; Noudem, J.; Bernstein, P.; Hauet, T.; Lévêque, J. High magnetic field generated by bulk MgB 2 prepared by spark plasma sintering. IEEE Trans. Appl. Supercond. 2016, 26, 6801005. [Google Scholar] [CrossRef]
- Berger, K.; Lévêque, J.; Netter, D.; Douine, B.; Rezzoug, A. Influence of Temperature and/or Field Dependences of the E–J Power Law on Trapped Magnetic Field in Bulk YBaCuO. IEEE Trans. Appl. Supercond. 2007, 17, 3028–3031. [Google Scholar] [CrossRef]
- Antal, V.; Zmorayová, K.; Rajňak, M.; Vojtkova, L.; Hlásek, T.; Plecháček, J.; Diko, P. Relationship between local microstructure and superconducting properties of commercial YBa2Cu3O7-δbulk. Supercond. Sci. Technol. 2020, 33, 044004. [Google Scholar] [CrossRef]
- van Dalen, A.J.J.; Koblischka, M.R.; Griessen, R.; Jirsa, M.; Ravi Kumar, G. Dynamic Contribution to the Fishtail Effect in a Twin-Free DyBa2Cu3O7-δ Single Crystal. Phys. C Supercond. 1995, 250, 265–274. [Google Scholar] [CrossRef]
- Yang, H.; Luo, H.; Wang, Z.; Wen, H.-H. Fishtail Effect and the Vortex Phase Diagram of Single Crystal Ba0.6K0.4Fe2As2. Appl. Phys. Lett. 2008, 93, 142506. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Wang, Z.; Yang, H.; Cheng, P.; Zhu, X.; Wen, H.H. Growth and characterization of A_1- xK_xFe2As2 (A= Ba, Sr) single crystals with x= 0–0.4. Supercond. Sci. Technol. 2008, 21, 125014. [Google Scholar] [CrossRef] [Green Version]
- Guilmeau, E.; Noudem, J. Influence of the sinter-forging temperature on the superconducting properties of Bi2223 textured discs. Supercond. Sci. Technol. 2002, 15, 1566. [Google Scholar] [CrossRef]
- Ishida, S.; Pavan Kumar Naik, S.; Tsuchiya, Y.; Mawatari, Y.; Yoshida, Y.; Iyo, A.; Eisaki, H.; Kamiya, Y.; Kawashima, K.; Ogino, H. Synthesis of CaKFe4As4 bulk samples with high critical current density using a spark plasma sintering technique Supercond. Sci. Technol. 2020, 33, 094005. [Google Scholar]
- Werfel, F.N.; Floegel-Delor, U.; Riedel, T.; Goebel, B.; Rothfeld, R.; Schirrmeister, P.; Wippich, D. Large-scale HTS bulks for magnetic application. Phys. C Supercond. 2013, 484, 6–11. [Google Scholar] [CrossRef]
- Hlásek, T.; Plecháček, V. Long-Term Quality Observation in Large-Scale Production of Top-Seeded Melt Growth YBCO Bulks. IEEE Trans. Appl. Supercond. 2017, 27, 6801004. [Google Scholar] [CrossRef]
- Werfel, F.N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P. Superconductor Bearings, Flywheels and Transportation. Supercond. Sci. Technol. 2011, 25, 014007. [Google Scholar] [CrossRef]
- Sakai, N.; Kita, M.; Nariki, S.; Muralidhar, M.; Inoue, K.; Hirabayashi, I.; Murakami, M. Field trapping property of Gd–Ba–Cu–O bulk superconductor 140 mm in diameter. Phys. C Supercond. Its Appl. 2006, 445, 339–342. [Google Scholar] [CrossRef]
- Shi, Y.; Babu, N.H.; Iida, K.; Yeoh, W.K.; Dennis, A.R.; Pathak, S.K.; Cardwell, D.A. Batch-processed GdBCO–Ag bulk superconductors fabricated using generic seeds with high trapped fields. Phys. C Supercond. Its Appl. 2010, 470, 685–688. [Google Scholar] [CrossRef]
- Ainslie, M.D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A.R.; Shi, Y.H.; Cardwell, D.A. Modelling and comparison of trapped fields in (RE) BCO bulk superconductors for activation using pulsed field magnetization. Supercond. Sci. Technol. 2014, 27, 065008. [Google Scholar] [CrossRef]
- Shi, Y.; Gough, M.; Dennis, A.R.; Durrell, J.H.; Cardwell, D.A. Distribution of the superconducting critical current density within a Gd–Ba–Cu–O single grain. Supercond. Sci. Technol. 2020, 33, 044009. [Google Scholar] [CrossRef]
- Hlásek, T.; Shi, Y.; Durrell, J.H.; Dennis, A.R.; Namburi, D.K.; Plecháček, V.; Rubešová, K.; Cardwell, D.A.; Jankovský, O. Cost-Effective Isothermal Top-Seeded Melt-Growth of Single-Domain YBCO Superconducting Ceramics. Solid State Sci. 2019, 88, 74–80. [Google Scholar] [CrossRef]
- Eisterer, M.; Haindl, S.; Zehetmayer, M.; Gonzalez-Arrabal, R.; Weber, H.W.; Litzkendorf, D.; Zeisberger, M.; Habisreuther, T.; Gawalek, W.; Shlyk, L. Limitations for the trapped field in large grain YBCO superconductors. Supercond. Sci. Technol. 2006, 19, S530. [Google Scholar] [CrossRef]
- Pavan Kumar Naik, S.; Muralidhar, M.; Jirsa, M.; Murakami, M. Growth and Physical Properties of Top-Seeded Infiltration Growth Processed Large Grain (Gd, Dy)BCO Bulk Superconductors. J. Appl. Phys. 2017, 122, 193902. [Google Scholar] [CrossRef]
- Pavan Kumar Naik, S.; Miryala, M.; Koblischka, M.R.; Koblischka-Veneva, A.; Oka, T.; Murakami, M. Production of Sharp-Edged and Surface-Damaged Y2BaCuO5 by Ultrasound: Significant Improvement of Superconducting Performance of Infiltration Growth-Processed YBa2Cu3O7-δ Bulk Superconductors. ACS Omega 2020, 5, 6250–6259. [Google Scholar] [CrossRef] [Green Version]
- Namburi, D.K.; Takahashi, K.; Hirano, T.; Kamada, T.; Fujishiro, H.; Shi, Y.-H.; Cardwell, D.A.; Durrell, J.H.; Ainslie, M.D. Pulsed-Field Magnetisation of Y-Ba-Cu-O Bulk Superconductors Fabricated by the Infiltration Growth Technique. Supercond. Sci. Technol. 2020, 33, 115012. [Google Scholar] [CrossRef]
- Reddy, E.S.; Schmitz, G.J. Superconducting Foams. Supercond. Sci. Technol. 2002, 15, L21–L24. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Koblischka-Veneva, A.; Berger, K.; Nouailhetas, Q.; Douine, B.; Reddy, E.S.; Schmitz, G.J. Current Flow and Flux Pinning Properties of YBCO Foam Struts. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, M.R.; Naik, S.P.K.; Koblischka-Veneva, A.; Murakami, M.; Gokhfeld, D.; Reddy, E.S.; Schmitz, G.J. Superconducting YBCO Foams as Trapped Field Magnets. Materials 2019, 12, 853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, S.M.; Mahadev, N.; Sengupta, S. Microstructural and spectroscopic analyses of a strongly-linked joint formed in a superconductor. Phys. C Supercond. 2020, 329, 95–101. [Google Scholar] [CrossRef]
- Noudem, J.G.; Reddy, E.S.; Tarka, M.; Noe, M.; Schmitz, G.J. Melt-texture joining of YBa2Cu3O y bulks. Supercond. Sci. Technol. 2001, 14, 363. [Google Scholar] [CrossRef]
- Iida, K.; Yoshioka, J.; Sakai, N.; Murakami, M. Superconducting joint of Y–Ba–Cu–O superconductors using Er–Ba–Cu–O solder. Phys. C Supercond. 2002, 370, 53–58. [Google Scholar] [CrossRef]
- Iida, K.; Yoshioka, J.; Negichi, T.; Noto, K.; Sakai, N.; Murakami, M. Strong coupled joint for Y–Ba–Cu–O superconductors using a sintered Er–Ba–Cu–O solder. Phys. C Supercond. 2002, 378, 622–626. [Google Scholar] [CrossRef]
- Iida, K.; Yoshioka, J.; Sakai, N.; Murakami, M. Welding of different Y–Ba–Cu–O blocks. Phys. C Supercond. 2003, 392, 437–440. [Google Scholar] [CrossRef]
- Yoshioka, J.; Iida, K.; Negichi, T.; Sakai, N.; Noto, K.; Murakami, M. Joining Y123 bulk superconductors using Yb–Ba–Cu–O and Er–Ba–Cu–O solders. Supercond. Sci. Technol. 2002, 15, 712. [Google Scholar] [CrossRef]
- Harnois, C.; Desgardin, G.; Laffez, I.; Chaud, X.; Bourgault, D. High quality weld of melt textured YBCO using Ag doped YBCO junctions. Phys. C Supercond. 2002, 383, 269–278. [Google Scholar] [CrossRef]
- Harnois, C.; Desgardin, G.; Chaud, X. A new way of welding YBa2Cu3O7-δ bulk textured domains. Supercond. Sci. Technol. 2001, 14, 708. [Google Scholar] [CrossRef]
- Hopfinger, T.; Viznichenko, R.; Krabbes, G.; Fuchs, G.; Nenkov, K. Joining of multi-seeded YBCO melt-textured samples using YBCO/Ag composites as welding material. Phys. C Supercond. 2003, 398, 95–106. [Google Scholar] [CrossRef]
- Harnois, C.; Chaud, X.; Laffez, I.; Desgardin, G. Joining of YBCO textured domains: A comparison between the multi-seeding and the welding techniques. Phys. C Supercond. 2002, 372, 1103–1106. [Google Scholar] [CrossRef]
- Wei, G.; Guisheng, Z.; Xiao, C.; Aiping, W.; Jiarun, H.; Hailin, B.; Jialie, R.; Yulei, J. Joining of Textured YBCO with YBCO Added Ag2O Additive. Phys. C Supercond. 2010, 470, 482–486. [Google Scholar] [CrossRef]
- Chai, X.; Zou, G.; Guo, W.; Wu, A.; He, J.; Bai, H.; Xiao, L.; Jiao, Y.; Jialie, R. Fast Joining of Melt Textured Y–Ba–Cu–O Bulks with High Quality. Phys. C Supercond. 2010, 470, 598–601. [Google Scholar] [CrossRef]
- Nouailhetas, Q.; Koblischka-Veneva, A.; Koblischka, M.R.; Naik S, P.K.; Schäfer, F.; Ogino, H.; Motz, C.; Berger, K.; Douine, B.; Slimani, Y.; et al. Magnetic Phases in Superconducting, Polycrystalline Bulk FeSe Samples. AIP Adv. 2021, 11, 015230. [Google Scholar] [CrossRef]
- Galluzzi, A.; Polichetti, M.; Buchkov, K.; Nazarova, E.; Mancusi, D.; Pace, S. Evaluation of the Intragrain Critical Current Density in a Multidomain FeSe Crystal by Means of Dc Magnetic Measurements. Supercond. Sci. Technol. 2015, 28, 115005. [Google Scholar] [CrossRef]
- Aldica, G.; Burdusel, M.; Popa, S.; Enculescua, M.; Pasuka, I.; Badica, P. The influence of heating rate on superconducting characteristics of MgB2 obtained by spark plasma sintering technique. Phys. C 2015, 19, 184–189. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
Critical electric field | ||
n | index of the power law | |
R | Bulk radius | |
h | Bulk thickness | |
Applied magnetic field | 0–4 T |
Model | (T) |
---|---|
SG model | 0.280 |
MG model | 0.220 |
Measured | 0.215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorget, R.; Nouailhetas, Q.; Colle, A.; Berger, K.; Sudo, K.; Ayat, S.; Lévêque, J.; Koblischka, M.R.; Sakai, N.; Oka, T.; et al. Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. Materials 2021, 14, 2847. https://doi.org/10.3390/ma14112847
Dorget R, Nouailhetas Q, Colle A, Berger K, Sudo K, Ayat S, Lévêque J, Koblischka MR, Sakai N, Oka T, et al. Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. Materials. 2021; 14(11):2847. https://doi.org/10.3390/ma14112847
Chicago/Turabian StyleDorget, Rémi, Quentin Nouailhetas, Alexandre Colle, Kévin Berger, Kimiaki Sudo, Sabrina Ayat, Jean Lévêque, Michael Rudolf Koblischka, Naomichi Sakai, Tetsuo Oka, and et al. 2021. "Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications" Materials 14, no. 11: 2847. https://doi.org/10.3390/ma14112847
APA StyleDorget, R., Nouailhetas, Q., Colle, A., Berger, K., Sudo, K., Ayat, S., Lévêque, J., Koblischka, M. R., Sakai, N., Oka, T., & Douine, B. (2021). Review on the Use of Superconducting Bulks for Magnetic Screening in Electrical Machines for Aircraft Applications. Materials, 14(11), 2847. https://doi.org/10.3390/ma14112847