Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature
<p>Contour plots showing the relative distribution of the parameters.</p> "> Figure 2
<p>Machine learning techniques used in the research.</p> "> Figure 3
<p>Numerical analysis results showing the relationship between the actual and predicted results, including the error distribution of models: DT (<b>a</b>,<b>b</b>); bagging (<b>c</b>,<b>d</b>); GB (<b>e</b>,<b>f</b>), ANN (<b>g</b>,<b>h</b>).</p> "> Figure 4
<p>Statistical indication of the k-fold cross validation. DT (<b>a</b>); bagging (<b>b</b>); GB (<b>c</b>); ANN (<b>d</b>).</p> "> Figure 4 Cont.
<p>Statistical indication of the k-fold cross validation. DT (<b>a</b>); bagging (<b>b</b>); GB (<b>c</b>); ANN (<b>d</b>).</p> "> Figure 5
<p>Bar chart indicating the performance of input parameters with regards to predicting of the compressive strength of concrete.</p> "> Figure 6
<p>Sub-models representing the correlation coefficient (R<sup>2</sup>) values. Bagging (<b>a</b>); GB (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Research Significance
3. Methodology
3.1. Supervised Machine Learning (ML) Techniques
3.2. Description of the Obtained Data
3.3. Machine Learning Approaches
4. Result and Analysis
4.1. Statistical Analysis
4.2. k-Fold Cross Validation and Statistical Checks
- = the experimental value;
- = the predicted value;
- = the mean experimental value;
- = the mean predicted value obtained by the model;
- n = the number of samples.
4.3. Sensitivity Analysis of the Compressive Strength of Concrete at High Temperatures
4.4. Discussion
5. Conclusions and Future Recommendations
- (a)
- The performance of the models can be affected by input parameters. Taking into account the thermal aspect (being the main consideration of the paper), we found that the ensemble models showed less discrepancy between actual and predicted results.
- (b)
- The accuracy level of the bagging and GB regressors was also confirmed using the k-fold cross validation process.
- (c)
- The contribution of each parameter with regards to predicting the outcome was evaluated by means of sensitivity analysis.
- (d)
- This study describes the positive role of the supervised ML approaches in the field of civil engineering. The application of these techniques can be successfully adopted to predict the mechanical properties of concrete without spending time on the experimental work in the laboratory. It was also observed that the ensemble machine learning algorithms indicate a strong relation between actual and forecasted results when compared to individual algorithms.
- (e)
- The high accuracy of the models can also be achieved by increasing the data points, as number of data points have high influence on the model’s outcome.
- (f)
- The performance of the models can also be evaluated on the basis of practical work performed in a laboratory in order to understand the difference level between the actual and predicted result.
- (g)
- The variance can be reduced by splitting more than 20 sub-models (in the ensemble techniques) for training on data and optimization would give the maximum R2 value.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cement (kg/m3) | Water (kg/m3) | Fine Aggregate (kg/m3) | Coarse Aggregate (kg/m3) | Fly Ash (kg/m3) | Super Plasticizer (kg/m3) | Silica Fume (kg/m3) | Nano Silica (kg/m3) | Temperature °C | Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 20 | 28.16 |
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 200 | 23.4 |
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 400 | 18.57 |
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 600 | 15.26 |
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 800 | 8.01 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 20 | 48.99 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 100 | 44.58 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 400 | 34.12 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 600 | 24.41 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 800 | 15.24 |
500 | 385 | 0 | 820 | 0 | 6 | 0 | 0 | 20 | 38 |
500 | 385 | 0 | 820 | 0 | 6 | 0 | 0 | 200 | 36 |
500 | 385 | 0 | 820 | 0 | 6 | 0 | 0 | 800 | 12 |
450 | 346.5 | 0 | 805 | 0 | 6 | 50 | 0 | 20 | 46 |
450 | 346.5 | 0 | 805 | 0 | 6 | 50 | 0 | 200 | 41.5 |
450 | 346.5 | 0 | 805 | 0 | 6 | 50 | 0 | 400 | 36.2 |
400 | 308 | 0 | 790 | 0 | 6 | 100 | 0 | 20 | 50 |
400 | 308 | 0 | 790 | 0 | 6 | 100 | 0 | 400 | 42 |
400 | 308 | 0 | 790 | 0 | 6 | 100 | 0 | 800 | 21 |
350 | 269.5 | 0 | 775 | 0 | 6 | 150 | 0 | 20 | 33 |
350 | 269.5 | 0 | 775 | 0 | 6 | 150 | 0 | 200 | 29 |
350 | 269.5 | 0 | 775 | 0 | 6 | 150 | 0 | 800 | 12.5 |
400 | 308 | 0 | 1038 | 0 | 4.8 | 0 | 0 | 20 | 32 |
400 | 308 | 0 | 1038 | 0 | 4.8 | 0 | 0 | 200 | 29.5 |
400 | 308 | 0 | 1038 | 0 | 4.8 | 0 | 0 | 400 | 28.5 |
360 | 277.2 | 0 | 1028 | 0 | 4.8 | 40 | 0 | 20 | 35 |
360 | 277.2 | 0 | 1028 | 0 | 4.8 | 40 | 0 | 400 | 29 |
360 | 277.2 | 0 | 1028 | 0 | 4.8 | 40 | 0 | 800 | 11 |
320 | 246.4 | 0 | 1015 | 0 | 4.8 | 80 | 0 | 20 | 38 |
320 | 246.4 | 0 | 1015 | 0 | 4.8 | 80 | 0 | 200 | 35 |
320 | 246.4 | 0 | 1015 | 0 | 4.8 | 80 | 0 | 800 | 12 |
280 | 215.6 | 0 | 1005 | 0 | 4.8 | 120 | 0 | 20 | 28 |
280 | 215.6 | 0 | 1005 | 0 | 4.8 | 120 | 0 | 200 | 27 |
280 | 215.6 | 0 | 1005 | 0 | 4.8 | 120 | 0 | 400 | 21 |
500 | 135 | 700 | 1110 | 0 | 14 | 30 | 0 | 20 | 82.47 |
500 | 135 | 700 | 1110 | 0 | 14 | 30 | 0 | 600 | 42.58 |
500 | 135 | 700 | 1110 | 0 | 14 | 30 | 0 | 800 | 22.03 |
500 | 135 | 700 | 1110 | 0 | 15 | 22.5 | 7.5 | 20 | 84.14 |
500 | 135 | 700 | 1110 | 0 | 15 | 22.5 | 7.5 | 400 | 68.99 |
500 | 135 | 700 | 1110 | 0 | 15 | 22.5 | 7.5 | 800 | 23.39 |
500 | 135 | 700 | 1110 | 0 | 16 | 15 | 15 | 20 | 85.84 |
500 | 135 | 700 | 1110 | 0 | 16 | 15 | 15 | 400 | 76.62 |
500 | 135 | 700 | 1110 | 0 | 16 | 15 | 15 | 800 | 25.28 |
500 | 135 | 700 | 1110 | 0 | 18 | 7.5 | 22.5 | 20 | 85.21 |
500 | 135 | 700 | 1110 | 0 | 18 | 7.5 | 22.5 | 400 | 79.12 |
500 | 135 | 700 | 1110 | 0 | 18 | 7.5 | 22.5 | 600 | 51.11 |
470 | 135 | 700 | 1110 | 0 | 16 | 60 | 0 | 20 | 87.38 |
470 | 135 | 700 | 1110 | 0 | 16 | 60 | 0 | 600 | 47.39 |
470 | 135 | 700 | 1110 | 0 | 16 | 60 | 0 | 800 | 18.82 |
470 | 135 | 700 | 1110 | 0 | 18 | 52.5 | 7.5 | 20 | 87.61 |
470 | 135 | 700 | 1110 | 0 | 18 | 52.5 | 7.5 | 400 | 68.94 |
470 | 135 | 700 | 1110 | 0 | 18 | 52.5 | 7.5 | 800 | 20.06 |
470 | 135 | 700 | 1110 | 0 | 20 | 45 | 15 | 20 | 90.6 |
470 | 135 | 700 | 1110 | 0 | 20 | 45 | 15 | 400 | 75.71 |
470 | 135 | 700 | 1110 | 0 | 20 | 45 | 15 | 600 | 51.12 |
470 | 135 | 700 | 1110 | 0 | 22 | 37.5 | 22.5 | 400 | 78.22 |
470 | 135 | 700 | 1110 | 0 | 22 | 37.5 | 22.5 | 600 | 52.49 |
470 | 135 | 700 | 1110 | 0 | 22 | 37.5 | 22.5 | 800 | 25.72 |
326 | 184 | 659 | 1124 | 58 | 3 | 0 | 0 | 20 | 95.8 |
326 | 184 | 659 | 1124 | 58 | 3 | 0 | 0 | 650 | 57.9 |
326 | 184 | 659 | 1124 | 58 | 3 | 0 | 0 | 800 | 40 |
326 | 184 | 659 | 1124 | 58 | 3 | 0 | 0 | 950 | 21.3 |
391 | 179 | 689 | 1172 | 69 | 3.5 | 0 | 0 | 20 | 114.4 |
391 | 179 | 689 | 1172 | 69 | 3.5 | 0 | 0 | 400 | 84.8 |
391 | 179 | 689 | 1172 | 69 | 3.5 | 0 | 0 | 800 | 36.8 |
391 | 179 | 689 | 1172 | 69 | 3.5 | 0 | 0 | 950 | 25.4 |
442 | 166 | 689 | 1125 | 78 | 5.3 | 0 | 0 | 20 | 115.1 |
442 | 166 | 689 | 1125 | 78 | 5.3 | 0 | 0 | 400 | 85.2 |
442 | 166 | 689 | 1125 | 78 | 5.3 | 0 | 0 | 650 | 73.5 |
442 | 166 | 689 | 1125 | 78 | 5.3 | 0 | 0 | 950 | 25.5 |
440 | 149 | 702 | 1099 | 110 | 6.6 | 0 | 0 | 20 | 133.6 |
440 | 149 | 702 | 1099 | 110 | 6.6 | 0 | 0 | 400 | 98.1 |
440 | 149 | 702 | 1099 | 110 | 6.6 | 0 | 0 | 650 | 84.9 |
440 | 149 | 702 | 1099 | 110 | 6.6 | 0 | 0 | 800 | 43.1 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 300 | 57.2 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 400 | 58 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 500 | 47.2 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 600 | 36.5 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 700 | 28.3 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 22 | 49 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 300 | 41 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 400 | 23 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 600 | 8 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 800 | 3 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 22 | 52 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 105 | 53 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 400 | 27 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 600 | 11 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 800 | 6 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 22 | 57 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 105 | 66 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 300 | 61 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 600 | 21 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 800 | 12 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 22 | 64 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 105 | 78 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 300 | 65 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 400 | 37 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 800 | 21 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 20 | 37.5 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 100 | 31.5 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 150 | 29.4 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 200 | 29.2 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 250 | 34.7 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 20 | 44.5 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 50 | 44.3 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 150 | 46.5 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 200 | 48.9 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 250 | 47.1 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 20 | 80.6 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 50 | 80.5 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 100 | 67.8 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 200 | 78.9 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 250 | 83.7 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 20 | 85.1 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 50 | 85.2 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 100 | 89.6 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 150 | 94.6 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 250 | 101.3 |
500 | 150 | 750 | 1068 | 0 | 0 | 0 | 0 | 100 | 75.3 |
500 | 150 | 750 | 1068 | 0 | 0 | 0 | 0 | 200 | 68.9 |
500 | 150 | 750 | 1068 | 0 | 0 | 0 | 0 | 400 | 66 |
500 | 150 | 750 | 1068 | 0 | 0 | 0 | 0 | 600 | 35.4 |
350 | 150 | 750 | 1023 | 150 | 0 | 0 | 0 | 23 | 75.2 |
350 | 150 | 750 | 1023 | 150 | 0 | 0 | 0 | 200 | 73.3 |
350 | 150 | 750 | 1023 | 150 | 0 | 0 | 0 | 400 | 60.4 |
350 | 150 | 750 | 1023 | 150 | 0 | 0 | 0 | 600 | 39.2 |
475 | 150 | 750 | 1065 | 0 | 25 | 0 | 0 | 23 | 75.7 |
475 | 150 | 750 | 1065 | 0 | 25 | 0 | 0 | 100 | 75.4 |
475 | 150 | 750 | 1065 | 0 | 25 | 0 | 0 | 400 | 68.5 |
475 | 150 | 750 | 1065 | 0 | 25 | 0 | 0 | 600 | 34.2 |
390 | 195 | 585 | 1209 | 0 | 0 | 0 | 0 | 23 | 34.1 |
390 | 195 | 585 | 1209 | 0 | 0 | 0 | 0 | 100 | 35.6 |
390 | 195 | 585 | 1209 | 0 | 0 | 0 | 0 | 200 | 31.6 |
390 | 195 | 585 | 1209 | 0 | 0 | 0 | 0 | 600 | 16.8 |
390 | 195 | 585 | 1209 | 0 | 0 | 0 | 0 | 400 | 26.6 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 600 | 43.4 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 800 | 41.3 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 23 | 58.3 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 200 | 55 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 400 | 52.2 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 800 | 31.5 |
572 | 286 | 1345 | 0 | 0 | 0 | 0 | 0 | 1000 | 6.5 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 23 | 71 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 200 | 58 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 400 | 65.4 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 600 | 62.9 |
786 | 236 | 1286 | 0 | 0 | 25.9 | 78.6 | 0 | 1000 | 21 |
430 | 172 | 687 | 1030 | 0 | 1.6 | 0 | 0 | 20 | 61.8 |
430 | 172 | 687 | 1030 | 0 | 1.6 | 0 | 0 | 100 | 53.3 |
430 | 172 | 687 | 1030 | 0 | 1.6 | 0 | 0 | 200 | 55.5 |
430 | 172 | 687 | 1030 | 0 | 1.6 | 0 | 0 | 300 | 46.5 |
430 | 172 | 687 | 1030 | 0 | 1.6 | 0 | 0 | 600 | 20.6 |
441 | 164 | 653 | 1115 | 0 | 2.9 | 28 | 0 | 100 | 62.8 |
441 | 164 | 653 | 1115 | 0 | 2.9 | 28 | 0 | 200 | 64.7 |
441 | 164 | 653 | 1115 | 0 | 2.9 | 28 | 0 | 300 | 56.5 |
441 | 164 | 653 | 1115 | 0 | 2.9 | 28 | 0 | 600 | 21.8 |
495 | 149 | 615 | 1168 | 0 | 1.9 | 0 | 0 | 20 | 67.4 |
495 | 149 | 615 | 1168 | 0 | 1.9 | 0 | 0 | 200 | 59.7 |
495 | 149 | 615 | 1168 | 0 | 1.9 | 0 | 0 | 300 | 49 |
495 | 149 | 615 | 1168 | 0 | 1.9 | 0 | 0 | 600 | 21 |
465 | 149 | 615 | 1168 | 0 | 3.1 | 30 | 0 | 20 | 80.3 |
465 | 149 | 615 | 1168 | 0 | 3.1 | 30 | 0 | 100 | 68 |
465 | 149 | 615 | 1168 | 0 | 3.1 | 30 | 0 | 300 | 56.5 |
465 | 149 | 615 | 1168 | 0 | 3.1 | 30 | 0 | 600 | 23.4 |
450 | 149 | 615 | 1168 | 0 | 3.7 | 45 | 0 | 20 | 84.2 |
450 | 149 | 615 | 1168 | 0 | 3.7 | 45 | 0 | 100 | 70.8 |
450 | 149 | 615 | 1168 | 0 | 3.7 | 45 | 0 | 200 | 71.7 |
250 | 123 | 417 | 1681 | 0 | 0 | 0 | 0 | 100 | 25.74 |
350 | 172 | 373 | 1507 | 0 | 0 | 0 | 0 | 200 | 40.35 |
500 | 385 | 0 | 820 | 0 | 6 | 0 | 0 | 400 | 34.5 |
450 | 346.5 | 0 | 805 | 0 | 6 | 50 | 0 | 800 | 21 |
400 | 308 | 0 | 790 | 0 | 6 | 100 | 0 | 200 | 44 |
350 | 269.5 | 0 | 775 | 0 | 6 | 150 | 0 | 400 | 27 |
400 | 308 | 0 | 1038 | 0 | 4.8 | 0 | 0 | 800 | 7.5 |
360 | 277.2 | 0 | 1028 | 0 | 4.8 | 40 | 0 | 200 | 32 |
320 | 246.4 | 0 | 1015 | 0 | 4.8 | 80 | 0 | 400 | 30 |
280 | 215.6 | 0 | 1005 | 0 | 4.8 | 120 | 0 | 800 | 8.5 |
500 | 135 | 700 | 1110 | 0 | 14 | 30 | 0 | 400 | 69.87 |
500 | 135 | 700 | 1110 | 0 | 15 | 22.5 | 7.5 | 600 | 45.23 |
500 | 135 | 700 | 1110 | 0 | 16 | 15 | 15 | 600 | 48.79 |
500 | 135 | 700 | 1110 | 0 | 18 | 7.5 | 22.5 | 800 | 27.38 |
470 | 135 | 700 | 1110 | 0 | 16 | 60 | 0 | 400 | 69.86 |
470 | 135 | 700 | 1110 | 0 | 18 | 52.5 | 7.5 | 600 | 47.07 |
470 | 135 | 700 | 1110 | 0 | 20 | 45 | 15 | 800 | 22.32 |
470 | 135 | 700 | 1110 | 0 | 22 | 37.5 | 22.5 | 20 | 91.24 |
326 | 184 | 659 | 1124 | 58 | 3 | 0 | 0 | 400 | 69.2 |
391 | 179 | 689 | 1172 | 69 | 3.5 | 0 | 0 | 650 | 66.9 |
442 | 166 | 689 | 1125 | 78 | 5.3 | 0 | 0 | 800 | 37.9 |
440 | 149 | 702 | 1099 | 110 | 6.6 | 0 | 0 | 950 | 29.4 |
437 | 170 | 783 | 1016 | 49 | 1.9 | 0 | 0 | 20 | 71.2 |
500 | 150 | 630 | 1260 | 0 | 10 | 0 | 0 | 105 | 51 |
450 | 150 | 630 | 1260 | 0 | 10 | 50 | 0 | 300 | 49 |
425 | 150 | 630 | 1260 | 0 | 12.5 | 75 | 0 | 400 | 32 |
400 | 150 | 630 | 1260 | 0 | 15 | 100 | 0 | 600 | 28 |
308 | 185 | 933 | 968 | 0 | 6 | 0 | 0 | 50 | 37.2 |
310 | 186 | 940 | 976 | 0 | 7.7 | 31 | 0 | 100 | 44.1 |
512 | 154 | 711 | 1106 | 0 | 18 | 0 | 0 | 150 | 72.8 |
511 | 153 | 709 | 1122 | 0 | 20.4 | 51 | 0 | 200 | 95.3 |
500 | 150 | 750 | 1068 | 0 | 0 | 0 | 0 | 23 | 75.5 |
350 | 150 | 750 | 1023 | 150 | 0 | 0 | 0 | 100 | 73.7 |
475 | 150 | 750 | 1065 | 0 | 25 | 0 | 0 | 200 | 73.4 |
441 | 164 | 653 | 1115 | 0 | 2.9 | 28 | 0 | 20 | 73.9 |
495 | 149 | 615 | 1168 | 0 | 1.9 | 0 | 0 | 100 | 57.6 |
465 | 149 | 615 | 1168 | 0 | 3.1 | 30 | 0 | 200 | 69 |
450 | 149 | 615 | 1168 | 0 | 3.7 | 45 | 0 | 300 | 57.9 |
450 | 149 | 615 | 1168 | 0 | 3.7 | 45 | 0 | 600 | 22.6 |
References
- Bigdeli, Y.; Barbato, M. Use of a low-cost concrete-like fluorogypsum-based blend for applications in underwater and coastal protection structures. In Proceedings of the OCEANS 2017—Anchorage Conference, Anchorage, AK, USA, 18–21 September 2017; pp. 1–5. Available online: https://ieeexplore.ieee.org/abstract/document/8232181 (accessed on 5 May 2021).
- Reiter, L.; Wangler, T.; Anton, A.; Flatt, R.J. Setting on demand for digital concrete—Principles, measurements, chemistry, validation. Cem. Concr. Res. 2020, 132, 106047. [Google Scholar] [CrossRef]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Dong, B.; Wang, F.; Abadikhah, H.; Hao, L.Y.; Xu, X.; Khan, S.A.; Wang, G.; Agathopoulos, S. Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation. ACS Appl. Mater. Interfaces 2019, 11, 42801–42807. [Google Scholar] [CrossRef]
- Chica, L.; Alzate, A. Cellular concrete review: New trends for application in construction. Constr. Build. Mater. 2019, 200, 637–647. [Google Scholar] [CrossRef]
- Arora, A.; Almujaddidi, A.; Kianmofrad, F.; Mobasher, B.; Neithalath, N. Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties. Cem. Concr. Compos. 2019, 104, 103346. [Google Scholar] [CrossRef]
- Farooq, F.; Akbar, A.; Khushnood, R.A.; Muhammad, W.L.B.; Rehman, S.K.U.; Javed, M.F. Experimental investigation of hybrid carbon nanotubes and graphite nanoplatelets on rheology, shrinkage, mechanical, and microstructure of SCCM. Materials 2020, 13, 230. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203, 174–187. [Google Scholar] [CrossRef]
- Ahmad, W.; Farooq, S.H.; Usman, M.; Khan, M.; Ahmad, A.; Aslam, F.; Al Yousef, R.; Al Abduljabbar, H.; Sufian, M. Effect of coconut fiber length and content on properties of high strength concrete. Materials 2020, 13, 1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostanci, S.C. Use of waste marble dust and recycled glass for sustainable concrete production. J. Clean. Prod. 2020, 251, 119785. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W.; Pang, S.D. Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr. Build. Mater. 2020, 234, 117338. [Google Scholar] [CrossRef]
- Karahan, O. Transport properties of high volume fly ash or slag concrete exposed to high temperature. Constr. Build. Mater. 2017, 152, 898–906. [Google Scholar] [CrossRef]
- Hager, I. Behaviour of cement concrete at high temperature. Bull. Pol. Acad. Sci. Tech. Sci. 2013, 61, 145–154. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Chaopeng, X.; Ali, M. Experimental and analytical study of hybrid fiber reinforced concrete prepared with basalt fiber under high temperature. Fire Mater. 2021. [Google Scholar] [CrossRef]
- Pimienta, P.; Hager, I. Mechanical Behaviour of HPC at High Temperature. Available online: https://www.researchgate.net/publication/293226828_Mechanical_properties_of_hpc_at_high_temperatures (accessed on 14 June 2021).
- Li, L.; Khan, M.; Bai, C.; Shi, K. Uniaxial tensile behavior, flexural properties, empirical calculation and microstructure of multi-scale fiber reinforced cement-based material at elevated temperature. Materials 2021, 14, 1827. [Google Scholar] [CrossRef]
- Noumowe, A.; Carre, H.; Daoud, A.; Toutanji, H. High-strength self-compacting concrete exposed to fire test. J. Mater. Civ. Eng. 2006, 18, 754–758. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; He, K. Mechanical properties of concrete at high temperature—A review. Constr. Build. Mater. 2015, 93, 371–383. [Google Scholar] [CrossRef]
- Khan, U.A.; Jahanzaib, H.M.; Khan, M.; Ali, M. Improving the tensile energy absorption of high strength natural fiber reinforced concrete with fly-ash for bridge girders. Key Eng. Mater. 2018, 765, 335–342. [Google Scholar] [CrossRef]
- Husem, M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf. J. 2006, 41, 155–163. [Google Scholar] [CrossRef]
- Bodnarova, L. Effect of high temperatures on cement composite materials in concrete structures. Acta Geodyn. Geomater. 2013, 10, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Tanyildizi, H.; Coşkun, A. Performance of lightweight concrete with silica fume after high temperature. Constr. Build. Mater. 2008, 22, 2124–2129. [Google Scholar] [CrossRef]
- Chan, Y.; Luo, X.; Sun, W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 °C. Cem. Concr. Res. 2000, 30, 247–251. [Google Scholar] [CrossRef]
- Janotka, I.; Nürnbergerová, T.; Nad, L. Behaviour of high-strength concrete with dolomitic aggregate at high temperatures. Mag. Concr. Res. 2000, 52, 399–409. [Google Scholar] [CrossRef]
- Kim, J.-K.; Han, S.H.; Song, Y.C. Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results. Cem. Concr. Res. 2002, 32, 1087–1094. [Google Scholar] [CrossRef]
- Masaki, K.; Maki, I. Effect of prolonged heating at elevated temperatures on the phase composition and textures of Portland cement clinker. Cem. Concr. Res. 2002, 32, 931–934. [Google Scholar] [CrossRef]
- Memon, S.A.; Shah, S.F.A.; Khushnood, R.A.; Baloch, W.L. Durability of sustainable concrete subjected to elevated temperature – A review. Constr. Build. Mater. 2019, 199, 435–455. [Google Scholar] [CrossRef]
- Handoo, S.; Agarwal, S. Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cem. Concr. Res. 2002, 32, 1009–1018. [Google Scholar] [CrossRef]
- An, J.; Mikhaylov, A.; Richter, U.H. Trade war effects: Evidence from sectors of energy and resources in Africa. Heliyon 2020, 6, e05693. [Google Scholar] [CrossRef]
- An, J.; Mikhaylov, A. Russian energy projects in South Africa. J. Energy S. Afr. 2020, 31, 58–64. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Navaratnam, S.; Mendis, P.; Zhang, G.K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part. B Eng. 2020, 187, 107815. [Google Scholar] [CrossRef]
- Naser, M.Z.; Seitllari, A. Concrete under fire: An assessment through intelligent pattern recognition. Eng. Comput. 2020, 36, 1915–1928. [Google Scholar] [CrossRef]
- Cao, M.; Li, L.; Yin, H.; Ming, X. Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures. Fire Technol. 2019, 55, 1983–2003. [Google Scholar] [CrossRef]
- Roy, T.; Matsagar, V. Mechanics of damage in reinforced concrete member under post-blast fire scenario. Structures 2021, 31, 740–760. [Google Scholar] [CrossRef]
- Malik, M.; Bhattacharyya, S.K.; Barai, S.V. Microstructural changes in concrete: Postfire scenario. J. Mater. Civ. Eng. 2021, 33, 04020462. [Google Scholar] [CrossRef]
- Nin Chan, S.Y.; Luo, X.; Sun, W. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Constr. Build. Mater. 2000, 14, 261–266. [Google Scholar] [CrossRef]
- Tanyildizi, H.; Coşkun, A. The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Constr. Build. Mater. 2008, 22, 2269–2275. [Google Scholar] [CrossRef]
- Chan, S.Y.N.; Peng, G.-F.; Chan, J.K.W. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mater. Struct. 1996, 29, 616–619. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Feng, W.; Chen, J.; Bao, D.; Li, L. Compressive properties of rubber-modified recycled aggregate concrete subjected to elevated temperatures. Constr. Build. Mater. 2021, 268, 121181. [Google Scholar] [CrossRef]
- Khan, M.A.; Zafar, A.; Farooq, F.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H.; Khan, M.I. Geopolymer Concrete Compressive Strength via Artificial Neural Network, Adaptive Neuro Fuzzy Interface System, and Gene Expression Programming With K-Fold Cross Validation. Front. Mater. 2021, 8, 621163. [Google Scholar] [CrossRef]
- Fang, Z.; Roy, K.; Chen, B.; Sham, C.-W.; Hajirasouliha, I.; Lim, J.B. Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin Walled Struct. 2021, 166, 108076. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Niewiadomski, P.; Ostrowski, K.; Akbar, A.; Aslam, F.; Alyousef, R. Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm. Materials 2021, 14, 794. [Google Scholar] [CrossRef]
- Ling, H.; Qian, C.; Kang, W.; Liang, C.; Chen, H. Combination of support vector machine and K-fold cross validation to predict compressive strength of concrete in marine environment. Constr. Build. Mater. 2019, 206, 355–363. [Google Scholar] [CrossRef]
- Liang, C.; Qian, C.; Chen, H.; Kang, W. Prediction of compressive strength of concrete in wet-dry environment by BP artificial neural networks. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ayat, H.; Kellouche, Y.; Ghrici, M.; Boukhatem, B. Compressive strength prediction of limestone filler concrete using artificial neural networks. Adv. Comput. Des. 2018, 3, 289–302. [Google Scholar] [CrossRef]
- Behfarnia, K.; Khademi, F. A comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system. Int. J. Optim. Civ. Eng. 2017, 7, 71–80. [Google Scholar]
- Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.-T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater. 2021, 266, 120950. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhang, J. Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm. Eng. Comput. 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Sarir, P.; Chen, J.; Asteris, P.G.; Armaghani, D.J.; Tahir, M.M. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng. Comput. 2021, 37, 1–19. [Google Scholar] [CrossRef]
- Balf, F.R.; Kordkheili, H.M.; Kordkheili, A.M. A new method for predicting the ingredients of Self-Compacting Concrete (SCC) including Fly Ash (FA) using Data Envelopment Analysis (DEA). Arab. J. Sci. Eng. 2021, 46, 4439–4460. [Google Scholar] [CrossRef]
- Ahmad, A.; Farooq, F.; Ostrowski, K.; Śliwa-Wieczorek, K.; Czarnecki, S. Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material. Materials 2021, 14, 2297. [Google Scholar] [CrossRef] [PubMed]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Saha, P.; Debnath, P.; Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach. Neural Comput. Appl. 2020, 32, 7995–8010. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Bengar, H.A.; Jahani, E. Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Constr. Build. Mater. 2019, 229, 116883. [Google Scholar] [CrossRef]
- Aslam, F.; Farooq, F.; Amin, M.N.; Khan, K.; Waheed, A.; Akbar, A.; Javed, M.F.; Alyousef, R.; Alabdulijabbar, H. Applications of gene expression programming for estimating compressive strength of high-strength concrete. Adv. Civ. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Farooq, F.; Amin, M.N.; Khan, K.; Sadiq, M.R.; Javed, M.F.F.; Aslam, F.; Alyousef, R. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of High Strength Concrete (HSC). Appl. Sci. 2020, 10, 7330. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 2019, 31, 409–424. [Google Scholar] [CrossRef]
- Selvaraj, S.; Sivaraman, S. Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification. Neural Comput. Appl. 2019, 31, 1365–1373. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Kaveh, A. M5′ and Mars based prediction models for properties of self-compacting concrete containing fly ash. Period. Polytech. Civ. Eng. 2017, 62, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Sathyan, D.; Anand, K.B.; Prakash, A.J.; Premjith, B. Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm. Int. J. Concr. Struct. Mater. 2018, 12, 24. [Google Scholar] [CrossRef]
- Vakhshouri, B.; Nejadi, S. Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing 2018, 280, 13–22. [Google Scholar] [CrossRef]
- Douma, O.B.; Boukhatem, B.; Ghrici, M.; Tagnit-Hamou, A. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput. Appl. 2016, 28, 707–718. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Elaty, M.A.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. J. Clean. Prod. 2021, 292, 126032. [Google Scholar] [CrossRef]
- Bušić, R.; Benšić, M.; Miličević, I.; Strukar, K. Prediction models for the mechanical properties of self-compacting concrete with recycled rubber and silica fume. Materials 2020, 13, 1821. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.F.; Farooq, F.; Memon, S.A.; Akbar, A.; Khan, M.A.; Aslam, F.; Alyousef, R.; Alabduljabbar, H.; Rehman, S.K.U. New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach. Crystals 2020, 10, 741. [Google Scholar] [CrossRef]
- Al-Mughanam, T.; Aldhyani, T.; AlSubari, B.; Al-Yaari, M. Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network. Sustainability 2020, 12, 9322. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Shahmansouri, A.A.; Fakoor, M. Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP. Constr. Build. Mater. 2020, 252, 119057. [Google Scholar] [CrossRef]
- Ergün, A.; Kürklü, G.; Serhat, B.M.; Mansour, M.Y. The effect of cement dosage on mechanical properties of concrete exposed to high temperatures. Fire Saf. J. 2013, 55, 160–167. [Google Scholar] [CrossRef]
- Cülfik, M.S.; Özturan, T. Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations. Constr. Build. Mater. 2010, 24, 1486–1493. [Google Scholar] [CrossRef]
- Behnood, A.; Ziari, H. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem. Concr. Compos. 2008, 30, 106–112. [Google Scholar] [CrossRef]
- Bastami, M.; Baghbadrani, M.; Aslani, F. Performance of nano-silica modified high strength concrete at elevated temperatures. Constr. Build. Mater. 2014, 68, 402–408. [Google Scholar] [CrossRef]
- Chen, L.; Fang, Q.; Jiang, X.; Ruan, Z.; Hong, J. Combined effects of high temperature and high strain rate on normal weight concrete. Int. J. Impact Eng. 2015, 86, 40–56. [Google Scholar] [CrossRef]
- Xiong, Y.; Deng, S.; Wu, D. Experimental study on compressive strength recovery effect of fire-damaged high strength concrete after realkalisation treatment. Procedia Eng. 2016, 135, 476–481. [Google Scholar] [CrossRef] [Green Version]
- Mousa, M.I. Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC). HBRC J. 2017, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.F.; Wong, Y.L.; Poon, C.S.; Tang, C.A. Stress-strain behaviour of high-strength concrete at elevated temperatures. Mag. Concr. Res. 2005, 57, 535–544. [Google Scholar] [CrossRef]
No. | Algorithm Used | Notation | Data Points | Prediction Properties | Year | Material Used | References |
---|---|---|---|---|---|---|---|
1. | Support vector machine | SVM | 144 | Compressive strength | 2021 | FA | [48] |
2. | Gene expression programming | GEP | 303 | Bearing capacity of concrete-filled steel tube column | 2019 | _ | [49] |
3. | Data envelopment analysis | DEA | 114 | Compressive strength Slump test L-box test V-funnel test | 2021 | FA | [50] |
4. | Gene expression programming, artificial neural network, decision tree | GEP, ANN, DT | 642 | Surface chloride concentration | 2021 | FA | [51] |
5. | Support vector machine | SVM | - | Compressive strength | 2020 | FA | [52] |
6. | Support vector machine | SVM | 115 | Slump test L-box test V-funnel test Compressive strength | 2020 | FA | [53] |
7. | Gene expression programming | GEP | 351 | Compressive strength | 2020 | GGBS | [54] |
8. | Gene expression programming | GEP | 54 | Compressive strength | 2019 | NZ (natural zeolite) | [54] |
9. | Gene expression programming | GEP | 357 | Compressive strength | 2020 | - | [55] |
10. | Random forest and gene expression programming | RF and GEP | 357 | Compressive strength | 2020 | - | [56] |
11. | Artificial neuron network | ANN | 205 | Compressive strength | 2019 | FA GGBFS SF RHA | [57] |
12. | Intelligent rule-based enhanced multiclass support vector machine and fuzzy rules | IREMSVM-FR with RSM | 114 | Compressive strength | 2019 | FA | [58] |
13. | Random forest | RF | 131 | Compressive strength | 2019 | FA GGBFS FA | [59] |
14. | Multivariate adaptive regression spline | M5 MARS | 114 | Compressive strength Slump test L-box test V-funnel test | 2018 | FA | [60] |
15. | Random kitchen sink algorithm | RKSA | 40 | V-funnel test J-ring test Slump test Compressive strength | 2018 | FA | [61] |
16. | Adaptive neuro fuzzy inference system | ANFIS | 55 | Compressive strength | 2018 | - | [62] |
17. | Artificial neuron network | ANN | 114 | Compressive strength | 2017 | FA | [63] |
18. | Artificial neuron network | ANN | 69 | Compressive strength | 2017 | FA | [64] |
19. | Individual and ensemble algorithm | GEP, DT, and bagging | 270 | Compressive Strength | 2021 | FA | [42] |
20. | Individual with ensemble modeling | ANN, bagging and boosting | 1030 | Compressive strength | 2021 | FA | [65] |
21. | Multivariate | MV | 21 | Compressive strength | 2020 | Crumb rubber with SF | [66] |
22. | Gene expression programming | GEP | 277 | Axial capacity | 2020 | - | [67] |
23. | Adaptive neuro fuzzy inference system | ANFIS with ANN | 7 | Compressive strength | 2020 | POFA | [68] |
24. | Response surface method, gene expression programming | RSM, GEP | 108 | Compressive strength | 2020 | Steel Fibers | [69] |
Parameters Description | Cement | Water | Fine Aggregate | Coarse Aggregate | Fly Ash | Super Plasticizer | Silica Fume | Nano Silica | Temperature |
---|---|---|---|---|---|---|---|---|---|
Mean | 437.69 | 182.92 | 610.13 | 1052.13 | 12.65 | 8.58 | 29.32 | 1.74 | 354.52 |
Standard error | 6.64 | 4.16 | 22.06 | 21.51 | 2.30 | 0.53 | 2.58 | 0.36 | 19.99 |
Median | 442.00 | 154.00 | 689.00 | 1110.00 | 0.00 | 6.00 | 7.50 | 0.00 | 300.00 |
Mode | 500.00 | 150.00 | 0.00 | 1110.00 | 0.00 | 0.00 | 0.00 | 0.00 | 400.00 |
Standard deviation | 95.49 | 59.90 | 317.39 | 309.41 | 33.07 | 7.60 | 37.09 | 5.25 | 287.65 |
Sample variance | 9118.52 | 3588.58 | 100,736.87 | 95,735.94 | 1093.76 | 57.71 | 1375.35 | 27.54 | 82,743.10 |
Kurtosis | 3.39 | 2.06 | 0.71 | 5.69 | 7.01 | −0.62 | 1.02 | 8.45 | −1.04 |
Skewness | 0.98 | 1.67 | −0.40 | −1.97 | 2.74 | 0.74 | 1.26 | 3.08 | 0.47 |
Range | 536.00 | 262.00 | 1345.00 | 1681.00 | 150.00 | 25.90 | 150.00 | 22.50 | 980.00 |
Minimum | 250.00 | 123.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 |
Maximum | 786.00 | 385.00 | 1345.00 | 1681.00 | 150.00 | 25.90 | 150.00 | 22.50 | 1000.00 |
Sum | 90,601.00 | 37,864.80 | 126,297.00 | 217,790.00 | 2619.00 | 1776.20 | 6068.60 | 360.00 | 73,386.00 |
Count | 207.00 | 207.00 | 207.00 | 207.00 | 207.00 | 207.00 | 207.00 | 207.00 | 207.00 |
Decision Tree | Bagging | GB | ANN | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k-Fold | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 |
1. | 8.65 | 96.27 | 9.81 | 0.76 | 12.26 | 178.85 | 13.37 | 0.48 | 8.94 | 113.11 | 10.64 | 0.75 | 9.75 | 90.48 | 12.48 | 0.83 |
2. | 12.89 | 143.44 | 11.98 | 0.80 | 18.53 | 384.74 | 19.61 | 0.54 | 9.77 | 247.83 | 15.74 | 0.82 | 13.86 | 183.85 | 9.39 | 0.84 |
3. | 8.28 | 153.70 | 12.40 | 0.70 | 8.17 | 97.45 | 9.87 | 0.77 | 8.47 | 153.30 | 12.38 | 0.57 | 7.50 | 128.58 | 15.39 | 0.62 |
4. | 13.30 | 45.73 | 6.76 | 0.50 | 11.94 | 178.89 | 13.37 | 0.58 | 12.83 | 38.32 | 6.19 | 0.87 | 16.49 | 60.28 | 9.48 | 0.49 |
5. | 15.80 | 250.80 | 15.84 | 0.82 | 18.60 | 806.46 | 28.40 | 0.38 | 14.22 | 265.39 | 16.29 | 0.79 | 13.59 | 199.39 | 17.49 | 0.76 |
6. | 12.27 | 358.78 | 18.94 | 0.19 | 10.57 | 141.22 | 11.88 | 0.76 | 18.86 | 501.43 | 22.39 | 0.42 | 17.39 | 300.49 | 17.39 | 0.17 |
7. | 7.04 | 75.20 | 8.67 | 0.12 | 3.66 | 23.85 | 4.88 | 0.47 | 7.01 | 76.66 | 8.76 | 0.11 | 10.49 | 72.48 | 11.94 | 0.15 |
8. | 21.35 | 682.29 | 26.12 | 0.03 | 23.16 | 785.78 | 28.03 | 0.07 | 21.36 | 620.66 | 24.91 | 0.12 | 16.49 | 612.49 | 14.49 | 0.04 |
9. | 15.15 | 378.37 | 19.45 | 0.29 | 14.23 | 339.29 | 18.42 | 0.03 | 18.24 | 318.46 | 17.85 | 0.31 | 12.49 | 409.38 | 24.49 | 0.27 |
10. | 14.88 | 513.31 | 22.66 | 0.03 | 15.27 | 231.50 | 15.22 | 0.33 | 18.20 | 485.66 | 22.04 | 0.63 | 16.39 | 532.48 | 20.38 | 0.05 |
Machine Learning Algorithms | MAE (MPa) | MSE (MPa) | RMSE (MPa) |
---|---|---|---|
Decision tree (DT) | 7.54 | 112.23 | 10.79 |
Bagging | 5.65 | 61.08 | 7.81 |
Gradient boosting (GB) | 6.93 | 85.47 | 9.24 |
Artificial neural network (ANN) | 9.15 | 121.66 | 11.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials 2021, 14, 4222. https://doi.org/10.3390/ma14154222
Ahmad A, Ostrowski KA, Maślak M, Farooq F, Mehmood I, Nafees A. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials. 2021; 14(15):4222. https://doi.org/10.3390/ma14154222
Chicago/Turabian StyleAhmad, Ayaz, Krzysztof Adam Ostrowski, Mariusz Maślak, Furqan Farooq, Imran Mehmood, and Afnan Nafees. 2021. "Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature" Materials 14, no. 15: 4222. https://doi.org/10.3390/ma14154222
APA StyleAhmad, A., Ostrowski, K. A., Maślak, M., Farooq, F., Mehmood, I., & Nafees, A. (2021). Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Materials, 14(15), 4222. https://doi.org/10.3390/ma14154222