Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools
<p>Proposed features affecting the compressive strength and durability of CSRE.</p> "> Figure 2
<p>The grain size range of soils mixes used for samples preparation.</p> "> Figure 3
<p>Comparison of residuals of the predictive models.</p> "> Figure 4
<p>Performance measures’ values of the three remaining models on the last dataset. (<b>a</b>) for MLP regressor, (<b>b</b>) for DTR, (<b>c</b>) for RFR.</p> "> Figure 5
<p>Feature importance plots from drop-out loss based on the DTR model and different datasets.</p> "> Figure 6
<p>Feature importance plots from drop-out loss based on DTR, MLP regressor, and RFR (silt and clay jointly considered).</p> "> Figure 7
<p>Features’ importance ranking from MSE reduction applied for RFR.</p> "> Figure 8
<p>Features’ importance ranking from MSE reduction applied for DTR.</p> "> Figure 9
<p>ALE plots for cement and water content based on DTR.</p> "> Figure 10
<p>ALE plots for clay+silt, sand and gravel content based on DTR.</p> "> Figure 11
<p>Quartiles of the CSRE compressive strength for three ranges of silt and clay content.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Sample Preparation, and Compressive Strength Testing Method
2.2. Methods of Compressive Strength Predictions
2.2.1. Predictive Models
2.2.2. Performance Measures of the Predictive Models
2.2.3. Hyperparameter Tuning
2.3. Feature Importance Measures
3. Results
3.1. Predicting model performance
- The dataset without any changes,
- The dataset without the clay column,
- The dataset without the silt column,
- The dataset with a column representing a sum of silt and clay values instead of two separate columns.
3.2. Feature Importance Calculations
4. Discussion
- cement and water content
- silt and clay content
- sand content
- gravel content
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hall, M.R.; Najim, K.B.; Keikhaei, P. Soil stabilization and earth construction: Materials, properties and techniques. In Modern Earth Buildings; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 222–255. [Google Scholar]
- Jayasinghe, C.; Kamaladasa, N. Compressive strength characteristics of cement stabilized rammed earth walls. Constr. Build. Mater. 2007, 21, 1971–1976. [Google Scholar] [CrossRef]
- Ciancio, D.; Beckett, C. Rammed earth: An overview of a sustainable construction material. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies, Kyoto, Japan, 18–21 August 2013. [Google Scholar]
- PN-EN 1990:2004 Eurocode - Basis of structural design; Polish Committee for Standardization: Warsaw, Poland, 2004.
- Narloch, P.; Woyciechowski, P. Assessing Cement Stabilized Rammed Earth Durability in A Humid Continental Climate. Buildings 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, D.; Gibbings, J. Experimental investigation on the compressive strength of cored and molded cement-stabilized rammed earth samples. Constr. Build. Mater. 2012, 28, 294–304. [Google Scholar] [CrossRef]
- Ciancio, D.; Beckett, C.; Carraro, J. Optimum lime content identification for lime-stabilised rammed earth Optimum lime content identification for lime-stabilised rammed earth. Constr. Build. Mater. 2014, 53, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, D.; Jaquin, P.; Walker, P. Advances on the assessment of soil suitability for rammed earth. Constr. Build. Mater. 2013, 42, 40–47. [Google Scholar] [CrossRef]
- Silva, R.A.; Oliveira, D.V.; Miranda, T.; Cristelo, N.; Escobar, M.C.; Soares, E. Rammed earth construction with granitic residual soils: The case study of northern Portugal. Constr. Build. Mater. 2013, 47, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Consoli, N.C.; Festugato, L.; Gravina da Rocha, C.; Caberlon Cruz, R. Key parameters for strength control of rammed sand–cement mixtures: Influence of types of portland cement. Constr. Build. Mater. 2013, 49, 591–597. [Google Scholar] [CrossRef]
- Bui, Q.-B.; Morel, J.-C. First Exploratory Study on the Ageing of Rammed Earth Material. Materials 2015, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.; Woyciechowski, P.; Kotowski, J.; Gawriuczenkow, I.; Wojcik, E. The Effect of Soil Mineral Composition on the Compressive Strength of Cement Stabilized Rammed Earth. Materials 2020, 13, 324. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.-C.; Bui, Q.-B.; Hamard, E. Weathering and durability of earthen materials and structures. In Modern Earth Buildings; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 282–304. [Google Scholar]
- Woyciechowski, P.; Narloch, P.L.; Cichocki, D. Shrinkage characteristics of cement stabilized rammed earth. Matec Web Conf. 2017, 117, 00178. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.-B.; Morel, J.C.; Venkatarama, B.V.; Reddy, C.; Ghayad, W. Durability of rammed earth walls exposed for 20 years to natural weathering. Build. Environ. 2009, 44, 912–919. [Google Scholar] [CrossRef]
- Narloch, P.L.; Woyciechowski, P.P.; Dmowska, E.; Halemba, K. Durability assessment of monolithic rammed earth walls. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.; Woyciechowski, P.; Rosicki, Ł; Cichocki, D. Ziemia ubijana stabilizowana cementem jako materiał konstrukcyjny—Ocena nasiąkliwości. Przegląd Budowlany 2015, 86, 22–25. [Google Scholar]
- Guettala, A.; Abibsi, A.; Houari, H. Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Constr. Build. Mater. 2006, 20, 119–127. [Google Scholar] [CrossRef]
- Minke, G. Building with Earth: Design and Technology of a Sustainable Architecture; Birkhäuser–Publishers for Architecture: Kassel, Germany, 2006. [Google Scholar]
- Alexandra, H.M.; Christopher, T.S.B.; Carsana, M.; Ciancio, D. Corrosion protection of steel embedded in cement-stabilised rammed earth. Constr. Build. Mater. 2018, 187, 942–953. [Google Scholar]
- Walker, P.J.; Dobson, V. Pullout test on deformed and plain rebars in cement stabilized rammed earth. J. Mater. Civ. Eng. 2001, 13, 291–297. [Google Scholar] [CrossRef]
- Lindsay, R. Australian Modern Earth Construction. In Modern Earth Buildings; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 600–649. [Google Scholar]
- Narloch, P.L.; Woyciechowski, P.; Jęda, P. The influence of loam type and cement content on the compressive strength of rammed earth. Arch. Civ. Eng. 2015, 61, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Seed, H.B.; Woodward, R.J.; Lundgren, R. Prediction of Swelling Potential for Compacted Clays. Trans. Am. Soc. Civ. Eng. 1962, 88, 53–88. [Google Scholar]
- NZS 4298. Materials and Workmanship for Earth Buildings; Standards New Zealand: Wellington, New Zealand, 1998. [Google Scholar]
- Narloch, P.; Hassanat, A.; Tarawneh, A.S.; Anysz, H.; Kotowski, J.; Almohammadi, K. Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning. Appl. Sci. 2019, 9, 5131. [Google Scholar] [CrossRef] [Green Version]
- Narloch, P.L.; Lidner, M.; Kunicka, M.; Bielecki, M. Flexural tensile strength of construction elements made out of cement stabilized rammed earth. Procedia Eng. 2015, 111, 589–595. [Google Scholar] [CrossRef]
- Niroumand, H.; Zain, M.F.M.; Jamil, M. A guideline for assessing of critical parameters on Earth architecture and Earth buildings as a sustainable architecture in various countries. Renew. Sustain. Energy Rev. 2013, 28, 130–165. [Google Scholar] [CrossRef]
- PN-EN 197-1:2012 Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Polish Committee for Standardization: Warsaw, Poland, 2012.
- Grossman, R.; Seni, G.; Elder, J.; Agarwal, N.; Liu, H. Ensemble Methods in Data Mining: Improving Accuracy through Combining Predictions, Synthesis Lectures on Data Mining and Knowledge Discovery; Morgan and Claypool Publishers: San Rafael, CA, USA, 2010; Volume 2, pp. 1–126. [Google Scholar]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Anysz, H.; Narloch, P. Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks. Materials 2019, 12, 1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, P.; Bischl, B.; Boulesteix, A.-L. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. arXiv 2018, arXiv:1802.09596v3. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O. Neural Network Design; Martin Hagan: Lexington, KY, USA, 2014. [Google Scholar]
- Rogalska, M. Wieloczynnikowe modele w prognozowaniu czasu procesów budowlanych, 1st ed.; Lublin University of Technology: Lublin, Poland, 2016; ISBN 978-83-7947-186-7. [Google Scholar]
- Juszczyk, M.; Leśniak, A. Modelling construction site cost index based on neural network ensembles. Symmetry 2019, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Seber, G.A.F.; Alan, J.L. Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 329. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 821. [Google Scholar]
- Gruber, M.H.J. Improving Efficiency by Shrinkage: The James—Stein and Ridge Regression Estimators; Routledge: Marcel Dekker, NY USA, 1998. [Google Scholar]
- Blllings, S.A.; Voon, W.S.F. Correlation based model validity tests for non-linear models. Int. J. Control 1986, 44, 235–244. [Google Scholar] [CrossRef]
- Anysz, H.; Zbiciak, A.; Ibadov, N. The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks. Procedia Eng. 2016, 153. [Google Scholar] [CrossRef] [Green Version]
- Kaftanowicz, M.; Krzemiński, M. Multiple-criteria Analysis of Plasterboard Systems. Procedia Eng. 2015, 111, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Shanker, M.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.R.; Snell, E.J. A general definition of residuals. J. R. Stat. Soc. Ser. B (Methodol.) 1968, 30, 248–265. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Shaohua, W.; McAuley, K.B.; Harris, T.J. Selection of simplified models: II. Development of a model selection criterion based on mean squared error. Can. J. Chem. Eng. 2011, 89, 325–336. [Google Scholar]
- Miles, J. R Squared, Adjusted R Squared; Wiley StatsRef: Statistics Reference Online: 2014. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118445112 (accessed on 13 May 2020).
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012. [Google Scholar]
- Fisher, A.; Rudin, C.; Dominici, F. All models are wrong but many are useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Biecek, P. DALEX: Explainers for complex predictive models in R. J. Mach. Learn. Res. 2018, 19, 3245–3249. [Google Scholar]
- Archer, K.; Kimes, R. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Baniecki, H.; Biecek, P. modelStudio: Interactive Studio with Explanations for ML Predictive Models. J. Open Source Softw. 2019, 4, 1798. [Google Scholar] [CrossRef] [Green Version]
- Amhudo, R.L.; Tavio, T.; Raka, G.P. Comparison of Compressive and Tensile Strengths of Dry-Cast Concrete with Ordinary Portland and Portland Pozzolana Cements. Civ. Eng. J. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Kępniak, M.; Woyciechowski, P. The statistical analysis of relation between compressive and tensile/flexural strength of high performance concrete. Arch. Civ. Eng. 2016, 62, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Yaprak, H.; Karacı, A.; Demir, İ. Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks. Neural Comput. Appl. 2013, 22, 133–141. [Google Scholar] [CrossRef]
- Ait-Aider, H.; Hannachi, N.E.; Mouret, M. Importance of W/C ratio on compressive strength of concrete in hot climate conditions. Build. Environ. 2007, 42, 2461–2465. [Google Scholar] [CrossRef]
- Egwuonwu, W.C.; Akobo, I.Z.S.; Ngekpe, B.E. Effect of Metakaolin as a Partial Replacement for Cement on the Compressive Strength of High Strength Concrete at Varying Water/Binder Ratios. Int. J. Civ. Eng. 2019, 6, 1–6. [Google Scholar]
- Keller, R.K.; Bédard, J.-F.; Saint-Denis, G. Design and Implementation of a UML-Based Repository. In Advanced Information Systems Engineering, 13th International Conference, CAiSE 2001, Interlaken, Switzerland, 4–8 June 2001 Proceedings; Dittrich, K.R., Geppert, A., Norrie, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 448–461. [Google Scholar]
- Askes, H.; Sluys, L.J. Remeshing strategies for adaptive ALE analysis of strain localisation. Eur. J. Mech. A/Solids 2000, 19, 447–467. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models. arXiv 2019, arXiv:1612.08468[stat.ME]. Cornell University.NY USA. [Google Scholar]
Mineral Composition [%] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Clay Minerals | Including: | Goethite | Siderite | Carbonates | Organic Substance | Quartz and Other | |||
Beidellite | Kaolinite | Illite | |||||||
Weight content in silty clay (%) | 43.7 | 8.9 | 8.6 | 26.2 | - | 6.0 | - | 0 | 50.3 |
Silt | Clay | Sand | Gravel | Cement | Moisture Content | Compressive Strength (MPa) | |
---|---|---|---|---|---|---|---|
Min | 7.0% | 14.9% | 40.3% | 0.0% | 3.0% | 6.0% | 1.52 |
Max | 14.0% | 25.3% | 75.4% | 30.0% | 10.0% | 14.0% | 13.01 |
Mean | 10.4% | 20.4% | 52.6% | 16.5% | 7.6% | 9.9% | 5.99 |
Median | 10.5% | 20.1% | 49.4% | 20.0% | 9.0% | 10.0% | 5.85 |
Standard deviation | 1.69% | 2.21% | 11.33% | 11.74% | 2.13% | 1.72% | 2.21 |
Linear Regression | ||||
---|---|---|---|---|
Error Measure | Silt and Clay | Without Clay | Without Silt | Summed |
MAE | 1.17 | 1.17 | 1.17 | 1.17 |
MSE | 2.41 | 2.41 | 2.41 | 2.41 |
MAX | 5.31 | 5.31 | 5.31 | 5.31 |
R2 | 0.49 | 0.49 | 0.49 | 0.49 |
Decision tree | ||||
Error measure | Silt and Clay | Without Clay | Without Silt | Summed |
MAE | 0.68 | 0.68 | 0.68 | 0.68 |
MSE | 0.86 | 0.85 | 0.85 | 0.85 |
MAX | 2.83 | 2.83 | 2.83 | 2.83 |
R2 | 0.81 | 0.81 | 0.81 | 0.81 |
Neural networks | ||||
Error measure | Silt and Clay | Without Clay | Without Silt | Summed |
MAE | 0.73 | 0.71 | 0.70 | 0.70 |
MSE | 1.04 | 1.00 | 1.01 | 0.96 |
MAX | 3.24 | 3.22 | 3.30 | 3.19 |
R2 | 0.78 | 0.78 | 0.78 | 0.79 |
Random forest | ||||
Error measure | Silt and Clay | Without Clay | Without Silt | Summed |
MAE | 0.67 | 0.67 | 0.67 | 0.67 |
MSE | 0.85 | 0.85 | 0.84 | 0.85 |
MAX | 2.83 | 2.83 | 2.83 | 2.83 |
R2 | 0.81 | 0.81 | 0.81 | 0.81 |
Drop-Out Loss for DTR | Drop-Out Loss for MLP | Drop-Out Loss for RFR | MSE Reduction for DTR | MSE Reduction for RFR |
---|---|---|---|---|
Cement | Cement | Cement | Moisture | Moisture |
Moisture | Moisture | Moisture | Cement | Cement |
Silt + Clay | Silt + Clay | Silt + Clay | Silt + Clay | Silt + Clay |
Sand | Sand | Sand | Sand | Sand |
Gravel | Gravel | Gravel | Gravel | Gravel |
The Cement Content % | Number of Samples | The Median Value of Compressive Strength Mpa | The Mean Content of Clay + Silt % | |
---|---|---|---|---|
For Samples with the Compressive Strength above the Median Value | For Samples with the Compressive Strength Below the Median Value | |||
6 | 108 | 5.577 | 29.6% | 31.5% |
9 | 210 | 6.533 | 29.8% | 32.4% |
10 | 46 | 5.900 | 29.8% | 30.9% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anysz, H.; Brzozowski, Ł.; Kretowicz, W.; Narloch, P. Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools. Materials 2020, 13, 2317. https://doi.org/10.3390/ma13102317
Anysz H, Brzozowski Ł, Kretowicz W, Narloch P. Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools. Materials. 2020; 13(10):2317. https://doi.org/10.3390/ma13102317
Chicago/Turabian StyleAnysz, Hubert, Łukasz Brzozowski, Wojciech Kretowicz, and Piotr Narloch. 2020. "Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools" Materials 13, no. 10: 2317. https://doi.org/10.3390/ma13102317
APA StyleAnysz, H., Brzozowski, Ł., Kretowicz, W., & Narloch, P. (2020). Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools. Materials, 13(10), 2317. https://doi.org/10.3390/ma13102317