Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication
<p>Illustration of different parts of pellet three-dimensional (3D) printer [<a href="#B33-materials-12-04167" class="html-bibr">33</a>] and the modifications in extruder screw and cooling system.</p> "> Figure 2
<p>Standards for sample testing: (<b>a</b>) ASTM D638 for tensile testing, (<b>b</b>) ISO 604 for compression testing, and (<b>c</b>) ISO 178 for flexure testing.</p> "> Figure 3
<p>Failed printing (<b>a</b>) when printing at 175 °C, (<b>b</b>) due to thermal degradation in extruded filament above 210 °C, (<b>c</b>) when printing third composition with perforated board, and (<b>d</b>) due to deflection after printing using third composition.</p> "> Figure 4
<p>ANOVA analysis: (<b>a</b>) Pareto chart, (<b>b</b>) main effects plot, and (<b>c</b>) <span class="html-italic">p</span>-value for main effects and two-way interactions.</p> "> Figure 5
<p>Surface plots for (<b>a</b>) printing vs. bed temperature, (<b>b</b>) aging interval vs. printing temperature, and (<b>c</b>) aging interval vs. bed temperature.</p> "> Figure 6
<p>Stress–strain graphs for acrylonitrile butadiene styrene (ABS) and blend (combination 27).</p> "> Figure 7
<p>Compression and flexure strength of three combinations at highest bed and printing temperatures.</p> "> Figure 8
<p>Fourier-transform infrared (FTIR) analysis of neat polymers, blend pellets, and non-aged blend.</p> "> Figure 9
<p>FTIR analysis for effects of thermal aging.</p> "> Figure 10
<p>Differential scanning calorimetry (DSC) analysis of effects of melt blending.</p> "> Figure 11
<p>DSC analysis of effects of thermal variables.</p> "> Figure 12
<p>Thermogravimetric analysis (TGA) for effects of blending and thermal aging, and the percentage degradation till 550 °C.</p> "> Figure 13
<p>SEM images for (<b>a</b>) combination 4, and (<b>b</b>) combination 21.</p> "> Figure 14
<p>SEM images for (<b>a</b>) combination 18, and (<b>b</b>) magnified image for combination 18.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Blending
2.3. 3D printing
2.4. Mechanical Testing
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Thermogravimetric Analysis (TGA)
2.8. Scanning Electron Microscopy (SEM)
3. Results
3.1. Tensile Testing
3.2. Compressive and Flexural Testing
4. Discussion
4.1. Effects of Blending, Printing, and Thermal Aging
4.2. Effects of Printing Variables on Crystallization
4.3. Analysis of Mass Degradation and Resistance to Thermal Aging
4.4. Validation of Physical Interlocking or Chemical Grafting
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, M.; Potgieter, J.; Archer, R.; Arif, K.M. Effect of material and process specific factors on the strength of printed parts in fused filament fabrication: A review of recent developments. Materials 2019, 12, 1664. [Google Scholar] [CrossRef] [Green Version]
- Walzak, M.J.; Bloomfield, H. Analysis of polymer parts: Buried problems. Surf. Interface Anal. 2017, 49, 1372–1378. [Google Scholar] [CrossRef]
- Arostegui, A.; Sarrionandia, M.; Aurrekoetxea, J.; Urrutibeascoa, I. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polym. Degrad. Stab. 2006, 91, 2768–2774. [Google Scholar] [CrossRef]
- Duty, C.E.; Kunc, V.; Compton, B.; Post, B.; Erdman, D.; Smith, R.; Lind, R.; Lloyd, P.; Love, L. Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials. Rapid Prototyp. J. 2017, 23, 181–189. [Google Scholar] [CrossRef]
- Spreeman, M.E.; Stretz, H.A.; Dadmun, M.D. Role of compatibilizer in 3D printing of polymer blends. Addit. Manuf. 2019, 27, 267–277. [Google Scholar] [CrossRef]
- Ma, H.; Xu, Z.; Tong, L.; Gu, A.; Fang, Z. Studies of ABS-graft-maleic anhydride/clay nanocomposites: Morphologies, thermal stability and flammability properties. Polym. Degrad. Stab. 2006, 91, 2951–2959. [Google Scholar] [CrossRef]
- Tiganis, B.; Burn, L.; Davis, P.; Hill, A. Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polym. Degrad. Stab. 2002, 76, 425–434. [Google Scholar] [CrossRef]
- Rahimi, M.; Esfahanian, M.; Moradi, M. Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding. J. Mater. Process. Technol. 2014, 214, 2359–2365. [Google Scholar] [CrossRef]
- Ramli, M.B.; Nordin, M.N.A.; Masripan, N.A.B.; Mohidin, N.A. Thermal degradation effects on the acrylonitrile butadiene styrene (ABS) impact properties. Proc. Mech. Eng. Res. Day 2018 2018, 2018, 258–259. [Google Scholar]
- Alassali, A.; Fiore, S.; Kuchta, K. Assessment of plastic waste materials degradation through near infrared spectroscopy. J. Waste Manag. 2018, 82, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Maris, J.; Bourdon, S.; Brossard, J.-M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Lu, C.; Liu, L.; Chen, N.; Wang, X.; Yang, D.; Huang, X.-H.; Yao, D.-H. Influence of clay dispersion on flame retardancy of ABS/PA6/APP blends. Polym. Degrad. Stab. 2015, 114, 16–29. [Google Scholar] [CrossRef]
- Zhong, H.; Wei, P.; Jiang, P.; Wang, G. Thermal degradation behaviors and flame retardancy of PC/ABS with novel silicon-containing flame retardant. Fire Mater. 2007, 31, 411–423. [Google Scholar] [CrossRef]
- Farzadfar, A.; Khorasani, S.N.; Khalili, S. Blends of recycled polycarbonate and acrylonitrile–butadiene–styrene: comparing the effect of reactive compatibilizers on mechanical and morphological properties. Polym. Int. 2014, 63, 145–150. [Google Scholar] [CrossRef]
- Torrado, A.R.; Shemelya, C.M.; English, J.D.; Lin, Y.; Wicker, R.B.; Roberson, D.A. Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit. Manuf. 2015, 6, 16–29. [Google Scholar] [CrossRef]
- Rocha, C.R.; Perez, A.R.T.; Roberson, D.A.; Shemelya, C.M.; MacDonald, E.; Wicker, R.B. Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing. J. Mater. Res. 2014, 29, 1859–1866. [Google Scholar] [CrossRef]
- Siqueiros, J.G.; Schnittker, K.; Roberson, D.A. ABS-maleated SEBS blend as a 3D printable material. Virtual Phys. Prototy 2016, 11, 123–131. [Google Scholar] [CrossRef]
- Chen, S.; Lu, J.; Feng, J. 3D-Printable ABS blends with improved scratch resistance and balanced mechanical performance. Ind. Eng. Chem. Res. 2018, 57, 3923–3931. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, W.; Lv, L.; Li, C.; Zhang, J. Recycled polycarbonate/acrylonitrile–butadiene–styrene reinforced and toughened through chemical compatibilization. J. Appl. Polym. Sci. 2019, 136, 47537. [Google Scholar] [CrossRef]
- Chaudhry, B.; Hage, E.; Pessan, L. Effects of processing conditions on the phase morphology of PC/ABS polymer blends. J. Appl. Polym. Sci 1998, 67, 1605–1613. [Google Scholar] [CrossRef]
- Ramis, X.; Cadenato, A.; Salla, J.; Morancho, J.; Valles, A.; Contat, L.; Ribes, A. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym. Degrad. Stab. 2004, 86, 483–491. [Google Scholar] [CrossRef]
- Peng, X.; He, H.; Jia, Y.; Liu, H.; Geng, Y.; Huang, B.; Luo, C. Shape memory effect of three-dimensional printed products based on polypropylene/nylon 6 alloy. J. Mater. Sci. 2019, 54, 9235–9246. [Google Scholar] [CrossRef]
- Mourad, A.-H.I. Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 2010, 31, 918–929. [Google Scholar] [CrossRef]
- Carneiro, O.S.; Silva, A.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Farahanchi, A.; Sobkowicz, M.J. Kinetic and process modeling of thermal and mechanical degradation in ultrahigh speed twin screw extrusion. Polym. Degrad. Stab. 2017, 138, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lv, S.; Sun, C.; Wan, L.; Tan, H.; Zhang, Y. Effect of MAH-g-PLA on the properties of wood fiber/polylactic acid composites. Polymer 2017, 9, 591. [Google Scholar] [CrossRef] [Green Version]
- Jagenteufel, R.; Hofstätter, T.; Kamleitner, F.; Pedersen, D.B.; Tosello, G.; Hansen, H.N. Rheology of high melt strength polypropylene for additive manufacturing. Adv. Mater. Lett. 2017, 8, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Zhang, S.; Gao, D.; Chou, B. The study on polypropylene applied in fused deposition modeling. In Proceedings of the AIP Conference Proceedings, Taipei, Taiwan, 24 May 2018; p. 030059. [Google Scholar]
- Hwang, K.-J.; Park, J.-W.; Kim, I.; Ha, C.-S.; Kim, G.-H. Effect of a compatibilizer on the microstructure and properties of partially biodegradable LDPE/aliphatic polyester/organoclay nanocomposites. Macromol. Res. 2006, 14, 179–186. [Google Scholar] [CrossRef]
- Yu, G.; Ji, J.; Zhu, H.; Shen, J. Poly (D, L-lactic acid)-block-(ligand-tethered poly (ethylene glycol)) copolymers as surface additives for promoting chondrocyte attachment and growth. J. Biomed. Mater. Res. 2006, 76, 64–75. [Google Scholar] [CrossRef]
- Supri, A.G.; Ismail, H.; Shuhadah, S. Effect of polyethylene-grafted maleic anhydride (PE-g-MAH) on properties of low density polyethylene/eggshell powder (LDPE/ESP) composites. Polym. Plast. Technol. Eng. 2010, 49, 347–353. [Google Scholar] [CrossRef]
- Whyman, S.; Arif, K.M.; Potgieter, J. Design and development of an extrusion system for 3D printing biopolymer pellets. Int. J. Adv. Manuf. Technol. 2018, 96, 3417–3428. [Google Scholar] [CrossRef]
- Farahanchi, A.; Malloy, R.; Sobkowicz, M.J. Effects of ultrahigh speed twin screw extrusion on the thermal and mechanical degradation of polystyrene. Polym. Eng. Sci. 2016, 56, 743–751. [Google Scholar] [CrossRef]
- ASTM International. ASTM D638-14, Standard Test Method For Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- International Organization for Standardization. 178: 2006: Plastics–Determination of Flexural Properties; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Ferreira, A.; Arif, K.M.; Dirven, S.; Potgieter, J. Retrofitment, open-sourcing, and characterisation of a legacy fused deposition modelling system. Int. J. Adv. Manuf. Technol. 2017, 90, 3357–3367. [Google Scholar] [CrossRef]
- Dao, Q.; Frimodig, J.C.; Le, H.N.; Li, X.Z.; Putnam, S.B.; Golda, K.; Foyos, J.; Noorani, R.; Fritz, B. Calculation of shrinkage compensation factors for rapid prototyping (FDM 1650). Comput. Appl. Eng. Educ. 1999, 7, 186–195. [Google Scholar] [CrossRef]
- Aliheidari, N.; Tripuraneni, R.; Hohimer, C.; Christ, J.; Ameli, A.; Nadimpalli, S. The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials. In Proceedings of the Behavior and Mechanics of Multifunctional Materials and Composites 2017, Portland, OR, USA, 26–28 March 2017; p. 1016512. [Google Scholar]
- Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS-and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008, 40, 597–600. [Google Scholar] [CrossRef]
- Birnin-Yauri, A.; Ibrahim, N.; Zainuddin, N.; Abdan, K.; Then, Y.; Chieng, B. Effect of maleic anhydride-modified poly (lactic acid) on the properties of its hybrid fiber biocomposites. Polymers 2017, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, F.; Yang, L.; Jiang, L.; Dan, Y. FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochim. Acta A 2017, 184, 361–367. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. Appl. Theory Instrum. 2006. [Google Scholar] [CrossRef]
- Bonda, S.; Mohanty, S.; Nayak, S.K. Influence of compatibilizer on mechanical, morphological and rheological properties of PP/ABS blends. IPJ 2014, 23, 415–425. [Google Scholar] [CrossRef]
- Zerbi, G.; Person, W.B. Vibrational Intensities in Infrared and Raman Spectroscopy; Elsevier Scientific Publishing Company Amsterdam: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Luo, Z.; Lu, Q.; Ma, F.; Jiang, Y. The effect of graft copolymers of maleic anhydride and epoxy resin on the mechanical properties and morphology of PP/ABS blends. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Sohel, M.A.; Mandal, A.; Mondal, A.; Pan, S.; SenGupta, A. Thermal analysis of ABS/PA6 polymer blend using differential scanning calorimetry. J. Therm. Anal. Calorim. 2017, 129, 1689–1695. [Google Scholar] [CrossRef]
- Hong, N.; Zhan, J.; Wang, X.; Stec, A.A.; Hull, T.R.; Ge, H.; Xing, W.; Song, L.; Hu, Y. Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Compos. Part A 2014, 64, 203–210. [Google Scholar] [CrossRef]
- Suzuki, M.; Wilkie, C.A. The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym. Degrad. Stab. 1995, 47, 217–221. [Google Scholar] [CrossRef]
- Triantou, M.; Stathi, K.; Tarantili, P.A. Rheological and thermomechanical properties of graphene/ABS/PP nanocomposites. Met. Mater. Eng. 2014, 8, 951–956. [Google Scholar]
- Elnaggar, M.Y.; Fathy, E.S.; Hassan, M.M. Effect of carbon fiber and gamma irradiation on acrylonitrile butadiene styrene/high density polyethylene composites. Polym. Sci. Ser. B 2017, 59, 472–478. [Google Scholar] [CrossRef]
- Jubinville, D.; Chang, B.P.; Pin, J.-M.; Mohanty, A.K.; Misra, M. Synergistic thermo-oxidative maleation of PA11 as compatibilization strategy for PA6 and PBT blend. Polymers 2019, 179, 121594. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Feeder to nozzle temperature | 175 °C, 175 °C, 180 °C, 180 °C, 180 °C, 180 °C, 180 °C, 170 °C, 165 °C, and 150 °C |
Feed rate | 21 rpm |
Screw speed | 210 rpm |
Torque | 45% |
Die pressure | 51 bar |
Composition | ABS | HDPE | PE-g-MAH | Printing Bed | Printability |
---|---|---|---|---|---|
1 | 48 | 48 | 4 | Perf board and adhesion tape | No |
2 | 75 | 21 | 4 | Perf board and adhesion tape | No |
3 | 85 | 11 | 4 | Perf board and adhesion tape | Yes, but excessive warpage caused separation of intercalated layers |
4 | 92 | 7.5 | 0.5 | Adhesive tape | Yes |
Parameters | Values |
---|---|
Feed rate | 5 mm/min |
Printing speed | 5 mm/min |
Layer thickness | 0.2 mm |
Raster width | 0.2 mm |
Raster angle | 45°/−45° |
Infill density | 100% |
Multiplier | 15 |
Number of contours | 1 |
Nozzle diameter | 0.4 mm |
Std Order (Combination) | Run Order | Bed Temperature | Nozzle Temperature | Post-Printing Aging | Tensile Strength | Tensile Strain |
---|---|---|---|---|---|---|
18 | 1 | 50 | 205 | 6 | 28.7 | 0.022 |
4 | 2 | 25 | 195 | 0 | 25.4 | 0.02 |
1 | 3 | 25 | 185 | 0 | 28.2 | 0.020 |
7 | 4 | 25 | 205 | 0 | 24.9 | 0.019 |
14 | 5 | 50 | 195 | 3 | 31.1 | 0.025 |
16 | 6 | 50 | 205 | 0 | 28.7 | 0.024 |
27 | 7 | 75 | 205 | 6 | 31.6 | 0.023 |
15 | 8 | 50 | 195 | 6 | 29.8 | 0.023 |
2 | 9 | 25 | 185 | 3 | 28.9 | 0.019 |
9 | 10 | 25 | 205 | 6 | 23.3 | 0.017 |
10 | 11 | 50 | 185 | 0 | 22.9 | 0.020 |
24 | 12 | 75 | 195 | 6 | 31.2 | 0.023 |
5 | 13 | 25 | 195 | 3 | 24.9 | 0.018 |
20 | 14 | 75 | 185 | 3 | 29.7 | 0.023 |
25 | 15 | 75 | 205 | 0 | 30.3 | 0.025 |
3 | 16 | 25 | 185 | 6 | 29.1 | 0.02 |
21 | 17 | 75 | 185 | 6 | 19.6 | 0.022 |
11 | 18 | 50 | 185 | 3 | 27.5 | 0.021 |
17 | 19 | 50 | 205 | 3 | 31 | 0.020 |
13 | 20 | 50 | 195 | 0 | 30.1 | 0.025 |
12 | 21 | 50 | 185 | 6 | 25 | 0.018 |
23 | 22 | 75 | 195 | 3 | 30.8 | 0.023 |
6 | 23 | 25 | 195 | 6 | 26.2 | 0.013 |
19 | 24 | 75 | 185 | 0 | 28.2 | 0.022 |
26 | 25 | 75 | 205 | 3 | 28.8 | 0.023 |
22 | 26 | 75 | 195 | 0 | 30.3 | 0.022 |
8 | 27 | 25 | 205 | 3 | 26.4 | 0.019 |
ABS | PP | PE-g-MAH | ABS/PP/PE-g-MAH Pellets | ABS/PP/PE-g-MAH Combination 25 | ABS/PP/PE-g-MAH Combination 27 | Comments | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WN | Intensity | WN | Intensity | WN | Intensity | WN | Intensity | WN | Intensity | WN | Intensity | |
2950.6 | 0.177 | 2945.8 | 0.078 | 2949.6 | 0.024 | CH3 stretching [40] | ||||||
2919.7 | 0.084 | 2915.8 | 0.219 | 2915.4 | 0.404 | 2919.7 | 0.152 | 2918.3 | 0.050 | 2918 | 0.0567 | CH2 stretching [40] |
2849.8 | 0.041 | 2866.2 | 0.114 | 2847.9 | 0.360 | 2849.8 | 0.068 | 2849.4 | 0.025 | 2849.8 | 0.0293 | |
2838.3 | 0.114 | CH3 stretching [40] | ||||||||||
2237.5 | 0.018 | 2238 | 0.019 | 2238 | 0.0052 | 2237.5 | 0.0059 | C=N bond [42] | ||||
1636.8 | 0.008 | 1637 | 0.007 | 1637.7 | 0.0039 | 1637.7 | 0.005 | Butadiene stretching [42] | ||||
1602.5 | 0.0147 | 1603 | 0.016 | 1602 | 0.0042 | 1602.1 | 0.006 | |||||
1715.4 | 0.02 | MAH group [41] | ||||||||||
1735.6 | 0.006 | 1735.2 | 0.005 | 1735 | 0.0029 | 1735.6 | 0.0035 | |||||
1494 | 0.046 | 1494 | 0.053 | 1493.6 | 0.0122 | 1494.1 | 0.0155 | Styrene ring | ||||
1453 | 0.066 | 1456.98 | 0.114 | 1464.2 | 0.113 | 1453 | 0.0816 | 1452 | 0.0205 | 1452.6 | 0.0248 | |
1375 | 0.181 | 1377 | 0.0166 | 1375 | 0.006 | 1375 | 0.0059 | Alkane CH2 and CH3 deformation, C–H asymmetric [40,45] | ||||
994 | 0.0106 | 994.6 | 0.0024 | Out-of-plane bending (=C–H and =CH2) | ||||||||
966 | 0.035 | 967 | 0.0409 | 965.7 | 0.009 | 965.7 | 0.0115 | H attached to 1,4 butadiene [42] | ||||
912 | 0.017 | 911.2 | 0.0189 | 910.7 | 0.0043 | 910.7 | 0.0053 | H attached to 1,2 butadiene [42] |
Material | Tg | Tm | Td | Hg | Hm | Hd |
---|---|---|---|---|---|---|
ABS | 100.2 | 111.8 131 | 430.4 | -- | 3.0 (combined peak) | 445.8 |
PP | 170.6 | 458 | 82.5 | 148 | ||
PE-g-MAH | 108.6 | 475.8 | 27.22 | 164.5 | ||
ABS/PP | 94.1 | 132.7 (ABS) 163.4 (PP) | 427.5 | 2.251 | 1.09 (ABS) 4.6 (PP) | 489.5 |
ABS/PP/PE-g-MAH pellets | 93.5 | 128.7 (ABS) 163.6 (PP) | 424.8 | 2.464 | 3.61 (ABS) 2.72 (PP) | 488.8 |
ABS/PP/MAH combination 1 | 91.6 | 127.7 (ABS) 163.7 (PP) | 425.9 | 2.53 | 1.69 (ABS) 4.075 (PP) | 525.6 |
ABS/PP/MAH combination 10 | 93.8 | 127.4 (ABS) 163.5 (PP) | 426.1 | 2.502 | 2.93 (ABS) 4.39 (PP) | 529.4 |
ABS/PP/MAH combination 27 | -- | 109.3 (ABS) 129.3 (ABS) 163.9 (PP) | 427.1 | 1.37 (ABS) 2.86 (ABS) 4.03 (PP) | 500 |
Polymers | Onset Temperature | Degradation | |
---|---|---|---|
Temperature at 50% Mass Degradation (°C) | Mass Degradation at 590 °C (%) | ||
PP | 409.1 | 457.8 | 100 |
ABS | 392.6 | 436.1 | 95.4 |
ABS/PP | 398.8 | 433.3 | 93.2 |
ABS/HDPE/PE-g-MAH pellets | 407.7 | 433.7 | 94.3 |
ABS/HDPE/PE-g-MAH Combination 1 | 403.8 | 432 | 98.18 |
ABS/HDPE/PE-g-MAH Combination 10 | 403.5 | 431.6 | 97.7 |
ABS/HDPE/PE-g-MAH Combination 19 | 402.7 | 429.3 | 97.7 |
ABS/HDPE/PE-g-MAH Combination 27 | 403.9 | 433.3 | 97.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K.M. Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication. Materials 2019, 12, 4167. https://doi.org/10.3390/ma12244167
Harris M, Potgieter J, Ray S, Archer R, Arif KM. Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication. Materials. 2019; 12(24):4167. https://doi.org/10.3390/ma12244167
Chicago/Turabian StyleHarris, Muhammad, Johan Potgieter, Sudip Ray, Richard Archer, and Khalid Mahmood Arif. 2019. "Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication" Materials 12, no. 24: 4167. https://doi.org/10.3390/ma12244167
APA StyleHarris, M., Potgieter, J., Ray, S., Archer, R., & Arif, K. M. (2019). Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication. Materials, 12(24), 4167. https://doi.org/10.3390/ma12244167