3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties
<p>Dog-bone and prismatic specimens dimensions, orientation on the plate, and infill pattern.</p> "> Figure 2
<p>Weight loss of PLA 4032D and PLA 4032D+C30B (<b>a</b>) and PLA 2003D and PLA 2003D+C30B (<b>b</b>).</p> "> Figure 3
<p>Storage modulus (<b>a</b>) and tanδ (<b>b</b>) of PLA 4032D and PLA 4032D+C30B filaments.</p> "> Figure 4
<p>Storage modulus (<b>a</b>) and tanδ (<b>b</b>) of PLA 2003D and PLA 2003D+C30B filaments.</p> "> Figure 5
<p>First heating of the filaments of PLA 4032D and PLA 4032D+C30B (<b>a</b>) and PLA 2003D and PLA 2003D+C30B (<b>b</b>).</p> "> Figure 6
<p>Detail of the outer wall and raster of a 3D printed specimen.</p> "> Figure 7
<p>3D printed “dog-bone” specimens: (<b>a</b>) PLA4032D and (<b>b</b>) PLA4032D+C30B.</p> "> Figure 8
<p>Contact angle of (<b>a</b>) PLA 4032D-185, (<b>b</b>) PLA 4032D-215, (<b>c</b>) PLA 4032D+C30B-185, (<b>d</b>) PLA 4032D+C30B-215.</p> "> Figure 9
<p>Elastic modulus of the 3D printed samples of PLA 4032D and PLA 4032D+C30B (<b>a</b>) and PLA 2003D and PLA 2003D+C30B (<b>b</b>) printed at different temperatures.</p> "> Figure 10
<p>Schematic representation of the filament deposition process and detail of the nozzle.</p> "> Figure 11
<p>Storage modulus vs. temperature of the 3D printed samples of PLA 4032D (<b>a</b>), PLA 4032D+C30B (<b>b</b>), PLA 2003D (<b>c</b>), and PLA 2003D+C30B (<b>d</b>) printed at different temperatures.</p> "> Figure 11 Cont.
<p>Storage modulus vs. temperature of the 3D printed samples of PLA 4032D (<b>a</b>), PLA 4032D+C30B (<b>b</b>), PLA 2003D (<b>c</b>), and PLA 2003D+C30B (<b>d</b>) printed at different temperatures.</p> "> Figure 12
<p>Correlation between elastic modulus and enthalpy of relaxation and 3D printing temperature for PLA 4032D (<b>a</b>) and PLA 4032D+C30B (<b>b</b>).</p> "> Figure 13
<p>Correlation between elastic modulus and enthalpy of relaxation and 3D printing temperature for PLA 2003D (<b>a</b>) and PLA 2003D+C30B (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. 3D Prinitng
2.3. Methods
3. Results and Discussion
3.1. Thermogravimetric Analysis (TGA)
3.2. Dynamic Mechanical Thermal Analysis (DMA) of Filaments
3.3. Differential Scanning Calorimetry (DSC) of Filaments
3.4. Morphology of 3D Printed Samples
3.5. Tensile Tests of 3D Printed Samples
3.6. DMA of 3D Printed Samples
3.7. DSC of Printed Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Di Maio, L.; Garofalo, E.; Scarfato, P.; Incarnato, L. Effect of polymer/organoclay composition on morphology and rheological properties of polylactide nanocomposites. Polym. Compos. 2015, 36, 1135–1144. [Google Scholar] [CrossRef]
- Di Maio, L.; Scarfato, P.; Milana, M.R.; Feliciani, R.; Denaro, M.; Padula, G.; Incarnato, L. Bionanocomposite polylactic acid/organoclay films: Functional properties and measurement of total and lactic acid specific migration. Packag. Technol. Sci. 2014, 27, 535–547. [Google Scholar] [CrossRef]
- Scarfato, P.; Di Maio, L.; Incarnato, L. Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. J. Appl. Polym. Sci. 2015, 132, 42597. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Arrigo, R.; Morreale, M. Effect of the orientation and rheological behavior of biodegradable polymer nanocomposites. Eur. Polym. J. 2014, 54, 11–17. [Google Scholar] [CrossRef]
- Scaffaro, R.; Sutera, F.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. Structure-properties relationships in melt reprocessed PLA/hydrotalcites nanocomposites. Express Polym. Lett. 2017, 11, 555. [Google Scholar] [CrossRef]
- Coppola, B.; Scarfato, P.; Incarnato, L.; Di Maio, L. Morphology development and mechanical properties variation during cold-drawing of polyethylene-clay nanocomposite fibers. Polymers 2017, 9, 235. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Ceraulo, M.; Mistretta, M.C.; Botta, L. Effect of the elongational flow on morphology and properties of polypropylene/graphene nanoplatelets nanocomposites. Polym. Test. 2018, 71, 10–17. [Google Scholar] [CrossRef]
- Scarfato, P.; Incarnato, L.; Di Maio, L.; Dittrich, B.; Schartel, B. Influence of a novel organo-silylated clay on the morphology, thermal and burning behavior of low density polyethylene composites. Compos. B Eng. 2016, 98, 444–452. [Google Scholar] [CrossRef]
- Garofalo, E.; Di Maio, L.; Scarfato, P.; Di Gregorio, F.; Incarnato, L. Reactive compatibilization and melt compounding with nanosilicates of post-consumer flexible plastic packagings. Polym. Degrad. Stab. 2018, 152, 52–63. [Google Scholar] [CrossRef]
- Garofalo, E.; Scarfato, P.; Di Maio, L.; Incarnato, L. Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging. Polym. Compos. 2017, 39, 3157–3167. [Google Scholar] [CrossRef]
- Botta, L.; Scaffaro, R.; Sutera, F.; Mistretta, M.C. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers 2017, 10, 18. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Pegoretti, A. Fused deposition modelling with ABS–graphene nanocomposites. Composites Part A 2016, 85, 181–191. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, J.; Senthil, T.; Wu, L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater. Des. 2016, 102, 276–283. [Google Scholar] [CrossRef]
- Meng, S.; He, H.; Jia, Y.; Yu, P.; Huang, B.; Chen, J. Effect of nanoparticles on the mechanical properties of acrylonitrile–butadiene–styrene specimens fabricated by fused deposition modeling. J. Appl. Polym. Sci. 2017, 134, 44470. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- De Leon, A.C.; Chen, Q.; Palaganas, N.B.; Palaganas, J.O.; Manapat, J.; Advincula, R.C. High performance polymer nanocomposites for additive manufacturing applications. React. Funct. Polym. 2016, 103, 141–155. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Jiang, D.; Smith, D.E. Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. Addit. Manuf. 2017, 18, 84–94. [Google Scholar] [CrossRef]
- Francis, V.; Jain, P.K. Experimental investigations on fused deposition modelling of polymer-layered silicate nanocomposite. Virtual Phys. Prototyp. 2016, 11, 109–121. [Google Scholar] [CrossRef]
- Paspali, A.; Bao, Y.; Gawne, D.T.; Piestert, F.; Reinelt, S. The influence of nanostructure on the mechanical properties of 3D printed polylactide/nanoclay composites. Compos. B Eng. 2018, 152, 160–168. [Google Scholar] [CrossRef]
- Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. Layered silicate reinforced polylactic acid filaments for 3D printing of polymer nanocomposites. In Proceedings of the IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017. [Google Scholar]
- Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. Influence of 3D printing parameters on the properties of PLA/clay nanocomposites. AIP Conf. Proc. 2018, 1981, 020064. [Google Scholar] [CrossRef]
- Cicala, G.; Giordano, D.; Tosto, C.; Filippone, G.; Recca, A.; Blanco, I. Polylactide (PLA) filaments a biobased solution for additive manufacturing: Correlating rheology and thermomechanical properties with printing quality. Materials 2018, 11, 1191. [Google Scholar] [CrossRef] [PubMed]
- Caminero, M.A.; Chacón, J.M.; Garcia-Moreno, I.; Rodriguez, G.P. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos. B Eng. 2018, 148, 93–103. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2017, 20, 44–67. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Song, W.; Yee, K.; Lee, K.Y.; Tagarielli, V.L. Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater. Des. 2017, 123, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P.D. Disentanglement effects on welding behavior of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 2017, 123, 376–391. [Google Scholar] [CrossRef]
- Peng, F.; Vogt, B.D.; Cakmak, M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit. Manuf. 2018, 22, 197–206. [Google Scholar] [CrossRef]
- Comminal, R.; Serdeczny, M.P.; Pedersen, D.B.; Spangenberg, J. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 2018, 20, 68–76. [Google Scholar] [CrossRef]
- Osswald, T.A.; Puentes, J.; Kattinger, J. Fused filament fabrication melting model. Addit. Manuf. 2018, 22, 51–59. [Google Scholar] [CrossRef]
- Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 2017, 248, 1–7. [Google Scholar] [CrossRef]
- Abbott, A.C.; Tandon, G.P.; Bradford, R.L.; Koerner, H.; Baur, J.W. Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit. Manuf. 2018, 19, 29–38. [Google Scholar] [CrossRef]
- NatureWorks Home Page. Available online: https://www.natureworksllc.com.
- Darie, R.N.; Pâslaru, E.; Sdrobis, A.; Pricope, G.M.; Hitruc, G.E.; Poiată, A.; Baklavaridis, A.; Vasile, C. Effect of nanoclay hydrophilicity on the poly (lactic acid)/clay nanocomposites properties. Ind. Eng. Chem. Res. 2014, 53, 7877–7890. [Google Scholar] [CrossRef]
- Incarnato, L.; Scarfato, P.; Russo, G.M.; Di Maio, L.; Iannelli, P.; Acierno, D. Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer 2003, 44, 4625–4634. [Google Scholar] [CrossRef]
- Incarnato, L.; Scarfato, P.; Scatteia, L.; Acierno, D. Rheological behavior of new melt compounded copolyamide nanocomposites. Polymer 2004, 45, 3487–3496. [Google Scholar] [CrossRef]
- Cho, K.L.; Liaw, I.I.; Wu, A.H.F.; Lamb, R.N. Influence of roughness on a transparent superhydrophobic coating. J. Phys. Chem. C 2010, 114, 11228–11233. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P.D. Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol. 2017, 61, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Arias, V.; Höglund, A.; Odelius, K.; Albertsson, A.C. Polylactides with “green” plasticizers: Influence of isomer composition. J. Appl. Polym. Sci. 2013, 130, 2962–2970. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, S.Q. Shear and extensional rheology of entangled polymer melts: Similarities and differences. Sci. China Chem. 2012, 55, 779–786. [Google Scholar] [CrossRef]
Polymer | Tm (°C) | MFI (g/10 min) | D-isomer (%) | Mw/Mn |
---|---|---|---|---|
PLA 4032D | 170 | 5.89 | 1.5 | 1.46 |
PLA 2003D | 150 | 5.92 | 4 | 1.46 |
Polymer | T1 (°C) | T2 (°C) | T3 (°C) |
---|---|---|---|
PLA 4032D | 185 | 200 | 215 |
PLA 2003D | 165 | 180 | 195 |
Sample | T25 (°C) | T50 (°C) | T75 (°C) |
---|---|---|---|
PLA 4032D | 348 | 360 | 370 |
PLA 4032D+C30B | 368 | 382 | 393 |
PLA 2003D | 346 | 360 | 372 |
PLA 2003D+C30B | 354 | 368 | 379 |
Heating Scan | Sample | Tg (°C) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (°C) | Xc (%) |
---|---|---|---|---|---|---|---|
First Heating | PLA 4032D | 62 | 110 | 31 | 171 | 38 | 8 |
PLA 4032D+C30B | 58 | 101 | 31 | 171 | 38 | 7 | |
PLA 2003D | 60 | 121 | 23 | 154 | 25 | 2 | |
PLA 2003D+C30B | 60 | 109 | 32 | 151,158 | 34 | 2 |
Sample | E (MPa) | εb (%) | σ (MPa) |
---|---|---|---|
PLA 4032D-185 | 3330 | 4.04 | 50 |
PLA 4032D-200 | 3117 | 4.58 | 49 |
PLA 4032D-215 | 3077 | 5.76 | 51 |
PLA 4032D+C30B-185 | 3511 | 2.11 | 40 |
PLA 4032D+C30B-200 | 4093 | 1.85 | 46 |
PLA 4032D+C30B-215 | 4423 | 1.24 | 47 |
Sample | E (MPa) | εb (%) | σ (MPa) |
---|---|---|---|
PLA 2003D-165 | 2399 | 5.56 | 37 |
PLA 2003D-180 | 2945 | 5.79 | 47 |
PLA 2003D-195 | 3164 | 6.18 | 52 |
PLA 2003D+C30B-165 | 3639 | 5.87 | 52 |
PLA 2003D+C30B-180 | 3379 | 3.66 | 44 |
PLA 2003D+C30B-195 | 3264 | 3.21 | 43 |
Sample | E′ (MPa) | tanδ Peak (°C) | |
---|---|---|---|
35 °C | 80 °C | ||
PLA 4032D-185 | 4671 ± 185 | 23 ± 1 | 74 ± 1 |
PLA 4032D-200 | 4413 ± 178 | 19 ± 3 | 75 ± 2 |
PLA 4032D-215 | 4081 ± 221 | 21 ± 8 | 76 ± 1 |
PLA 4032D+C30B-185 | 3974 ± 225 | 16 ± 2 | 74 ± 1 |
PLA 4032D+C30B-200 | 4281 ± 172 | 20 ± 5 | 74 ± 2 |
PLA 4032D+C30B-215 | 5331 ± 85 | 29 ± 9 | 73 ± 1 |
PLA 2003D-165 | 4104 ± 42 | 13 ± 1 | 72 ± 2 |
PLA 2003D-180 | 4501 ± 67 | 14 ± 3 | 74 ± 1 |
PLA 2003D-195 | 4600 ± 16 | 11 ± 8 | 73 ± 1 |
PLA 2003D+C30B-165 | 4257 ± 271 | 11 ± 2 | 72 ± 1 |
PLA 2003D+C30B-180 | 4219 ± 200 | 11 ± 5 | 72 ± 1 |
PLA 2003D+C30B-195 | 4110 ± 75 | 10 ± 9 | 72 ± 2 |
Sample | Tg (°C) | Tcc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|
PLA 4032D-185 | 65 | 110 | 166,170 | 3 |
PLA 4032D-200 | 64 | 113 | 169,172 | 2 |
PLA 4032D-215 | 62 | 112 | 168,172 | 2 |
PLA 4032D+C30B-185 | 61 | 100 | 170 | 1 |
PLA 4032D+C30B-200 | 62 | 99 | 171 | 3 |
PLA 4032D+C30B-215 | 61 | 100 | 172 | 3 |
Sample | Tg (°C) | Tcc (°C) | Tm (°C) | Xc (%) |
---|---|---|---|---|
PLA 2003D-165 | 66 | 122 | 156 | 1 |
PLA 2003D-180 | 65 | 119 | 152 | 1 |
PLA 2003D-195 | 64 | 116 | 151 | 1 |
PLA 2003D+C30B-165 | 62 | 108 | 151,157 | 1 |
PLA 2003D+C30B-180 | 61 | 107 | 152,158 | 1 |
PLA 2003D+C30B-195 | 61 | 108 | 151,157 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials 2018, 11, 1947. https://doi.org/10.3390/ma11101947
Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L. 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials. 2018; 11(10):1947. https://doi.org/10.3390/ma11101947
Chicago/Turabian StyleCoppola, Bartolomeo, Nicola Cappetti, Luciano Di Maio, Paola Scarfato, and Loredana Incarnato. 2018. "3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties" Materials 11, no. 10: 1947. https://doi.org/10.3390/ma11101947
APA StyleCoppola, B., Cappetti, N., Di Maio, L., Scarfato, P., & Incarnato, L. (2018). 3D Printing of PLA/clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials, 11(10), 1947. https://doi.org/10.3390/ma11101947