New Cyclam-Based Fe(III) Complexes Coatings Targeting Cobetia marina Biofilms
<p>Chemical structure of [{H<sub>2</sub>(<sup>4-CF3</sup>PhCH<sub>2</sub>)<sub>2</sub>Cyclam}FeCl<sub>2</sub>]Cl (<b>FeCy-1</b>) and [{(HOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>(<sup>4-CF3</sup>PhCH<sub>2</sub>)<sub>2</sub>Cyclam}FeCl<sub>2</sub>]Cl (<b>FeCy-2</b>).</p> "> Figure 2
<p>(<b>a</b>) Culturable and (<b>b</b>) total cells of <span class="html-italic">C. marina</span> biofilms formed on <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces after 42 days. The asterisks represent statistical differences between PU and the PU/FeCy surfaces (<span class="html-italic">p</span>-values < 0.05).</p> "> Figure 3
<p>(<b>a</b>) Representative images of water contact angle measurements and (<b>b</b>) visual depictions (captured by the Optical Coherence Tomography (OCT) camera; scale bar = 1 mm) of <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces.</p> "> Figure 4
<p>(<b>a</b>) Two-dimensional and (<b>b</b>) three-dimensional AFM images of <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces, including absolute average (R<sub>a</sub>) and root mean square (R<sub>q</sub>) values. All images correspond to a 5 × 5 µm<sup>2</sup> surface area.</p> "> Figure 5
<p>Representative 3D OCT images of C. marina biofilms formed on <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces after 42 days. The color scale shows the range of biofilm thickness. All images were obtained in a scan range of 2490 µm × 1512 µm × 600 µm.</p> "> Figure 6
<p>(<b>a</b>) Thickness, (<b>b</b>) porosity, (<b>c</b>) contour coefficient, and (<b>d</b>) biovolume of <span class="html-italic">C. marina</span> biofilms formed on <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces after 42 days. The asterisks represent statistical differences between <b>PU</b> and PU/FeCy surfaces (<span class="html-italic">p</span>-values < 0.05).</p> "> Figure 7
<p>CLSM images of C. marina biofilms on <b>PU</b> (control), <b>PU/FeCy-1</b>, and <b>PU/FeCy-2</b> surfaces after 42 days. These representative images were obtained from confocal <math display="inline"><semantics> <mi>z</mi> </semantics></math>-stacks using the IMARIS 9.3.1 software and present an aerial, 3D view of the biofilms, with the shadow projection on the right. The white scale bars represent 40 μm.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Cyclam-Based Fe(III) Complexes
3.2. Formulation of PU-Based Marine Coatings with Cyclam-Based Fe(III) Complexes
3.3. Water Contact Angle Measurements
3.4. Atomic Force Microscopy (AFM)
3.5. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
3.6. Ecotoxicity of Cyclam-Based Fe(III) Complexes
3.7. Bacterial Strain and Culture Preparation
3.8. Biofilm Formation Assay
3.9. Biofilm Analysis
3.9.1. Enumeration of Culturable and Total Cells
3.9.2. Visualization of Spatial Organization and Quantitative Structural Parameters of Biofilms
3.10. Effects of PU-Modified Surfaces on Bacterial Metabolic Activity and ROS Production
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callow, J.A.; Callow, M.E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011, 2, 244. [Google Scholar] [CrossRef] [PubMed]
- Dahlbäck, B.; Blanck, H.; Nydén, M. The challenge to find new sustainable antifouling approaches for shipping. Coast. Mar. Sci. 2010, 34, 212–215. [Google Scholar]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- International Maritime Organization. Consistent Implementation of MARPOL Annex VI; International Maritime Organization: London, UK, 2019. [Google Scholar]
- Katsanevakis, S.; Olenin, S.; Puntila-Dodd, R.; Rilov, G.; Stæhr, P.A.U.; Teixeira, H.; Tsirintanis, K.; Birchenough, S.N.R.; Jakobsen, H.H.; Knudsen, S.W.; et al. Marine invasive alien species in Europe: 9 years after the IAS Regulation. Front. Mar. Sci. 2023, 10, 1271755. [Google Scholar] [CrossRef]
- Lacoursière-Roussel, A.; Bock, D.G.; Cristescu, M.E.; Guichard, F.; Girard, P.; Legendre, P.; McKindsey, C.W. Disentangling invasion processes in a dynamic shipping–boating network. Mol. Ecol. 2012, 21, 4227–4241. [Google Scholar] [CrossRef] [PubMed]
- Knisz, J.; Eckert, R.; Gieg, L.M.; Koerdt, A.; Lee, J.S.; Silva, E.R.; Skovhus, T.L.; Stepec, B.A.A.; Wade, S.A. Microbiologically influenced corrosion-more than just microorganisms. FEMS Microbiol. Rev. 2023, 47, 1–33. [Google Scholar] [CrossRef]
- Bott, T.R. Industrial Biofouling, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Xie, C.; Guo, H.; Zhao, W.; Zhang, L. Environmentally Friendly Marine Antifouling Coating Based on a Synergistic Strategy. Langmuir 2020, 36, 2396–2402. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Ferreira, O.; Rijo, P.; Gomes, J.; Santos, R.; Monteiro, S.; Guedes, R.; Serralheiro, M.L.; Gomes, M.; Gomes, L.C.; Mergulhão, F.J.; et al. Antimicrobial Ceramic Filters for Water Bio-Decontamination. Coatings 2021, 11, 323. [Google Scholar] [CrossRef]
- Lagerström, M.; Lindgren, J.F.; Holmqvist, A.; Dahlström, M.; Ytreberg, E. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities. Mar. Pollut. Bull. 2018, 127, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.J.; Waldock, M. Copper Biocides in the Marine Environment. In Ecotoxicology of Antifouling Biocides; Arai, T., Harino, H., Ohji, M., Langston, W.J., Eds.; Springer: Tokyo, Japan, 2009; pp. 413–428. [Google Scholar]
- Cai, H.; Wang, P.; Chen, X.; Wang, Y.; Zhang, D. Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. Corrosion 2020, 167, 108534. [Google Scholar] [CrossRef]
- Hubin, T.J.; Amoyaw, P.N.-A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Freeman, T.N.C.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; et al. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem. 2014, 22, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Almada, S.; Maia, L.B.; Waerenborgh, J.C.; Vieira, B.J.C.; Mira, N.P.; Silva, E.R.; Cerqueira, F.; Pinto, E.; Alves, L.G. Cyclam-based iron(iii) and copper(ii) complexes: Synthesis, characterization and application as antifungal agents. New J. Chem. 2022, 46, 16764–16770. [Google Scholar] [CrossRef]
- Claudel, M.; Schwarte, J.V.; Fromm, K.M. New Antimicrobial Strategies Based on Metal Complexes. Chemistry 2020, 2, 849–899. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, W.; Huang, H.; Tang, Y.-Q.; Wang, W.; Meng, F.; Wang, H.; Zheng, Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 5213–5227. [Google Scholar] [CrossRef]
- Saqib, S.; Munis, M.F.H.; Zaman, W.; Ullah, F.; Shah, S.N.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc. Res. Tech. 2019, 82, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Kosaristanova, L.; Rihacek, M.; Sucha, F.; Milosavljevic, V.; Svec, P.; Dorazilova, J.; Vojtova, L.; Antal, P.; Kopel, P.; Patocka, Z.; et al. Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus. BMC Microbiol. 2023, 23, 288. [Google Scholar] [CrossRef]
- Pilon, A.; Lorenzo, J.; Rodriguez-Calado, S.; Adão, P.; Martins, A.M.; Valente, A.; Alves, L.G. New Cyclams and Their Copper(II) and Iron(III) Complexes: Synthesis and Potential Application as Anticancer Agents. ChemMedChem 2019, 14, 770–778. [Google Scholar] [CrossRef]
- Berg, D.; Youdim, M.B.; Riederer, P. Redox imbalance. Cell Tissue Res. 2004, 318, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Cardoso, F.; Teixeira-Santos, R.; Campos, A.F.; Lima, M.; Gomes, L.C.; Soares, O.S.G.P.; Mergulhão, F. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. Nanomaterials 2023, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Akuzov, D.; Franca, L.; Grunwald, I.; Vladkova, T. Sharply Reduced Biofilm Formation from Cobetia marina and in Black Sea Water on Modified Siloxane Coatings. Coatings 2018, 8, 136. [Google Scholar] [CrossRef]
- Alves, L.G.; Portel, J.F.; Sousa, S.A.; Ferreira, O.; Almada, S.; Silva, E.R.; Martins, A.M.; Leitão, J.H. Investigations into the Structure/Antibacterial Activity Relationships of Cyclam and Cyclen Derivatives. Antibiotics 2019, 8, 224. [Google Scholar] [CrossRef]
- Dawan, J.; Ahn, J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022, 10, 1385. [Google Scholar] [CrossRef]
- Romeu, M.J.; Miranda, J.M.; de Jong, E.D.; Morais, J.; Vasconcelos, V.; Sjollema, J.; Mergulhão, F.J. Understanding the flow behavior around marine biofilms. Biofilm 2024, 7, 100204. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; van Winkelhoff, A.-J.; Neut, D.; Stoodley, P.; van der Mei, H.C.; et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [Google Scholar] [CrossRef]
- Laspidou, C.S.; Aravas, N. Variation in the mechanical properties of a porous multi-phase biofilm under compression due to void closure. Water Sci. Technol. 2007, 55, 447–453. [Google Scholar] [CrossRef]
- Stewart, P.S. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 1996, 40, 2517–2522. [Google Scholar] [CrossRef]
- Delauney, L.; Compère, C.; Lehaitre, M. Biofouling protection for marine environmental sensors. Ocean Sci. 2010, 6, 503–511. [Google Scholar] [CrossRef]
- Aufrecht, J.A.; Fowlkes, J.D.; Bible, A.N.; Morrell-Falvey, J.; Doktycz, M.J.; Retterer, S.T. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS ONE 2019, 14, e0218316. [Google Scholar] [CrossRef]
- Rode, D.K.H.; Singh, P.K.; Drescher, K. Multicellular and unicellular responses of microbial biofilms to stress. Biol. Chem. 2020, 401, 1365–1374. [Google Scholar] [CrossRef]
- Quan, K.; Hou, J.; Zhang, Z.; Ren, Y.; Peterson, B.W.; Flemming, H.-C.; Mayer, C.; Busscher, H.J.; van der Mei, H.C. Water in bacterial biofilms: Pores and channels, storage and transport functions. Crit. Rev. Microbiol. 2022, 48, 283–302. [Google Scholar] [CrossRef]
- Romeu, M.J.; Lima, M.; Gomes, L.C.; de Jong, E.D.; Morais, J.; Vasconcelos, V.; Pereira, M.F.R.; Soares, O.S.G.P.; Sjollema, J.; Mergulhão, F.J. The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers 2022, 14, 4410. [Google Scholar] [CrossRef] [PubMed]
- Romeu, M.J.; Alves, P.; Morais, J.; Miranda, J.M.; de Jong, E.D.; Sjollema, J.; Ramos, V.; Vasconcelos, V.; Mergulhão, F.J.M. Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions. Environ. Microbiol. 2019, 21, 4411–4424. [Google Scholar] [CrossRef]
- Lima, M.; Gomes, L.C.; Teixeira-Santos, R.; Romeu, M.J.; Valcarcel, J.; Vázquez, J.A.; Cerqueira, M.A.; Pastrana, L.; Bourbon, A.I.; de Jong, E.D.; et al. Assessment of the Antibiofilm Performance of Chitosan-Based Surfaces in Marine Environments. Int. J. Mol. Sci. 2022, 23, 14647. [Google Scholar] [CrossRef]
- Yadav, R.; Lahariya, V.N.; Bansal, V.; Singh, A.K. Fluorometric sensing and nanomolar level detection of heavy metal ions using nitrogen doped carbon dots. Emergent Mater. 2024, 298, 1107–1112. [Google Scholar] [CrossRef]
- Alves, L.G.; Antunes, M.A.; Matos, I.; Munhá, R.F.; Duarte, M.T.; Fernandes, A.C.; Marques, M.M.; Martins, A.M. Reactivity of a new family of diamido-diamine cyclam-based zirconium complexes in ethylene polymerization. Inorg. Chim. Acta 2010, 363, 1823–1830. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.; Cao, Y.; Li, G.; Liao, Y. Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym. Sci. 2020, 298, 1107–1112. [Google Scholar] [CrossRef]
- ISO 6341:2012; Water Quality—Determination of the Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea). International Organization for Standardization: Geneva, Switzerland, 2012.
- Lelchat, F.; Cérantola, S.; Brandily, C.; Colliec-Jouault, S.; Baudoux, A.C.; Ojima, T.; Boisset, C. The marine bacteria Cobetia marina DSMZ 4741 synthesizes an unexpected K-antigen-like exopolysaccharide. Carbohydr. Polym. 2015, 124, 347–356. [Google Scholar] [CrossRef]
- Maréchal, J.-P.; Culioli, G.; Hellio, C.; Thomas-Guyon, H.; Callow, M.E.; Clare, A.S.; Ortalo-Magné, A. Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. J. Exp. Mar. Biol. Ecol. 2004, 313, 47–62. [Google Scholar] [CrossRef]
- Holmström, C.; James, S.; Neilan, B.A.; White, D.C.; Kjelleberg, S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int. J. Syst. Bacteriol. 1998, 48, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Bakker, D.P.; van der Plaats, A.; Verkerke, G.J.; Busscher, H.J.; van der Mei, H.C. Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl. Environ. Microbiol. 2003, 69, 6280–6287. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.R.; Tulcidas, A.V.; Ferreira, O.; Bayón, R.; Igartua, A.; Mendonza, G.; Mergulhão, F.J.M.; Faria, S.I.; Gomes, L.C.; Carvalho, S.; et al. Assessment of the environmental compatibility and antifouling performance of an innovative biocidal and foul-release multifunctional marine coating. Environ. Res. 2021, 198, 111219. [Google Scholar] [CrossRef] [PubMed]
- Blain, S.; Guillou, J.; Tréguer, P.; Woerther, P.; Delauney, L.; Follenfant, E.; Gontier, O.; Hamon, M.; Leilde, B.; Masson, A.; et al. High frequency monitoring of the coastal marine environment using the MAREL buoy. J. Environ. Monit. 2004, 6, 569–575. [Google Scholar] [CrossRef]
- Bakke, R.; Kommedal, R.; Kalvenes, S. Quantification of biofilm accumulation by an optical approach. J. Microbiol. Methods 2001, 44, 13–26. [Google Scholar] [CrossRef]
- Kramer, B.; Muranyi, P. Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J. Appl. Microbiol. 2014, 116, 596–611. [Google Scholar] [CrossRef]
- Rosenkranz, A.R.; Schmaldienst, S.; Stuhlmeier, K.M.; Chen, W.; Knapp, W.; Zlaginger, G.J. A microplate assay for the detection of oxidative products using 2’,7’-dichlorofluorescin-diacetate. J. Immunol. Methods 1992, 156, 39–45. [Google Scholar] [CrossRef] [PubMed]
Coating Formulation | Base/Curing Agent Ratio (v/v) | Complex Content (wt.%) | Complex/Solvent Ratio (m/m) |
---|---|---|---|
PU (Control) | 9.0 ± 0.1 | ---- | ---- |
PU/FeCy-1 | 8.9 ± 0.1 | 1.03 ± 0.02 | 0.20 ± 0.01 |
PU/FeCy-2 | 8.9 ± 0.1 | 0.99 ± 0.02 | 0.19 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, F.M.; Gomes, L.C.; Teixeira-Santos, R.; Carapeto, A.P.; Mergulhão, F.J.; Almada, S.; Silva, E.R.; Alves, L.G. New Cyclam-Based Fe(III) Complexes Coatings Targeting Cobetia marina Biofilms. Molecules 2025, 30, 917. https://doi.org/10.3390/molecules30040917
Carvalho FM, Gomes LC, Teixeira-Santos R, Carapeto AP, Mergulhão FJ, Almada S, Silva ER, Alves LG. New Cyclam-Based Fe(III) Complexes Coatings Targeting Cobetia marina Biofilms. Molecules. 2025; 30(4):917. https://doi.org/10.3390/molecules30040917
Chicago/Turabian StyleCarvalho, Fábio M., Luciana C. Gomes, Rita Teixeira-Santos, Ana P. Carapeto, Filipe J. Mergulhão, Stephanie Almada, Elisabete R. Silva, and Luis G. Alves. 2025. "New Cyclam-Based Fe(III) Complexes Coatings Targeting Cobetia marina Biofilms" Molecules 30, no. 4: 917. https://doi.org/10.3390/molecules30040917
APA StyleCarvalho, F. M., Gomes, L. C., Teixeira-Santos, R., Carapeto, A. P., Mergulhão, F. J., Almada, S., Silva, E. R., & Alves, L. G. (2025). New Cyclam-Based Fe(III) Complexes Coatings Targeting Cobetia marina Biofilms. Molecules, 30(4), 917. https://doi.org/10.3390/molecules30040917