B-Site-Ordered and Disordered Structures in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12 with R = Nd, Sm, Gd, and Dy
<p>Experimental (black crosses), calculated (red line), and difference (blue line at the bottom) room-temperature synchrotron X-ray powder diffraction patterns of NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (in the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K) in a 2<span class="html-italic">θ</span> range of 6° and 59°. The tick marks show possible Bragg reflection positions for the main phase and NiO impurity (from top to bottom). Inset shows a zoomed part in a 2<span class="html-italic">θ</span> range of 16° and 17.8° and emphasizes the presence of the (311) reflection from the B-site ordering. Inset shows a scanning electron microscopy (SEM) image, where the scale bar is 20 µm.</p> "> Figure 2
<p>Experimental (black crosses), calculated (red line), and difference (blue line at the bottom) room-temperature synchrotron X-ray powder diffraction patterns of NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (in the <span class="html-italic">Im</span>–3 modification, prepared at 1700 K) in a 2<span class="html-italic">θ</span> range of 6° and 59°. The tick marks show possible Bragg reflection positions for the main phase and NiO impurity. Inset shows a zoomed part in a 2<span class="html-italic">θ</span> range of 16° and 17.9° and emphasizes the absence of the (311) reflection and the absence of B-site ordering.</p> "> Figure 3
<p>(<b>a</b>) The room-temperature cubic lattice parameter in RMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (R = La [<a href="#B28-molecules-29-05488" class="html-bibr">28</a>], Nd, Sm, Gd, and Dy) as a function of the ionic radius R<sup>3+</sup> (for the coordination number 8 as ionic radii for the coordination number XII are not available for small R<sup>3+</sup> cations (R = Gd and Dy) [<a href="#B30-molecules-29-05488" class="html-bibr">30</a>]). NPD: from neutron powder diffraction. XRD: from X-ray powder diffraction. (<b>b</b>) R–O bond length (the left-hand axis) and bond-valence sum for R<sup>3+</sup> (the right-hand axis) in RMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (R = La [<a href="#B28-molecules-29-05488" class="html-bibr">28</a>], Nd, Sm, Gd, and Dy) as a function of the ionic radius R<sup>3+</sup>.</p> "> Figure 4
<p>(<b>a</b>) ZFC (filled symbols) and FCC (empty symbols) dc magnetic susceptibility curves (<span class="html-italic">χ</span> = <span class="html-italic">M</span>/<span class="html-italic">H</span>) of two modifications of NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K, and the <span class="html-italic">Im</span>–3 modification, prepared at 1700 K) measured at <span class="html-italic">H</span> = 10 kOe. The inset shows the d<span class="html-italic">χT</span>/d<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves (all). (<b>b</b>) ZFC and FCC curves of two modifications of NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> measured at <span class="html-italic">H</span> = 100 Oe. The inset shows the FCC d<span class="html-italic">χT</span>/d<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves.</p> "> Figure 5
<p>(<b>a</b>) ZFC (filled symbols) and FCC (empty symbols) dc magnetic susceptibility curves (<span class="html-italic">χ</span> = <span class="html-italic">M</span>/<span class="html-italic">H</span>) of two modifications of SmMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K, and the <span class="html-italic">Im</span>–3 modification, prepared at 1700 K) measured at <span class="html-italic">H</span> = 10 kOe. The inset shows FCC d<span class="html-italic">χT</span>/d<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves. (<b>b</b>) ZFC and FCC curves of two modifications of SmMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> measured at <span class="html-italic">H</span> = 100 Oe.</p> "> Figure 6
<p>ZFC (filled symbols) and FCC (empty symbols) dc magnetic susceptibility curves (<span class="html-italic">χ</span> = <span class="html-italic">M</span>/<span class="html-italic">H</span>) of GdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K) measured at <span class="html-italic">H</span> = 10 kOe. The first inset shows ZFC and FCC curves of GdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> measured at <span class="html-italic">H</span> = 100 Oe. The second inset shows the FCC d<span class="html-italic">χ</span>/d<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves.</p> "> Figure 7
<p>ZFC (filled symbols) and FCC (empty symbols) dc magnetic susceptibility curves (<span class="html-italic">χ</span> = <span class="html-italic">M</span>/<span class="html-italic">H</span>) of DyMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K) measured at <span class="html-italic">H</span> = 10 kOe (the left-hand axis). The right-hand axis shows the FCC <span class="html-italic">χ</span><sup>−1</sup> versus <span class="html-italic">T</span> curve with the Curie–Weiss fit (black line). The fitting parameters are given in the figure. The inset shows d<span class="html-italic">χ</span>/d<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves.</p> "> Figure 8
<p>M versus H curves of two modifications of RMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K, and the <span class="html-italic">Im</span>–3 modification, prepared at 1700 K) measured at <span class="html-italic">T</span> = 5 K with (<b>a</b>) R = Nd and (<b>b</b>) R = Sm. The insets show zoomed parts near the origin.</p> "> Figure 9
<p>M versus H curves of GdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> and DyMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification, prepared at 1500 K) measured at <span class="html-italic">T</span> = 5 K. The inset shows zoomed parts near the origin.</p> "> Figure 10
<p><span class="html-italic">C</span><sub>p</sub>/<span class="html-italic">T</span> versus <span class="html-italic">T</span> curves of RMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> measured at <span class="html-italic">H</span> = 0 (black curves) and 90 kOe (red curves) for (<b>a</b>) R = Nd (the <span class="html-italic">Pn</span>–3 modification), (<b>b</b>) R = Sm (the <span class="html-italic">Pn</span>–3 modification and the <span class="html-italic">Im</span>–3 modification (blue and brown curves)), (<b>c</b>) R = Gd (the <span class="html-italic">Pn</span>–3 modification), and (<b>d</b>) R = Dy (the <span class="html-italic">Pn</span>–3 modification). Arrows show magnetic transition temperatures. Data below 100 K are shown; inset on panel (<b>a</b>) shows full data up to 270 K (at <span class="html-italic">H</span> = 0 Oe).</p> "> Figure 11
<p>(<b>a</b>) Real χ′ versus <span class="html-italic">T</span> and (<b>b</b>) imaginary χ″ versus <span class="html-italic">T</span> curves of NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification) at different frequencies (<span class="html-italic">f</span>). Inset shows the χ′ versus <span class="html-italic">T</span> curves at different <span class="html-italic">H</span><sub>ac</sub> (<span class="html-italic">H</span><sub>ac</sub> = 0.05, 0.5, and 5 Oe) and one frequency (<span class="html-italic">f</span> = 300 Hz).</p> "> Figure 12
<p>Temperature dependence of (<b>a</b>) dielectric constant and (<b>b</b>) loss tangent at different frequencies (<span class="html-italic">f</span>: indicated on the figure) in NdMn<sub>3</sub>Ni<sub>2</sub>Mn<sub>2</sub>O<sub>12</sub> (the <span class="html-italic">Pn</span>–3 modification) at <span class="html-italic">H</span> = 0 Oe. Inset shows frequency dependence of peak positions on loss tangent as <span class="html-italic">T</span><sub>max</sub> versus log(<span class="html-italic">f</span>) (black circles with line) and 1000/<span class="html-italic">T</span><sub>max</sub> versus log(<span class="html-italic">f</span>) (red squares with line).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasala, S.; Karppinen, M. A2B′B′′O6 perovskites: A review. Prog. Solid State Chem. 2015, 43, 1–36. [Google Scholar] [CrossRef]
- Vasil’ev, A.N.; Volkova, O.S. New functional materials AC3B4O12 (Review). Low Temp. Phys. 2007, 33, 895–914. [Google Scholar] [CrossRef]
- Long, Y. A-site ordered quadruple perovskite oxides AA′3B4O12. Chin. Phys. B 2016, 25, 078108. [Google Scholar] [CrossRef]
- Yamada, I. Novel catalytic properties of quadruple perovskites. Sci. Technol. Adv. Mater. 2017, 18, 541–548. [Google Scholar] [CrossRef]
- Belik, A.A.; Johnson, R.D.; Khalyavin, D.D. The rich physics of A-site-ordered quadruple perovskite manganites AMn7O12. Dalton Trans. 2021, 50, 15458–15472. [Google Scholar] [CrossRef]
- Ding, J.; Zhu, X.H. Research progress on quadruple perovskite oxides. J. Mater. Chem. C 2024, 12, 9510–9561. [Google Scholar] [CrossRef]
- Solana-Madruga, E.; Arevalo-Lopez, A.M. High-pressure A-site manganites: Structures and magnetic properties. J. Solid State Chem. 2022, 315, 123470. [Google Scholar] [CrossRef]
- Weihe, H.; Gudel, H.U. Quantitative interpretation of the Goodenough-Kanamori rules: A critical analysis. Inorg. Chem. 1997, 36, 3632–3639. [Google Scholar] [CrossRef]
- Dass, R.I.; Yan, J.-Q.; Goodenough, J.B. Oxygen stoichiometry, ferromagnetism, and transport properties of La2-xNiMnO6-δ. Phys. Rev. B 2003, 68, 064415. [Google Scholar] [CrossRef]
- Rogado, N.S.; Li, J.; Sleight, A.W.; Subramanian, M.A. Magnetocapacitance and magnetoresiatance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 2005, 17, 2225–2227. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Shiozawa, M.; Sato, K.; Abe, K.; Asai, K. Crystal structure, magnetism, and dielectric properties of La1-xBixNi0.5Mn0.5O3. J. Phys. Soc. Jpn. 2008, 77, 084701. [Google Scholar] [CrossRef]
- Choudhury, D.; Mandal, P.; Mathieu, R.; Hazarika, A.; Rajan, S.; Sundaresan, A.; Waghmare, U.V.; Knut, R.; Karis, O.; Nordblad, P.; et al. Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett. 2012, 108, 127201. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Shi, L.; Zhou, S.M.; Zhao, J.I.; Liu, W.J. Near room-temperature magnetoresistance effect in double perovskite La2NiMnO6. Appl. Phys. Lett. 2013, 102, 222401. [Google Scholar] [CrossRef]
- Vasiliev, A.N.; Volkova, O.S.; Lobanovskii, L.S.; Troyanchuk, I.O.; Hu, Z.; Tjeng, L.H.; Khomskii, D.I.; Lin, H.J.; Chen, C.T.; Tristan, N.; et al. Valence states and metamagnetic phase transition in partially B-site-disordered perovskite EuMn0.5Co0.5O3. Phys. Rev. B 2008, 77, 104442. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Martínez-Lope, M.J.; Alonso, J.A.; García-Muñoz, J.L. Magnetic and structural features of the NdNi1-xMnxO3 perovskite series investigated by neutron diffraction. J. Phys. Condens. Matter 2011, 23, 226001. [Google Scholar] [CrossRef] [PubMed]
- Retuerto, M.; Muñoz, Á.; Martínez-Lope, M.J.; Alonso, J.A.; Mompeán, F.J.; Fernández-Díaz, M.T.; Sánchez-Benítez, J. Magnetic interactions in the double perovskites R2NiMnO6 (R = Tb, Ho, Er, Tm) investigated by neutron diffraction. Inorg. Chem. 2015, 54, 10890–10900. [Google Scholar] [CrossRef]
- Booth, R.J.; Fillman, R.; Whitaker, H.; Nag, A.; Tiwari, R.M.; Ramanujachary, K.V.; Gopalakrishnan, J.; Lofland, S.E. An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R = rare earth, Y). Mater. Res. Bull. 2009, 44, 1559–1564. [Google Scholar] [CrossRef]
- Nasir, M.; Kumar, S.; Patra, N.; Bhattacharya, D.; Jha, S.N.; Basaula, D.R.; Bhatt, S.; Khan, M.; Liu, S.-W.; Biring, S.; et al. Role of antisite disorder, rare-earth size, and superexchange angle on band gap, Curie temperature, and magnetization of R2NiMnO6 double perovskites. ACS Appl. Electron. Mater. 2019, 1, 141–153. [Google Scholar] [CrossRef]
- Asai, K.; Fujiyoshi, K.; Nishimori, N.; Satoh, Y.; Kobayashi, Y.; Mizoguchi, M. Magnetic properties of REMe0.5Mn0.5O3 (RE = rare earth element, Me = Ni, Co). J. Phys. Soc. Jpn. 1998, 67, 4218–4228. [Google Scholar] [CrossRef]
- Yi, W.; Liang, Q.F.; Matsushita, Y.; Tanaka, M.; Belik, A.A. High-pressure synthesis, crystal structure, and properties of In2NiMnO6 with antiferromagnetic order and field-induced phase transition. Inorg. Chem. 2013, 52, 14108–14115. [Google Scholar] [CrossRef]
- Terada, N.; Khalyavin, D.D.; Manuel, P.; Yi, W.; Suzuki, H.S.; Tsujii, N.; Imanaka, Y.; Belik, A.A. Ferroelectricity induced by ferriaxial crystal rotation and spin helicity in a B-site-ordered double-perovskite multiferroic In2NiMnO6. Phys. Rev. B 2015, 91, 104413. [Google Scholar] [CrossRef]
- Yi, W.; Princep, A.J.; Guo, Y.F.; Johnson, R.D.; Khalyavin, D.D.; Manuel, P.; Senyshyn, A.; Presniakov, I.A.; Sobolev, A.V.; Matsushita, Y.; et al. Sc2NiMnO6: A double-perovskite with a magnetodielectric response driven by multiple magnetic orders. Inorg. Chem. 2015, 54, 8012–8021. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Khalyavin, D.D.; Manuel, P.; Blake, J.; Orlandi, F.; Yi, W.; Belik, A.A. Colossal magnetoresistance in the insulating ferromagnetic double perovskites Tl2NiMnO6: A neutron diffraction study. Acta Mater. 2019, 173, 20–26. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Glazkova, I.S.; Akulenko, A.A.; Sergueev, I.; Chumakov, A.I.; Yi, W.; Belik, A.A.; Presniakov, I.A. 61Ni nuclear forward scattering study of magnetic hyperfine interactions in double perovskites A2NiMnO6 (A = Sc, In, Tl). J. Phys. Chem. 2019, 123, 23628–23634. [Google Scholar] [CrossRef]
- Terada, N.; Colin, C.V.; Qureshi, N.; Hansen, T.; Matsubayashi, K.; Uwatoko, Y.; Belik, A.A. Pressure-induced incommensurate antiferromagnetic order in a ferromagnetic B-site ordered double-perovskite Lu2NiMnO6. Phys. Rev. B 2020, 102, 094412. [Google Scholar] [CrossRef]
- Manna, K.; Bera, A.K.; Jain, M.; Elizabeth, S.; Yusuf, S.M.; Anil Kumar, P.S. Structural-modulation-driven spin canting and reentrant glassy magnetic phase in ferromagnetic Lu2MnNiO6. Phys. Rev. B 2015, 91, 224420. [Google Scholar] [CrossRef]
- Dieguez, O.; Iniguez, J. Multiferroic Bi2NiMnO6 thin films: A computational prediction. Phys. Rev. B 2017, 95, 085129. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Liu, M.; Dai, J.H.; Wang, X.; Zhou, L.; Cao, H.; Cruz, C.D.; Chen, C.T.; Xu, Y.; Shen, X.; et al. LaMn3Ni2Mn2O12: An A-and B-site ordered quadruple perovskite with A-site tuning orthogonal spin ordering. Chem. Mater. 2016, 28, 8988–8996. [Google Scholar] [CrossRef]
- Liu, M.; Hu, C.-E.; Cheng, C.; Chen, X.R. A–B-intersite-dependent magnetic order and electronic structure of LaMn3Ni2Mn2O12: A first-principles study. J. Phys. Chem. C 2018, 122, 1946–1954. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Belik, A.A.; Yi, W. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site. J. Phys. Condens. Matter 2014, 26, 163201. [Google Scholar] [CrossRef]
- Byeon, S.H.; Lufaso, M.W.; Parise, J.B.; Woodward, P.M.; Hansen, T. High-pressure synthesis and characterization of perovskites with simultaneous ordering of both the A- and B-site cations, CaCu3Ga2M2O12 (M = Sb, Ta). Chem. Mater. 2003, 15, 3798–3804. [Google Scholar] [CrossRef]
- Byeon, S.H.; Lee, S.S.; Parise, J.B.; Woodward, P.M.; Hur, N.H. High-pressure synthesis of metallic perovskite ruthenate CaCu3Ga2Ru2O12. Chem. Mater. 2004, 16, 3697–3701. [Google Scholar] [CrossRef]
- Byeon, S.H.; Lee, S.S.; Parise, J.B.; Woodward, P.M.; Hur, N.H. New ferrimagnetic oxide CaCu3Cr2Sb2O12: High-pressure synthesis, structure, and magnetic properties. Chem. Mater. 2005, 17, 3552–3557. [Google Scholar] [CrossRef]
- Deng, H.S.; Liu, M.; Dai, J.H.; Hu, Z.W.; Kuo, C.Y.; Yin, Y.Y.; Yang, J.Y.; Wang, X.; Zhao, Q.; Xu, Y.; et al. Strong enhancement of spin ordering by A-site magnetic ions in the ferrimagnet CaCu3Fe2Os2O12. Phys. Rev. B 2016, 94, 024414. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Deng, H.; Agrestini, S.; Chen, K.; Lee, J.-F.; Lin, H.-J.; Chen, C.-T.; Choueikani, F.; Ohresser, P.; et al. Comparative study on the magnetic and transport properties of B-site ordered and disordered CaCu3Fe2Os2O12. Inorg. Chem. 2022, 61, 16929–16935. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Shen, X.D.; Liu, Z.H.; Hu, Z.W.; Chen, K.; Ohresser, P.; Nataf, L.; Baudelet, F.; Lin, H.-J.; et al. High-temperature ferrimagnetic half metallicity with wide spin-up energy gap in NaCu3Fe2Os2O12. Inorg. Chem. 2019, 58, 320–326. [Google Scholar] [CrossRef]
- Ye, X.; Liu, Z.; Wang, W.; Hu, Z.; Lin, H.-J.; Weng, S.-C.; Chen, C.-T.; Yu, R.; Tjeng, L.-H.; Long, Y.W. High-pressure synthesis and spin glass behavior of a Mn/Ir disordered quadruple perovskite CaCu3Mn2Ir2O12. J. Phys. Condens. Matter 2020, 32, 075701. [Google Scholar] [CrossRef]
- Li, H.P.; Zhang, Q.; Zhu, Z.P.; Ge, Z.Z.; Li, C.S.; Meng, J.; Tian, Y. Unraveling the effect of B-site antisite defects on the electronic and magnetic properties of the quadruple perovskite CaCu3Fe2Nb2O12. Phys. Chem. Chem. Phys. 2019, 21, 3059–3065. [Google Scholar] [CrossRef]
- Guo, J.; Shen, X.D.; Liu, Z.H.; Qin, S.J.; Wang, W.P.; Ye, X.B.; Liu, G.X.; Yu, R.C.; Lin, H.-J.; Chen, C.-T.; et al. High-pressure synthesis of a B-site Co2+/Mn4+ disordered quadruple perovskite LaMn3Co2Mn2O12. Inorg. Chem. 2020, 59, 12445–12452. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Q.; Ye, X.; Wang, X.; Zhou, L.; Shen, X.; Chen, K.; Nataf, L.; Baudelet, F.; Agrestini, S.; et al. Quadruple perovskite oxide LaCu3Co2Re2O12: A ferrimagnetic half metal with nearly 100% B-site degree of order. Appl. Phys. Lett. 2020, 117, 152402. [Google Scholar] [CrossRef]
- Li, S.M.; Shu, M.F.; Wang, M.; Pan, C.B.; Zhao, G.C.; Yin, L.H.; Song, W.H.; Yang, J.; Zhu, X.B.; Sun, Y.P. Critical behavior at paramagnetic to ferrimagnetic phase transition in A-site ordered perovskite CaCu3Cr2Nb2O12. Phys. B Condens. Matter 2023, 648, 414376. [Google Scholar] [CrossRef]
- Morimura, A.; Kamiyama, S.; Hayashi, N.; Yamamoto, H.; Yamada, I. High-pressure syntheses, crystal structures, and magnetic properties of novel quadruple perovskite oxides LaMn3Ru2Mn2O12 and LaMn3Ru2Fe2O12. J. Alloys Comp. 2023, 968, 172263. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.H.; Ye, X.B.; Wang, X.; Lu, D.B.; Zhao, H.T.; Pi, M.C.; Chen, C.-T.; Chen, J.-L.; Kuo, C.-Y.; et al. High-pressure synthesis of quadruple perovskite oxide CaCu3Cr2Re2O12 with a high ferrimagnetic Curie temperature. Inorg. Chem. 2024, 63, 3499–3505. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Datta, J.; Sen, S.; Ray, P.P.; Mandal, T.K. Ambient pressure synthesis and properties of LaCu3Fe2TiSbO12: New A-site ordered ferrimagnetic quadruple perovskite. J. Solid State Chem. 2021, 302, 122433. [Google Scholar] [CrossRef]
- Kumar, L.; Sen, S.; Mandal, T.K. Ambient pressure synthesis and structure and magnetic properties of a new A- and B-site ordered multinary quadruple perovskite. Dalton Trans. 2024, 53, 11060–11070. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Tanaka, M.; Katsuya, Y.; Matsushita, Y.; Sakata, O. Development of a synchrotron powder diffractometer with a one-dimensional X-ray detector for analysis of advanced materials. J. Ceram. Soc. Jpn. 2013, 121, 287–290. [Google Scholar] [CrossRef]
- Izumi, F.; Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 2000, 321–324, 198–205. [Google Scholar] [CrossRef]
R | Synthesis Temperature | Symmetry |
---|---|---|
Nd | 1500 K | Pn–3 |
Nd | 1700 K | Im–3 |
Sm | 1500 K | Pn–3 |
Sm | 1700 K | Im–3 |
Gd | 1500 K | Pn–3 |
Dy | 1500 K | Pn–3 |
R | Nd | Sm | Gd | Dy |
---|---|---|---|---|
a (Å) | 7.35504(1) | 7.34371(1) | 7.33561(1) | 7.32757(1) |
V (Å3) | 397.8824(2) | 396.0468(5) | 394.7375(5) | 393.4419(4) |
Biso(R) (Å2) | 0.436(5) | 0.532(5) | 0.551(6) | 0.661(5) |
Biso(MnSQ) (Å2) | 0.541(9) | 0.578(8) | 0.560(9) | 0.550(7) |
g(Ni1/Mn1) | 0.82(2)Ni+ 0.18Mn | 0.834(17)Ni+ 0.166Mn | 0.82(2)Ni+ 0.18Mn | 0.831(16)Ni+ 0.169Mn |
Biso(Ni1/Mn1) (Å2) | 0.36(4) | 0.42(4) | 0.34(4) | 0.38(3) |
g(Mn2/Ni2) | 0.82Mn+ 0.18Ni | 0.834Mn+ 0.166Ni | 0.82Mn+ 0.18Ni | 0.831Mn+ 0.169Ni |
Biso(Mn2/Ni2) (Å2) | 0.38(4) | 0.36(4) | 0.45(4) | 0.34(4) |
x(O) | 0.2576(5) | 0.2576(5) | 0.2576(6) | 0.2574(5) |
y(O) | 0.42527(16) | 0.42542(16) | 0.42462(19) | 0.42412(16) |
z(O) | 0.55854(15) | 0.55767(14) | 0.55771(17) | 0.55632(14) |
Biso(O) (Å2) | 0.49(3) | 0.62(3) | 0.54(3) | 0.60(3) |
Rwp (%) | 3.66 | 4.17 | 4.66 | 4.85 |
Rp (%) | 2.40 | 2.78 | 2.87 | 3.32 |
Rp (%) | 1.89 | 2.44 | 1.94 | 2.26 |
RF (%) | 2.42 | 3.02 | 2.55 | 3.13 |
Impurities: | ||||
NiO (R–3m) | 3.0 wt. % | 2.8 wt. % | 1.5 wt. % | 1.8 wt. % |
GdFeO3-related | – | 0.5 wt. % | 2.0 wt. % | 1.7 wt. % |
R | Nd | Sm | Gd | Dy |
---|---|---|---|---|
R–O × 12 (Å) | 2.6105(11) | 2.6015(11) | 2.5959(13) | 2.5824(11) |
BVS(R3+) | 3.16 | 3.00 | 2.86 | 2.74 |
MnSQ–O × 4 (Å) | 1.9099(11) | 1.9125(11) | 1.9062(14) | 1.9091(11) |
MnSQ–O × 4 (Å) | 2.7732(12) | 2.7712(11) | 2.7731(14) | 2.7784(11) |
BVS(Mn3+) | 2.93 | 2.91 | 2.95 | 2.93 |
Ni1/Mn1–O × 6 (Å) | 2.019(4) | 2.014(3) | 2.014(4) | 2.009(3) |
BVS(Ni2+) | 2.24 | 2.27 | 2.27 | 2.30 |
Mn2/Ni2–O × 6 (Å) | 1.915(4) | 1.910(3) | 1.910(4) | 1.908(3) |
BVS(Mn4+) | 3.87 | 3.92 | 3.93 | 3.95 |
Ni1–O–Mn2 | 138.38(6) | 138.65(6) | 138.38(8) | 138.56(6) |
R | Nd | Sm |
---|---|---|
a (Å) | 7.35677(1) | 7.34621(1) |
V (Å3) | 398.1629(5) | 396.4512(5) |
Biso(R) (Å2) | 0.382(5) | 0.285(5) |
Biso(MnSQ) (Å2) | 0.558(9) | 0.413(8) |
Biso(Ni/Mn) (Å2) | 0.297(7) | 0.228(6) |
x(O) | 0.30930(16) | 0.30505(15) |
y(O) | 0.17406(18) | 0.17617(17) |
Biso(O) (Å2) | 0.63(3) | 0.10(2) |
Rwp (%) | 4.46 | 5.56 |
Rp (%) | 2.89 | 3.59 |
Rp (%) | 3.88 | 3.70 |
RF (%) | 3.90 | 3.57 |
Impurities: | ||
NiO (R–3m) | 2.9 wt. % | 4.1 wt. % |
R–O × 12 (Å) | 2.6110(12) | 2.5879(11) |
BVS(R3+) | 3.16 | 3.11 |
MnSQ–O × 4 (Å) | 1.8994(12) | 1.9303(12) |
MnSQ–O × 4 (Å) | 2.7781(13) | 2.7767(12) |
BVS(Mn3+) | 3.00 | 2.78 |
Ni/Mn–O × 6 (Å) | 1.9711(4) | 1.9572(4) |
BVS(Ni2+/Mn4+) | 2.91 | 3.02 |
Ni/Mn–O–Ni/Mn | 137.85(7) | 139.56(7) |
R | TN (K) | μeff (μB/f.u.) | μcalc (μB/f.u.) | θ (K) | MS (μB/f.u.) |
---|---|---|---|---|---|
Nd (Pn–3) | 26 | 11.08(2) | 11.413 | −1.7(1.0) | 6.90 |
Nd (Im–3) | 26 | 11.211(13) | 11.413 | −0.9(7) | 7.04 |
Sm (Pn–3) | 23 | 10.704(9) | 10.966 | −0.2(5) | 4.70 |
Sm (Im–3) | 23 | 10.842(9) | 10.966 | −2.7(5) | 4.70 |
Gd (Pn–3) | 22 | 13.383(7) | 13.491 | +8.4(3) | 10.70 |
Dy (Pn–3) | 10, 36 | 14.886(17) | 15.178 | +2.8(6) | 11.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belik, A.A.; Liu, R.; Tanaka, M.; Yamaura, K. B-Site-Ordered and Disordered Structures in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12 with R = Nd, Sm, Gd, and Dy. Molecules 2024, 29, 5488. https://doi.org/10.3390/molecules29235488
Belik AA, Liu R, Tanaka M, Yamaura K. B-Site-Ordered and Disordered Structures in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12 with R = Nd, Sm, Gd, and Dy. Molecules. 2024; 29(23):5488. https://doi.org/10.3390/molecules29235488
Chicago/Turabian StyleBelik, Alexei A., Ran Liu, Masahiko Tanaka, and Kazunari Yamaura. 2024. "B-Site-Ordered and Disordered Structures in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12 with R = Nd, Sm, Gd, and Dy" Molecules 29, no. 23: 5488. https://doi.org/10.3390/molecules29235488
APA StyleBelik, A. A., Liu, R., Tanaka, M., & Yamaura, K. (2024). B-Site-Ordered and Disordered Structures in A-Site-Ordered Quadruple Perovskites RMn3Ni2Mn2O12 with R = Nd, Sm, Gd, and Dy. Molecules, 29(23), 5488. https://doi.org/10.3390/molecules29235488