How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity
"> Figure 1
<p>Scheme of prebiotics. TIM: The Netherlands Organization for Applied Scientific Research intestinal model, SHIME: simulator of the human intestinal microbial ecosystem, SCFAs: short-chain fatty acids, HPLC: High-performance liquid chromatography, GC: gas chromatography, HILIC: hydrophilic interaction liquid chromatography, LC–ESI–MS: liquid chromatography–electrospray ionization–mass spectrometry, RT-PCR: real-time polymerase chain reaction, qPCR: quantitative polymerase chain reaction, DGGE: denaturing gradient gel electrophoresis, T-RFLP: terminal restriction fragment length polymorphism, rRNA: ribosomal ribonucleic acid.</p> "> Figure 2
<p>Mechanism of action of prebiotics. SCFAs—Short-chain fatty acids.</p> "> Figure 3
<p>Chemical structure of main types of cyclodextrins.</p> "> Figure 4
<p>Structure of dextran.</p> ">
Abstract
:1. Introduction
2. Prebiotic Substances
2.1. Mechanism of Action
2.2. Usage of Prebiotics
2.3. Most Popular Prebiotics
3. Cyclodextrins
3.1. Impact of Cyclodextrins on Digestion
3.2. Prebiotic Activity of Cyclodextrins
3.3. Safety Profile and Toxicological Effects of Cyclodextrins
4. Dextrans
4.1. Use of Dextran
4.2. Prebiotic Activity
4.3. Safety Profile and Toxicological Effects of Dextran
4.4. Comparison of Cyclodextrins and Dextran: Toxicological Profiles
5. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hrncir, T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Bedu-Ferrari, C.; Biscarrat, P.; Langella, P.; Cherbuy, C. Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients 2022, 14, 2096. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Elder, D.P.; Kuentz, M.; Holm, R. Pharmaceutical Excipients—Quality, Regulatory and Biopharmaceutical Considerations. Eur. J. Pharm. Sci. 2016, 87, 88–99. [Google Scholar] [CrossRef]
- Ionova, Y.; Wilson, L. Biologic Excipients: Importance of Clinical Awareness of Inactive Ingredients. PLoS ONE 2020, 15, e0235076. [Google Scholar] [CrossRef] [PubMed]
- Petrovici, A.R.; Pinteala, M.; Simionescu, N. Dextran Formulations as Effective Delivery Systems of Therapeutic Agents. Molecules 2023, 28, 1086. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Dextran: Sources, Structures, and Properties. Polysaccharides 2021, 2, 554–565. [Google Scholar] [CrossRef]
- Ferreira, L.; Campos, J.; Veiga, F.; Cardoso, C.; Paiva-Santos, A.C. Cyclodextrin-Based Delivery Systems in Parenteral Formulations: A Critical Update Review. Eur. J. Pharm. Biopharm. 2022, 178, 35–52. [Google Scholar] [CrossRef]
- Morrison, P.W.J.; Connon, C.J.; Khutoryanskiy, V.V. Cyclodextrin-Mediated Enhancement of Riboflavin Solubility and Corneal Permeability. Mol. Pharm. 2013, 10, 756–762. [Google Scholar] [CrossRef]
- Aiassa, V.; Garnero, C.; Zoppi, A.; Longhi, M.R. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals 2023, 16, 1074. [Google Scholar] [CrossRef]
- Adamkiewicz, L.; Szeleszczuk, Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023, 28, 6964. [Google Scholar] [CrossRef] [PubMed]
- Gościniak, A.; Rosiak, N.; Szymanowska, D.; Miklaszewski, A.; Cielecka-Piontek, J. Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects. Pharmaceutics 2024, 16, 526. [Google Scholar] [CrossRef] [PubMed]
- Esteso, M.A.; Romero, C.M. Cyclodextrins: Properties and Applications. Int. J. Mol. Sci. 2024, 25, 4547. [Google Scholar] [CrossRef] [PubMed]
- Biwer, A.; Antranikian, G.; Heinzle, E. Enzymatic Production of Cyclodextrins. Appl. Microbiol. Biotechnol. 2002, 59, 609–617. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins Inclusion Complex: Preparation Methods, Analytical Techniques and Food Industry Applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Pramod, P.S.; Takamura, K.; Chaphekar, S.; Balasubramanian, N.; Jayakannan, M. Dextran Vesicular Carriers for Dual Encapsulation of Hydrophilic and Hydrophobic Molecules and Delivery into Cells. Biomacromolecules 2012, 13, 3627. [Google Scholar] [CrossRef]
- Watcharadulyarat, N.; Rattanatayarom, M.; Ruangsawasdi, N.; Hongdilokkul, N.; Patikarnmonthon, N. Dextran-Based Nanoparticles for Encapsulation of Ciprofloxacin. J. Phys. Conf. Ser. 2022, 2175, 012006. [Google Scholar] [CrossRef]
- Christaki, S.; Spanidi, E.; Panagiotidou, E.; Athanasopoulou, S.; Kyriakoudi, A.; Mourtzinos, I.; Gardikis, K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals 2023, 16, 1274. [Google Scholar] [CrossRef]
- Chen, F.; Huang, G.; Huang, H. Preparation and Application of Dextran and Its Derivatives as Carriers. Int. J. Biol. Macromol. 2020, 145, 827–834. [Google Scholar] [CrossRef]
- Braga, S.S. Cyclodextrins: Emerging Medicines of the New Millennium. Biomolecules 2019, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Keefe, D.M.; Agency Response Letter GRAS Notice No. GRN 000049. 2002. Available online: https://www.fda.gov/food/gras-notice-inventory/agency-response-letter-gras-notice-no-grn-000623 (accessed on 6 October 2024).
- Zhu, T.; Zhang, B.; Feng, Y.; Li, Z.; Tang, X.; Ban, X.; Kong, H.; Li, C. Beneficial Effects of Three Dietary Cyclodextrins on Preventing Fat Accumulation and Remodeling Gut Microbiota in Mice Fed a High-Fat Diet. Foods 2022, 11, 1118. [Google Scholar] [CrossRef]
- Harangi, J.; Béke, G.; Harangi, M.; Mótyán, J.A. The Digestable Parent Cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 335–339. [Google Scholar] [CrossRef]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.; Brison, Y.; Remaud-Simeon, M.; Monsan, P.; Gibson, G.R.; Rastall, R.A. In Vitro Fermentation of Linear and α-1,2-Branched Dextrans by the Human Fecal Microbiota. Appl. Environ. Microbiol. 2011, 77, 5307–5315. [Google Scholar] [CrossRef]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and Derivatives in Drug Delivery: New Developments, Relevant Clinical Trials, and Advanced Products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An Overview of the Last Advances in Probiotic and Prebiotic Field. LWT-Food Sci. Technol. 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Bamigbade, G.B.; Subhash, A.J.; Kamal-Eldin, A.; Nyström, L.; Ayyash, M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022, 27, 5947. [Google Scholar] [CrossRef]
- Umu, Ö.C.O.; Rudi, K.; Diep, D.B. Modulation of the Gut Microbiota by Prebiotic Fibres and Bacteriocins. Microb. Ecol. Health Dis. 2017, 28, 1348886. [Google Scholar] [CrossRef]
- You, S.; Ma, Y.; Yan, B.; Pei, W.; Wu, Q.; Ding, C.; Huang, C. The Promotion Mechanism of Prebiotics for Probiotics: A Review. Front. Nutr. 2022, 9, 1000517. [Google Scholar] [CrossRef] [PubMed]
- Looijer–van Langen, M.A.C.; Dieleman, L.A. Prebiotics in Chronic Intestinal Inflammation. Inflamm. Bowel Dis. 2009, 15, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Whisner, C.M.; Castillo, L.F. Prebiotics, Bone and Mineral Metabolism. Calcif. Tissue Int. 2018, 102, 443–479. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Dhaneshwar, S. Role of Prebiotics, Probiotics, and Synbiotics in Management of Inflammatory Bowel Disease: Current Perspectives. World J. Gastroenterol. 2023, 29, 2078–2100. [Google Scholar] [CrossRef]
- Liu, F.; van der Molen, J.; Kuipers, F.; van Leeuwen, S.S. Quantitation of Bioactive Components in Infant Formulas: Milk Oligosaccharides, Sialic Acids and Corticosteroids. Food Res. Int. 2023, 174, 113589. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Stopińska, K.; Radziwoń-Zaleska, M.; Domitrz, I. The Microbiota-Gut-Brain Axis as a Key to Neuropsychiatric Disorders: A Mini Review. J. Clin. Med. 2021, 10, 4640. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J.T. Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024, 16, 789. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, X.; Luo, Y.; Chen, B.; Ma, D.; Zhu, J. Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3298. [Google Scholar] [CrossRef]
- Mei, Z.; Yuan, J.; Li, D. Biological Activity of Galacto-Oligosaccharides: A Review. Front. Microbiol. 2022, 13, 993052. [Google Scholar] [CrossRef]
- Lin, S.-H.; Chou, L.-M.; Chien, Y.-W.; Chang, J.-S.; Lin, C.-I. Prebiotic Effects of Xylooligosaccharides on the Improvement of Microbiota Balance in Human Subjects. Gastroenterol. Res. Pract. 2016, 2016, 5789232. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, D.; Bai, S.; Wang, J.; Zeng, Q.; Su, Z.; Xuan, Y.; Zhang, K. Effect of Dietary Xylooligosaccharides on Intestinal Characteristics, Gut Microbiota, Cecal Short-Chain Fatty Acids, and Plasma Immune Parameters of Laying Hens. Poult. Sci. 2018, 97, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Lee, D.; Jung, J.; Ryoo, S. Low Molecular Weight Chitooligosaccharide Inhibits Infection of SARS-CoV-2 In Vitro. J. Appl. Microbiol. 2022, 133, 1089–1098. [Google Scholar] [CrossRef]
- Fu, T.; Zhou, L.; Fu, Z.; Zhang, B.; Li, Q.; Pan, L.; Zhou, C.; Zhao, Q.; Shang, Q. Enterotype-Specific Effect of Human Gut Microbiota on the Fermentation of Marine Algae Oligosaccharides: A Preliminary Proof-of-Concept In Vitro Study. Polymers 2022, 14, 770. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Chen, D.; Yu, B.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Alginate Oligosaccharide-Induced Intestinal Morphology, Barrier Function and Epithelium Apoptosis Modifications Have Beneficial Effects on the Growth Performance of Weaned Pigs. J. Anim. Sci. Biotechnol. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Pulido-Mateos, E.C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front. Nutr. 2021, 8, 689456. [Google Scholar] [CrossRef]
- Plămadă, D.; Vodnar, D. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, N.; Zhang, H.; Li, H.; Guo, J.; Zhang, Y.; Chen, Y.; Wang, Y.; Shi, N. Resistant Starch and the Gut Microbiome: Exploring Beneficial Interactions and Dietary Impacts. Food Chem. X 2024, 21, 101118. [Google Scholar] [CrossRef] [PubMed]
- Sivieri, K.; de Oliveira, S.M.; Marquez, A.d.S.; Pérez-Jiménez, J.; Diniz, S.N. Insights on β-Glucan as a Prebiotic Coadjuvant in the Treatment of Diabetes Mellitus: A Review. Food Hydrocoll. Health 2022, 2, 100056. [Google Scholar] [CrossRef]
- Shiozawa, R.; Inoue, Y.; Murata, I.; Kanamoto, I. Effect of Antioxidant Activity of Caffeic Acid with Cyclodextrins Using Ground Mixture Method. Asian J. Pharm. Sci. 2018, 13, 24–33. [Google Scholar] [CrossRef]
- Wittkowski, K.M. The Effect of Alpha-Cyclodextrin on Postprandial Glucose Excursions: A Systematic Meta-Analysis. Cureus 2022, 14, e31160. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Substantiation of Health Claims Related to Alpha Cyclodextrin and Reduction of Post Prandial Glycaemic Responses (ID 2926, Further Assessment) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2012, 10, 2713. [CrossRef]
- Gentilcore, D.; Vanis, L.; Teng, J.C.; Wishart, J.M.; Buckley, J.D.; Rayner, C.K.; Horowitz, M.; Jones, K.L. The Oligosaccharide α-Cyclodextrin Has Modest Effects to Slow Gastric Emptying and Modify the Glycaemic Response to Sucrose in Healthy Older Adults. Br. J. Nutr. 2011, 106, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.M.; Catherine Jen, K.-L.; Artiss, J.D.; Remaley, A.T. Dietary Alpha-Cyclodextrin Lowers LDL-C and Alters Plasma Fatty Acid Profile in LDLr-KO Mice on a High-Fat Diet. Metabolism 2008, 57, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Kano, C.; Ishii, C.; Kagata, N.; Ishikawa, T.; Hirayama, A.; Uchiyama, Y.; Hara, S.; Nakamura, T.; Fukuda, S. Bacteroides Uniformis and Its Preferred Substrate, α-Cyclodextrin, Enhance Endurance Exercise Performance in Mice and Human Males. Sci Adv 2023, 9, eadd2120. [Google Scholar] [CrossRef]
- Sakurai, T.; Sakurai, A.; Chen, Y.; Vaisman, B.L.; Amar, M.J.; Pryor, M.; Thacker, S.G.; Zhang, X.; Wang, X.; Zhang, Y.; et al. Dietary α-Cyclodextrin Reduces Atherosclerosis and Modifies Gut Flora in Apolipoprotein E-Deficient Mice. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Nihei, N.; Okamoto, H.; Furune, T.; Ikuta, N.; Sasaki, K.; Rimbach, G.; Yoshikawa, Y.; Terao, K. Dietary α-Cyclodextrin Modifies Gut Microbiota and Reduces Fat Accumulation in High-Fat-Diet-Fed Obese Mice. Biofactors 2018. [Google Scholar] [CrossRef]
- Guevara, M.A.; Bauer, L.L.; Garleb, K.A.; Fahey, G.C.; de Godoy, M.R.C. In Vitro Fermentation Characteristics, in Vivo Ileal and Total Tract Nutrient Digestibilities, and Fecal Microbiota Responses of Dogs to α-Cyclodextrin. J Anim Sci 2016, 94, 2004–2013. [Google Scholar] [CrossRef]
- Yamanouchi, Y.; Chudan, S.; Ishibashi, R.; Ohue-Kitano, R.; Nishikawa, M.; Tabuchi, Y.; Kimura, I.; Nagai, Y.; Ikushiro, S.; Furusawa, Y. The Impact of Low-Viscosity Soluble Dietary Fibers on Intestinal Microenvironment and Experimental Colitis: A Possible Preventive Application of Alpha-Cyclodextrin in Intestinal Inflammation. Mol. Nutr. Food Res. 2022, 66, 2200063. [Google Scholar] [CrossRef]
- Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low Amounts of Dietary Fibre Increase in Vitro Production of Short-Chain Fatty Acids without Changing Human Colonic Microbiota Structure. Sci. Rep. 2018, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Irie, T.; Uekama, K. Pharmaceutical Applications of Cyclodextrins. III. Toxicological Issues and Safety Evaluation. J. Pharm. Sci. 1997, 86, 147–162. [Google Scholar] [CrossRef]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical Applications of Cyclodextrins: Basic Science and Product Development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.; Scott, R.C. 2-Hydroxypropyl-Beta-Cyclodextrin (HP-Beta-CD): A Toxicology Review. Food Chem. Toxicol. 2005, 43, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- De Schaepdrijver, L.; Mariën, D.; Rhimi, C.; Voets, M.; van Heerden, M.; Lammens, L. Juvenile Animal Testing of Hydroxypropyl-β-Cyclodextrin in Support of Pediatric Drug Development. Reprod. Toxicol. 2015, 56, 87–96. [Google Scholar] [CrossRef]
- de Repentigny, L.; Ratelle, J.; Leclerc, J.M.; Cornu, G.; Sokal, E.M.; Jacqmin, P.; De Beule, K. Repeated-Dose Pharmacokinetics of an Oral Solution of Itraconazole in Infants and Children. Antimicrob. Agents Chemother. 1998, 42, 404–408. [Google Scholar] [CrossRef]
- Lilly, C.M.; Welch, V.L.; Mayer, T.; Ranauro, P.; Meisner, J.; Luke, D.R. Evaluation of Intravenous Voriconazole in Patients with Compromised Renal Function. BMC Infect. Dis. 2013, 13, 14. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Kothawade, R.V.; Markad, A.R.; Pardeshi, S.R.; Kulkarni, A.D.; Chaudhari, P.J.; Longhi, M.R.; Dhas, N.; Naik, J.B.; Surana, S.J.; et al. Sulfobutylether-β-Cyclodextrin: A Functional Biopolymer for Drug Delivery Applications. Carbohydr. Polym. 2023, 301, 120347. [Google Scholar] [CrossRef]
- Grecu, M.; Minea, B.; Foia, L.-G.; Bostanaru-Iliescu, A.-C.; Miron, L.; Nastasa, V.; Mares, M. Short Review on the Biological Activity of Cyclodextrin-Drug Inclusion Complexes Applicable in Veterinary Therapy. Molecules 2023, 28, 5565. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.M.; Jacobs, R.F.; Massarella, J.; Kauffman, R.E.; Bradley, J.S.; Kimko, H.C.; Kearns, G.L.; Shalayda, K.; Curtin, C.; Maldonado, S.D.; et al. Single-Dose Pharmacokinetics of Intravenous Itraconazole and Hydroxypropyl-β-Cyclodextrin in Infants, Children, and Adolescents. Antimicrob. Agents Chemother. 2007, 51, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-Based Dermatological Formulations: Dermopharmaceutical and Cosmetic Applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef] [PubMed]
- Bellringer, M.E.; Smith, T.G.; Read, R.; Gopinath, C.; Olivier, P. Beta-Cyclodextrin: 52-Week Toxicity Studies in the Rat and Dog. Food Chem. Toxicol. 1995, 33, 367–376. [Google Scholar] [CrossRef]
- Munro, I.C.; Newberne, P.M.; Young, V.R.; Bär, A. Safety Assessment of Gamma-Cyclodextrin. Regul. Toxicol. Pharmacol. 2004, 39 (Suppl. 1), S3–S13. [Google Scholar] [CrossRef]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.W.; Gibson, G.R.; Rastall, R.A. The Prebiotic Effect of α-1,2 Branched, Low Molecular Weight Dextran in the Batch and Continuous Faecal Fermentation System. J. Funct. Foods 2013, 5, 1938–1946. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Dextran of Diverse Molecular-Configurations Used as a Blood-Plasma Substitute, Drug-Delivery Vehicle and Food Additive Biosynthesized by Leuconostoc, Lactobacillus and Weissella. Appl. Sci. 2023, 13, 12526. [Google Scholar] [CrossRef]
- Koyama, Y.; Miyagawa, T.; Kawaide, A.; Kataoka, K. Receptor-Mediated Absorption of High Molecular Weight Dextrans from Intestinal Tract. J. Control. Release 1996, 41, 171–176. [Google Scholar] [CrossRef]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-Amylase and Starch Digestion: An Interesting Marriage. Starch-Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Dextran Used in Blood Transfusion, Hematology, and Pharmaceuticals: Biosynthesis of Diverse Molecular-Specification-Dextrans in Enzyme-Catalyzed Reactions. FBE 2024, 16, 17. [Google Scholar] [CrossRef]
- Unterweger, H.; Dézsi, L.; Matuszak, J.; Janko, C.; Poettler, M.; Jordan, J.; Bäuerle, T.; Szebeni, J.; Fey, T.; Boccaccini, A.R.; et al. Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging: Evaluation of Size-Dependent Imaging Properties, Storage Stability and Safety. Int J Nanomed. 2018, 13, 1899–1915. [Google Scholar] [CrossRef]
- Fishbane, S.; Kowalski, E.A. The Comparative Safety of Intravenous Iron Dextran, Iron Saccharate, and Sodium Ferric Gluconate. Semin Dial 2000, 13, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jalili, S. Dextran, as a Biological Macromolecule for the Development of Bioactive Wound Dressing Materials: A Review of Recent Progress and Future Perspectives. Int. J. Biol. Macromol. 2022, 207, 666–682. [Google Scholar] [CrossRef]
- Publication—Preparation and Applications of a Dextrans: Review. Available online: https://ijras.org/index.php/issue?view=publication&task=show&id=191 (accessed on 1 October 2024).
- Tingirikari, J.M.R.; Kothari, D.; Goyal, A. Superior Prebiotic and Physicochemical Properties of Novel Dextran from Weissella Cibaria JAG8 for Potential Food Applications. Food Funct. 2014, 5, 2324–2330. [Google Scholar] [CrossRef] [PubMed]
- Baruah, R.; Maina, N.H.; Katina, K.; Juvonen, R.; Goyal, A. Functional Food Applications of Dextran from Weissella Cibaria RBA12 from Pummelo (Citrus Maxima). Int. J. Food Microbiol. 2017, 242, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Amaretti, A.; Bottari, B.; Morreale, F.; Savo Sardaro, M.L.; Angelino, D.; Raimondi, S.; Rossi, M.; Pellegrini, N. Potential Prebiotic Effect of a Long-Chain Dextran Produced by Weissella Cibaria: An in Vitro Evaluation. Int. J. Food Sci. Nutr. 2020, 71, 563–571. [Google Scholar] [CrossRef]
- Olano-Martin, E.; Mountzouris, K.C.; Gibson, G.R.; Rastall, R.A. In Vitro Fermentability of Dextran, Oligodextran and Maltodextrin by Human Gut Bacteria. Br. J. Nutr. 2000, 83, 247–255. [Google Scholar] [CrossRef]
- Gościniak, A.; Eder, P.; Walkowiak, J.; Cielecka-Piontek, J. Artificial Gastrointestinal Models for Nutraceuticals Research—Achievements and Challenges: A Practical Review. Nutrients 2022, 14, 2560. [Google Scholar] [CrossRef]
- Sip, S.; Sip, A.; Szulc, P.; Selwet, M.; Żarowski, M.; Czerny, B.; Cielecka-Piontek, J. Exploring Beneficial Properties of Haskap Berry Leaf Compounds for Gut Health Enhancement. Antioxidants 2024, 13, 357. [Google Scholar] [CrossRef]
- Gao, J.; Sadiq, F.A.; Zheng, Y.; Zhao, J.; He, G.; Sang, Y. Biofilm-Based Delivery Approaches and Specific Enrichment Strategies of Probiotics in the Human Gut. Gut Microbes 2022, 14, 2126274. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, Y.; Chen, H.; Bai, R.; Staedtke, V.; Han, Z.; Xu, J.; Chan, K.W.Y.; Yadav, N.; Bulte, J.W.M.; et al. Characterization of Tumor Vascular Permeability Using Natural Dextrans and CEST MRI. Magn. Reson. Med. 2018, 79, 1001–1009. [Google Scholar] [CrossRef]
- Ochrimenko, S.; Vollrath, A.; Tauhardt, L.; Kempe, K.; Schubert, S.; Schubert, U.S.; Fischer, D. Dextran-Graft-Linear Poly(Ethylene Imine)s for Gene Delivery: Importance of the Linking Strategy. Carbohydr. Polym. 2014, 113, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.T.T.; Hughes, F.; Sagnella, S.; Kavallaris, M.; Macmillan, A.; Whan, R.; Hook, J.; Davis, T.P.; Boyer, C. Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules. Mol. Pharm. 2012, 9, 3046–3061. [Google Scholar] [CrossRef] [PubMed]
- Hennink, W.E.; De Jong, S.J.; Bos, G.W.; Veldhuis, T.F.J.; van Nostrum, C.F. Biodegradable Dextran Hydrogels Crosslinked by Stereocomplex Formation for the Controlled Release of Pharmaceutical Proteins. Int. J. Pharm. 2004, 277, 99–104. [Google Scholar] [CrossRef] [PubMed]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=186.1275 (accessed on 19 October 2024).
- Jiang, D.; Salem, A.K. Optimized Dextran–Polyethylenimine Conjugates Are Efficient Non-Viral Vectors with Reduced Cytotoxicity When Used in Serum Containing Environments. Int. J. Pharm. 2012, 427, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Vittorio, O.; Brandl, M.; Cirillo, G.; Kimpton, K.; Hinde, E.; Gaus, K.; Yee, E.; Kumar, N.; Duong, H.; Fleming, C.; et al. Dextran-Catechin: An Anticancer Chemically-Modified Natural Compound Targeting Copper That Attenuates Neuroblastoma Growth. Oncotarget 2016, 7, 47479–47493. [Google Scholar] [CrossRef] [PubMed]
- Avazzadeh, R.; Vasheghani-Farahani, E.; Soleimani, M.; Amanpour, S.; Sadeghi, M. Synthesis and Application of Magnetite Dextran-Spermine Nanoparticles in Breast Cancer Hyperthermia. Prog Biomater 2017, 6, 75–84. [Google Scholar] [CrossRef]
- Thuret, G.; Manissolle, C.; Campos-Guyotat, L.; Guyotat, D.; Gain, P. Animal Compound–Free Medium and Poloxamer for Human Corneal Organ Culture and Deswelling. Investig. Ophthalmol. Vis. Sci. 2005, 46, 816–822. [Google Scholar] [CrossRef]
- Yuan, F.; Sun, M.; Liu, Z.; Liu, H.; Kong, W.; Wang, R.; Qian, F. Macropinocytic Dextran Facilitates KRAS-Targeted Delivery While Reducing Drug-Induced Tumor Immunity Depletion in Pancreatic Cancer. Theranostics 2022, 12, 1061–1073. [Google Scholar] [CrossRef]
- Bachelder, E.M.; Beaudette, T.T.; Broaders, K.E.; Dashe, J.; Fréchet, J.M.J. Acetal-Derivatized Dextran: An Acid-Responsive Biodegradable Material for Therapeutic Applications. J. Am. Chem. Soc. 2008, 130, 10494–10495. [Google Scholar] [CrossRef]
- Louzada, M.L.; Hsia, C.C.; Al-Ani, F.; Ralley, F.; Xenocostas, A.; Martin, J.; Connelly, S.E.; Chin-Yee, I.H.; Minuk, L.; Lazo-Langner, A. Randomized Double-Blind Safety Comparison of Intravenous Iron Dextran versus Iron Sucrose in an Adult Non-Hemodialysis Outpatient Population: A Feasibility Study. BMC Hematol. 2016, 16, 7. [Google Scholar] [CrossRef]
Feature | Cyclodextrins (CDs) | Dextran |
---|---|---|
Chemical Structure | Cyclic oligosaccharides made of 6–8 α-D-glucose units (α-CD, β-CD, γ-CD) in a toroidal shape [13] | Linear polysaccharide primarily composed of α-(1→6)-linked D-glucose with some α-(1→3) branches [7] |
Source | Derived from starch via enzymatic treatment (cyclodextrin glycosyltransferase) [14] | Produced by lactic acid bacteria (e.g., Leuconostoc spp.) from sucrose [7] |
Molecular Weight | Low molecular weight (α-CD~972 Da, β-CD~1135 Da, γ-CD~1297 Da) [15] | High molecular weight (ranging from 3 kDa to over 2000 kDa depending on synthesis) |
Solubility | Water-soluble, with a hydrophobic interior and hydrophilic exterior [13] | Water-soluble, highly hydrophilic [7] |
Inclusion Complex Formation | Forms inclusion complexes with various hydrophobic guest molecules due to its toroidal shape [16] | Does not form inclusion complexes but can be chemically modified to encapsulate molecules [17,18] |
Applications | Drug delivery, solubilization of hydrophobic drugs, molecular encapsulation, food additives, cosmetics [19] | Plasma volume expanders, drug carriers, biodegradable hydrogels, wound dressings, food stabilizers [20] |
Toxicity | Generally non-toxic, biocompatible, and FDA-approved for certain uses [21,22] | Biocompatible and biodegradable; used in medical applications (e.g., Dextran 70 in intravenous solutions) [6] |
Modification Potential | Can be chemically modified (e.g., hydroxypropyl-β-cyclodextrin, methylated CDs) to improve solubility, stability, or drug release profiles [10] | Can be modified to form hydrogels, nanoparticles, or other delivery systems (e.g., dextran sulfate, oxidized dextran) [6] |
Digestion | Resistant to enzymatic degradation in the upper gastrointestinal tract; fermentable by the gut microbiota [23,24,25] | Mostly resistant to enzymatic degradation in the upper gastrointestinal tract; fermentable by the gut microbiota [26] |
Pharmaceutical Use | Widely used to improve bioavailability, stability, and solubility of poorly water-soluble drugs [27] | Used as a drug carrier and for its osmotic properties in IV solutions (e.g., Dextran 40, Dextran 70) [20] |
Model | Dosage | Findings | Authors | |
---|---|---|---|---|
Clinical study | 36 participants |
| α-cyclodextrin supplementation increased Bacteroides uniformis abundance and human male exercise performance | Morita et al. [56] |
Preliminary, small scale, open-label clinical study | 4 participants |
| Supplementation did not significantly affect the microbiota composition in the human colon | Sasaki et al. [62] |
Animal model | 60 female apoE-KO mice |
| Addition of α-cyclodextrin to the diet of apoE-knockout mice is associated with changes in the gut flora Bacteroidetes/Firmicutes ↑ * Clostridium ↓ Turicibacterium ↓ Erysipelotrichi ↓ Dehalobacteriaceae ↑ Comamonadaceae ↑ Peptostreptococcaceae ↓ | Sakurai et al. [57] |
Animal model | 15 male mice (C57BL/6JJmsSlc) |
| Supplementation of α-cyclodextrin regulates the gut microbiota in high fat diet mice total number of bacteria ↑ Bacteroides ↑ Bifidobacterium ↑ Lactobacillus ↑ | Nihei et al. [59] |
Animal model | 5 female purpose-bred hound-mix dogs |
| Cyclodextrins do not affect dogs’ microbiome | Guevara et al. [60] |
Animal model | 36 male C57BL/6JNifdc mice |
| Significant increase in relative abundance of Lactobacillus and Akkermansia in the gut and downregulation of the relative abundance of Allobaculum and Ruminococcus | Zhu et a. [23] |
Animal model | C57BL/6J male mice |
| Promotion of the growth of beneficial bacteria such as Akkermansia muciniphila and Bacteroides acidifaciens, while eliminating pathogenic bacteria such as Clostridium perfringens | Yamanouchi et al. [61] |
In vitro study | Kobe University Human Intestinal Microbiota Model, KUHIMM |
| Prebiotic additive did not change the diversity and composition of colonic microbiota; their addition reduced the pH and increased the generation of acetate and propionate in the in vitro system | Sasaki et al. [62] |
In vitro study | Human fecal samples from 3 individual male volunteers |
| Significant impact on SCFA composition (β-cyclodextrin—highest total SCFA and acetate production; γ-cyclodextrin—highest SCFA and acetate production rates ↑, highest butyrate production; α-cyclodextrin—highest propionate production) | Guevara et al. [60] |
In vitro study | Liquid cultures of prebiotic strains |
| Positive effect on growth of prebiotic bacteria in cultures compared to control | Gościniak et al. [12] |
Model | Sample | Findings | Authors |
---|---|---|---|
In vitro study | 1.0%, w/v of dextran produced by dextransucrase from Weissella cibaria JAG8 | Dextran supported the growth of probiotic bacteria (Bifidobacterium animalis subspecies lactis, Bifidobacterium infantis, and Lactobacillus acidophilus) and did not promote the growth of unwanted E. coli | Tingirikari et al. [85] |
In vitro study | 1.0%, w/v of dextran produced Weissella cibaria RBA12 | Enhanced growth of probiotic Bifidobacterium and Lactobacillus spp., and controlled growth of non-probiotic enteric bacteria | Lv et al. [86] |
In vitro study | Dextran NEXTDEXT® (2.3 × 105 < MW < 1 × 107 kDa) | Enhanced the relative amount of Prevotella and Bacteroides, consistently with a favorable acetate–propionate | Amaretti et al. [87] |
In vitro study | 10 g/L of dextran and novel oligodextrans (I, II, and III) produced in the University of Reading (UK) | Enrichment of Bifidobacteria in the batch cultures, with high levels of persistence up to 48 h for dextran and oligodextrans | Olano-Martin et al. [88] |
In vitro study | 10% w/v; 0.5 kDa dextran with 25% α-1,2 branching, 1 kDa dextran with 32% α-1,2 branching and inulin | 0.5 and 1.0 kDa dextran induce similar effects towards the gut microbiota, but the 0.5 kDa dextran was fermented faster | Sarbini et al. [76] |
In vitro study | 1.0%, w/v of systems containing dextran 5 kDa, 40 kD, and 70 kD | Dextran 40 kD proved to be the most effective prebiotic for Bifidobacterium longum, Bifidobacterium animalis, Faecalibacterium prausnitzii, Lactobacillus salivarius, Lactiplantibacillus plantarum 299v, and Lacticaseibacillus rhamnosus GG. Dextran 5 kD exhibited moderate effectiveness for Lactobacillus helveticus, while Dextran 70 kD showed the lowest impact | Sip et al. [90] |
Feature | Cyclodextrins (CDs) | Dextran |
---|---|---|
Safety with Oral Use | Generally safe, may cause gastrointestinal problems | Generally safe, but not commonly used orally |
Parenteral Use Risks | Nephrotoxicity, hemolysis | Anaphylaxis, hypervolemia, bleeding |
Allergic Reactions | Rare but possible with prolonged use | Rare with oral use, much lower risk than with intravenous administration |
Toxicity Modulation | Lowered by using modified CDs (e.g., HP-β-CD) | No need for modification in the oral context |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Lainé, E.; Cielecka-Piontek, J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules 2024, 29, 5316. https://doi.org/10.3390/molecules29225316
Gościniak A, Lainé E, Cielecka-Piontek J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules. 2024; 29(22):5316. https://doi.org/10.3390/molecules29225316
Chicago/Turabian StyleGościniak, Anna, Emmanuelle Lainé, and Judyta Cielecka-Piontek. 2024. "How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity" Molecules 29, no. 22: 5316. https://doi.org/10.3390/molecules29225316
APA StyleGościniak, A., Lainé, E., & Cielecka-Piontek, J. (2024). How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules, 29(22), 5316. https://doi.org/10.3390/molecules29225316