Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis
<p>Key HMBC, <sup>1</sup>H-<sup>1</sup>H COSY, and ROESY correlations of <b>1</b>–<b>9</b>.</p> "> Figure 2
<p>Structures of compounds <b>1</b>–<b>9</b>.</p> "> Figure 3
<p>Molecular docking of <b>3</b> and <b>4</b> and α-glucosidase. The 3D structure of α-glucosidase is shown in blue slate color, ligands are shown in cyan, side chain amino acids are shown in violet, and distances (Angstrom) are shown in black; (<b>A</b>) interactions of <b>3</b>; (<b>B</b>) interactions of <b>4</b>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Determination of the Absolute Configuration of the Sugars
3.5. α-Glucosidase Inhibitory Assay
3.6. Docking Studies
3.7. Anti-NO Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janssen, S.W.J.; Martens, G.J.M.; Sweep, C.G.J.; Span, P.N.; Verhofstad, A.A.J.; Hermus, A.R.M.M. Phlorizin treatment prevents the decrease in plasma insulin levels but not the progressive histopathological changes in the pancreatic islets during aging of Zucker diabetic fatty rats. J. Endocrinol. Investig. 2003, 26, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.C.; Zhang, Y.Y.; Chen, X.; Wang, Y.L.; Chen, W.F.; Xu, Q.P.; Li, P.M.; Ma, F.W. Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus ‘Red Splendor’ fruit. Food. Chem. 2017, 231, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.W.; Chen, Y.Y.; Jiao, Q.Y.; Khan, A.; Shan, J.; Cao, G.D.; Li, F.; Zhang, C.; Lou, H.X. Polyphenolic compounds from Malus hupehensis and their free radical scavenging effects. Nat. Prod. Res. 2017, 32, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.L.; Xing, M.M.; Xu, L.T.; Wang, J.Y.; Zhang, X.F.; Ma, C.Y.; Kang, W.Y. Antithrombotic components of Malus halliana Koehne flowers. Food. Chem. Toxicol. 2018, 119, 326–333. [Google Scholar] [CrossRef]
- Qin, X.X.; Xing, Y.; Zhou, Z.Z.; Yao, Y.C. Dihydrochalcone compounds isolated from crabapple leaves showed anticancer effects on human cancer cell lines. Molecules 2015, 20, 21193–21203. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhu, X.F.; Wang, X.N.; Shen, T.; Xiang, F.; Lou, H.X. Flavonoids from Malus hupehensis and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Phytochemistry 2013, 87, 119–125. [Google Scholar] [CrossRef]
- Liu, L.J.; Guo, D.Y.; Fan, Y.; Sun, J.; Cheng, J.X.; Shi, Y.J. Experimental study on the antioxidant activity of Malus hupehensis (Pamp.) Rehd extracts in vitro and in vivo. J. Cell. Biochem. 2019, 120, 11878–11889. [Google Scholar] [CrossRef]
- Li, M.X.; Xue, S.J.; Tan, S.; Qin, X.X.; Gu, M.; Wang, D.S.; Zhang, Y.; Guo, L.; Huang, F.S.; Yao, Y.C.; et al. Crabapple fruit extracts lower hypercholesterolaemia in high-fat diet-induced obese mice. J. Funct. Foods. 2016, 27, 416–428. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef]
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nutr. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Hufford, C.D.; Oguntimein, B.O. Dihydrochalcones from Uvaria angolensis. Phytochemistry 1980, 19, 2036–2038. [Google Scholar] [CrossRef]
- Cheng, Z.B.; Xu, W.; Wang, Y.Y.; Bai, S.Y.; Liu, L.J.; Luo, Z.H.; Yuan, W.J.; Li, Q. Two new meroterpenoids and two new monoterpenoids from the deep sea-derived fungus Penicillium sp. YPGA. Fitoterapia 2019, 133, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.N.A.; Beuerle, T.; Müller, A.; Ernst, L.; Beerhues, L. Biosynthesis of the biphenyl phytoalexin aucuparin in Sorbus aucuparia cell cultures treated with Venturia inaequalis. Phytochemistry 2013, 96, 101–109. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, G.X.; Kurihara, H.; Ye, W.C.; Yao, X.S. Biphenyl glycosides from the fruit of Pyracantha fortuneana. J. Nat. Prod. 2006, 69, 1022–1024. [Google Scholar] [CrossRef]
- Jeong, G.H.; Cho, J.H.; Kim, S.H.; Kim, T.H. Plasma-induced dimerization of phloridzin as a new class of anti-adipogenic agents. Bioorg. Med. Chem. Lett. 2017, 27, 4889–4892. [Google Scholar] [CrossRef]
- Lee, I.S.; Jung, S.H.; Lee, Y.M.; Choi, S.; Sun, H.; Kim, J.S. Phenolic compounds from the leaves and twigs of Osteomeles schwerinae that inhibit rat lens aldose reductase and vessel dilation in zebrafish larvae. J. Nat. Prod. 2015, 78, 2249–2254. [Google Scholar] [CrossRef]
- Yuan, L.L.; Shi, B.B.; Feng, T.; Huang, R.; Li, Z.H.; Chen, H.P.; Liu, J.K. α-Glucosidase inhibitory phenylpropanoid-dihydrochalcone hybrids from the leaves of medicinal plant Malus hupehensis (Pamp.) Rehder. Phytochemistry 2022, 204, 113421. [Google Scholar] [CrossRef]
- Li, W.; Wei, K.; Fu, H.W.; Koike, K. Structure and absolute configuration of clerodane diterpene glycosides and a rearranged cadinane sesquiterpene glycoside from the stems of Tinospora sinensis. J. Nat. Prod. 2007, 70, 1971–1976. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, Z.Z.; Yao, J.N.; Feng, T.; Li, Z.H.; Chen, H.P.; Liu, J.K. Irpeksins A−E, 1,10-seco-eburicane-type triterpenoids from the medicinal fungus Irpex iacteus and their anti-NO activity. J. Nat. Prod. 2018, 81, 2163–2168. [Google Scholar] [CrossRef] [PubMed]
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
2 | 6.87, d (8.5) | 7.01, d (8.5) | 7.07, d (8.3) | 7.08, d (8.4) |
3 | 6.58, d (8.5) | 6.60, d (8.5) | 6.69, d (8.4) | 6.69, d (8.4) |
5 | 6.58, d (8.5) | 6.60, d (8.5) | 6.69, d (8.4) | 6.69, d (8.4) |
6 | 6.87, d (8.5) | 7.01, d (8.5) | 7.07, d (8.3) | 7.08, d (8.4) |
3′ | 6.18, d (2.2) | 6.17, d (2.2) | 6.22, d (2.2) | 6.20, d (2.2) |
5′ | 5.92, d (2.2) | 5.93, d (2.2) | 5.97, d (2.2) | 5.95, d (2.2) |
1″ | 5.49, d (8.1) | 5.39, d (8.0) | 5.08, d (7.4) | 5.08, d (7.3) |
2″ | 5.32, dd (9.5, 8.1) | 5.20, dd (9.5, 8.2) | 3.52, overlapped | 3.51, overlapped |
3″ | 3.82, t (8.8) | 3.74, overlapped | 3.50, overlapped | 3.49, overlapped |
4″ | 3.57, overlapped | 3.54, overlapped | 3.45, t (9.3) | 3.45, m |
5″ | 3.59, overlapped | 3.55, overlapped | 3.72, m | 3.72, m |
6″ | 3.95, dd (12.1, 2.0) 3.77, dd (12.1, 5.3) | 3.94, dd (12.1, 1.8) 3.76, overlapped | 4.55, dd (11.9, 2.2) 4.31, dd (11.9, 6.6) | 4.55, dd (11.9, 2.1) 4.33, dd (11.9, 6.4) |
2′′′ | 8.05, dd (8.5, 1.2) | 7.58, m | 7.39, d (8.6) | 7.02, dd (8.1, 1.7) |
3′′′ | 7.47, t (7.8) | 7.40, overlapped | 6.79, d (8.6) | 6.79, d (8.1) |
4′′′ | 7.61, t (7.5) | 7.39, overlapped | ||
5′′′ | 7.47, t (7.8) | 7.40, overlapped | 6.79, d (8.6) | |
6′′′ | 8.05, dd (8.5, 1.2) | 7.58, m | 7.39, d (8.6) | 7.10, d (1.7) |
8′′′ | 6.55, d (16.0) | 6.34, d (16.0) | 6.36, d (15.9) | |
9′′′ | 7.72, d (16.0) | 7.59, d (16.0) | 7.59, d (15.9) | |
α | 3.29, overlapped 3.02, m | 3.34, overlapped 3.13, m | 3.50, overlapped 3.37, overlapped | 3.51, overlapped 3.34, overlapped |
β | 2.70, m | 2.82, m | 2.87, m | 2.87, m |
5′′′-OCH3 | 3.85, d (s) |
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 133.7, C | 133.8, C | 133.8, C | 133.8, C |
2 | 130.5, CH | 130.6, CH | 130.4, CH | 130.4, CH |
3 | 115.8, CH | 115.9, CH | 116.1, CH | 116.1, CH |
4 | 156.2, C | 156.2, C | 156.4, C | 156.4, C |
5 | 115.8, CH | 115.9, CH | 116.1, CH | 116.1, CH |
6 | 130.5, CH | 130.6, CH | 130.4, CH | 130.4, CH |
1′ | 106.7, C | 106.8, C | 106.9, C | 106.9, C |
2′ | 161.3, C | 161.3, C | 162.2, C | 162.2, C |
3′ | 95.3, CH | 95.3, CH | 95.9, CH | 95.9, CH |
4′ | 165.8, C | 165.8, C | 166.0, C | 165.9, C |
5′ | 98.4, CH | 98.4, CH | 98.4, CH | 98.5, CH |
6′ | 167.1, C | 167.2, C | 167.5, C | 167.6, C |
1″ | 99.2, CH | 99.2, CH | 102.1, CH | 102.1, CH |
2″ | 75.2, CH | 74.8, CH | 74.7, CH | 74.7, CH |
3″ | 76.5, CH | 76.5, CH | 78.3, CH | 78.3, CH |
4″ | 71.3, CH | 71.2, CH | 71.4, CH | 71.3, CH |
5″ | 78.6, CH | 78.6, CH | 75.7, CH | 75.7, CH |
6″ | 62.3, CH2 | 62.3, CH2 | 64.4, CH2 | 64.3, CH2 |
1′′′ | 131.1, C | 135.7, C | 127.1, C | 127.7, C |
2′′′ | 130.9, CH | 129.4, CH | 131.3, CH | 124.2, CH |
3′′′ | 129.7, CH | 130.0, CH | 116.7, CH | 116.4, CH |
4′′′ | 134.6, CH | 131.7, CH | 161.2, C | 150.6, C |
5′′′ | 129.7, CH | 130.0, CH | 116.7, CH | 149.3, C |
6′′′ | 130.9, CH | 129.4, CH | 131.3, CH | 111.5, CH |
7′′′ | 167.2, C | 167.5, C | 169.1, C | 169.0, C |
8′′′ | 118.5, CH | 114.8, CH | 115.1, CH | |
9′′′ | 147.2, CH | 146.9, CH | 147.1, CH | |
α | 46.6, CH2 | 46.6, CH2 | 47.0, CH2 | 47.1, CH2 |
β | 30.0, CH2 | 30.2, CH2 | 30.9, CH2 | 31.0, CH2 |
C=O | 205.8, C | 206.0, C | 206.5, C | 206.6, C |
5′′′-OCH3 | 56.4, CH3 |
No. | 5 | 6 | 7 | |||
---|---|---|---|---|---|---|
1 | 98.2, CH | 6.89, d (2.2) | 133.0, C | 133.2, C | ||
2 | 155.5, C | 140.3, C | 140.2, C | |||
3 | 100.6, CH | 6.58, d (2.2) | 101.4, CH | 6.69, s | 101.4, CH | 6.67, s |
4 | 147.3, C | 144.3, C | 144.2, C | |||
4a | 140.9, C | 147.1, C | 147.0, C | |||
5a | 147.0, C | 146.7, C | 157.6, C | |||
6 | 147.2, C | 146.7, C | 112.0, CH | 7.51, d (8.1) | ||
7 | 110.7, CH | 7.03, dd (7.7, 0.8) | 110.7, CH | 7.05, dd (7.0, 0.5) | 128.1, CH | 7.44, m |
8 | 124.3, CH | 7.22, t (7.8) | 124.2, CH | 7.23, t (8.0) | 123.5, CH | 7.30, m |
9 | 113.7, CH | 7.44, dd (7.7, 0.8) | 117.5, CH | 8.21, dd (7.8, 0.9) | 125.5, CH | 8.65, d (7.8) |
9a | 127.3, C | 125.9, C | 124.4, C | |||
9b | 127.1, C | 120.8, C | 120.5, C | |||
1′ | 107.5, CH | 4.83, d (7.8) | 107.6, CH | 4.84, d (7.9) | ||
2′ | 75.6, CH | 3.64, dd (9.2, 7.9) | 75.6, CH | 3.65, dd (9.2, 8.0) | ||
3′ | 78.0, CH | 3.46, t (9.2) | 78.0, CH | 3.47, t (9.2) | ||
4′ | 71.0, CH | 3.53, t (9.2) | 70.9, CH | 3.54, t (9.2) | ||
5′ | 78.4, CH | 3.26, m | 78.4, CH | 3.27, m | ||
6′ | 62.2, CH2 | 3.78, dd (11.8, 2.4) 3.73, dd (11.8, 4.4) | 62.2, CH2 | 3.78, dd (11.8, 2.4) 3.74, dd (11.8, 4.4) | ||
4-OCH3 | 56.7, CH3 | 3.99, s | 57.0, CH3 | 3.98, s | 57.0, CH3 | 3.97, s |
6-OCH3 | 56.7, CH3 | 4.01, s | 56.7, CH3 | 4.01, s |
No. | 8 a | 9 b | ||
---|---|---|---|---|
1 | 132.8, C | 125.9, C | ||
2 | 155.4, C | 154.2, C | ||
3 | 116.5, CH | 7.26, dd (8.7, 1.2) | 115.5, CH | 6.85, d (8.0) |
4 | 129.8, CH | 7.30, overlapped | 128.1, CH | 7.10, t (7.6) |
5 | 123.4, CH | 7.07, td (7.4, 1.2) | 118.3, CH | 6.76, t (7.2) |
6 | 131.8, CH | 7.31, overlapped | 132.0, CH | 7.24, d (7.2) |
1′ | 141.8, C | 133.5, C | ||
2′ | 108.9, CH | 6.75, d (2.3) | 107.5, CH | 6.29, d (2.0) |
3′ | 161.8, C | 154.9, C | ||
4′ | 100.4, CH | 6.43, t (2.3) | 99.6, CH | 6.59, d (2.0) |
5′ | 161.8, C | 152.5, C | ||
6′ | 108.9, CH | 6.75, d (2.3) | 136.5, C | |
1″ | 101.8, CH | 5.08, d (8.0) | 102.3, CH | 4.68, d (7.6) |
2″ | 75.0, CH | 3.40, overlapped | 74.0, CH | 2.90, overlapped |
3″ | 78.4, CH | 3.44, overlapped | 76.3, CH | 3.05, t (8.6) |
4″ | 71.3, CH | 3.37, m | 69.9, CH | 2.93, overlapped |
5″ | 78.2, CH | 3.42, overlapped | 76.8, CH | 2.89, overlapped |
6″ | 62.5, CH2 | 3.87, dd (12.4, 2.2) 3.68, dd (12.4, 5.5) | 61.1, CH2 | 3.51, d (11.7) 3.29, overlapped |
3′-OCH3 | 55.9, CH3 | 3.80, s | 55.3, CH3 | 3.71, s |
5′-OCH3 | 55.9, CH3 | 3.80, s | 56.2, CH3 | 3.80, s |
2-OH | 9.05, s |
Compounds | α-Glucosidase | RAW 264.7 |
---|---|---|
1 | >1000 | >40 |
2 | >1000 | >40 |
3 | 44.17 | >40 |
4 | 60.15 | 29.60 |
5 | >1000 | >40 |
6 | >1000 | >40 |
7 | >1000 | >40 |
8 | >1000 | >40 |
9 | >1000 | >40 |
10 | >1000 | >40 |
11 | >1000 | >40 |
12 | >1000 | >40 |
13 | >1000 | >40 |
14 | >1000 | >40 |
15 | >1000 | >40 |
Ammonium pyrrolidinedithiocarbamate b | 20 ± 0.12 | |
Acarbose b | 1000 ± 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.-L.; Wang, Y.; Wang, G.-K.; Liu, J.-K. Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis. Molecules 2024, 29, 5269. https://doi.org/10.3390/molecules29225269
Yuan L-L, Wang Y, Wang G-K, Liu J-K. Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis. Molecules. 2024; 29(22):5269. https://doi.org/10.3390/molecules29225269
Chicago/Turabian StyleYuan, Lin-Lin, Yi Wang, Guo-Kai Wang, and Ji-Kai Liu. 2024. "Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis" Molecules 29, no. 22: 5269. https://doi.org/10.3390/molecules29225269
APA StyleYuan, L. -L., Wang, Y., Wang, G. -K., & Liu, J. -K. (2024). Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis. Molecules, 29(22), 5269. https://doi.org/10.3390/molecules29225269