Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods
<p>The plant (<b>a</b>) and seed (<b>b</b>) of perilla.</p> "> Figure 2
<p>Chemical structure of fatty acids, phytosterols, and tocopherols in PSO.</p> "> Figure 3
<p>Activation and negative regulation of JAK-STAT and NF-κB signaling pathways after PSO treatment.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Perilla Seed Oil
3.1. Chemical Composition of Perilla Seed Oil
Extraction Method | Condition | Yield/ Efficiency | Chemical Composition | References |
---|---|---|---|---|
Atmospheric pressing extraction | 40 °C | 33.17 g/100 g | Fatty acid: C16:0 (5.69 ± 0.00%), C18:0 (2.43 ± 0.06%), C18:1 (16.00 ± 0.00%), C18:2 (13.20 ± 0.00%), and C18:3 (63.33 ± 0.00%) | [34] |
Vacuum pressing extraction | 40 °C, 2.67 kPa oxygen-free environment, and 30 min | 33.15 g/100 g | Fatty acid: C16:0 (5.69 ± 0.01%), C18:0 (2.41 ± 0.10%), C18:1 (16.03 ± 0.02%), C18:2 (13.17 ± 0.03%), and C18:3 (63.30 ± 0.02%) | [34] |
Solvent extraction | 80% (v/v) ethanol solution, liquid/solid ratio of 10 mL/g, 85 °C, 4 h, and 3 repeats | 39.48% | 12 fatty acids, the main fatty acids were ALA (63.32%), C18:1 (12.50%), and C18:2 (13.75%) | [23] |
Methyl acetate, liquid/solid ratio of 10 mL/g, and 4 h | 27.76 ± 0.23% | 10 fatty acids, the main fatty acids were ALA (66.51 ± 0.02%), C18:2 (17.77 ± 0.02%), and C16:0 (10.15 ± 0.04%) | [20] | |
Petroleum ether | — | Stearic acid (9.6%), palmitic acid (16.1%), linoleic acid (11.9%), oleic acid (18.3%), and ALA (44.1%); total phenolics (28.7 mg/100 g); total flavonoids (12.3 mg/100 g) | [35] | |
Ultrasound-assisted extraction | 400 W of ultrasonic power, 41.26 °C, 17.11 min, and liquid/solid ratio of 7.02:1 | 36.27% | SFAs (6.99%), MUFAs (16.76%), and PUFAs (76.25%); linolenic (63.93%), linoleic (12.32%), and oleic acid (16.65%); the content of stigmasterol, β-sitosterol, and campesterol was 105.25, 3186.12, and 186.58 mg/kg, respectively; the content of α-tocopherol, γ-tocopherol, and δ-tocopherol was 33.52, 453.88, and 10.85 mg/kg, respectively | [28] |
Tea saponin-induced ultrasonic-assisted extraction | Ultrasonic power of 90 W, 16 min, tea saponin dose of 0.3%, 40 °C, 80% (v/v) ethanol, and liquid–material ratio of 10:1 mL/g | 39.10 ± 2.13% | 12 fatty acids, the main fatty acids were ALA (64.41%), C18:1 (13.52%), and C18:2 (13.75%) | [23] |
Aqueous enzymatic extraction | Solid/water ratio of 1:4, pH 6, 55 °C, enzyme loading of 2%, and hydrolysis time of 4.5 h | Maximum oil recovery was 88.52% | ALA (63.2%) | [36] |
Ultrasound-assisted aqueous enzymatic extraction | 250 W of ultrasonic power, 30 min, and 50 °C | Cellulase (81.74%); Alcalase 2.4 L (61.84%); Protex 6 L (62.31%); Protex 7 L (61.25%) | Fatty acid: C16:0, C18:0, C18:1, C18:2, C18:3, and C20:0 | [37] |
Liquid/solid ratio of 4.4:1, hydrolysis time of 2.66 h, hydrolysis temperature of 50.87 °C, and ultrasound treatment time of 24.74 min | 31.34% | Fatty acid: C16:0 (4.43 ± 0.05%), C18:0 (1.87 ± 0.01%), C18:1 (20.39 ± 0.15%), C18:2 (9.12 ± 0.08%), and C18:3 (64.05 ± 0.20%); 450.88 mg/kg of total tocopherols; 615.25 mg GAE/kg of total phenolics | [38] | |
Microwave-assisted extraction | 385 W, 30 min, and liquid–material ratio of 10 mL/g | 32.66 ± 0.14% | 10 fatty acids, the main fatty acids were ALA (66.59 ± 0.02%), C18:2 (17.83 ± 0.01%), and C16:0 (10.33 ± 0.03%) | [20] |
Stepwise microwave hydrodistillation and extraction | 70% moisture content, 10 min and 700 W of first-stage microwave-mediated process, 15 mL/g of liquid-material ratio, and 15 min and 385 W of second-stage microwave-mediated process | 36.49% ± 0.07% | 8 fatty acids, ALA (69.90 ± 0.03%), linoleic acid (16.37 ± 0.02%), and palmitic acid (9.23 ± 0.01%) | [20] |
Supercritical CO2 fluid extraction | 45.61 °C, 26.72 MPa of pressure, and the perilla seed ratio of 0.36 | 7.43 ± 0.15 g/60 g sample | 49.14 ± 1.38% for ALA; total polyphenol content of 0.51 mg GAE/g oil | [39] |
Pressure 33.98 MPa, 42 °C, and CO2 flow rate 29.25 L/h. | 37.53 ± 0.37% | Stearic acid (3.4%), palmitic acid (7.5%), linoleic acid (5.9%), oleic acid (4.5%), and ALA (78.7%); total phenolics (130.4 mg/100 g); total flavonoids (35.3 mg/100 g) | [35] | |
Compressed fluid extraction | Compressed CO2 | 31.80% | 17 fatty acids, the major fatty acid was linolenic (56.19–62.80%), linoleic acid (14.34–15.19%), and oleic acid (12.02–14.94%); squalene (0.87–6.12 mg/100 g); α-tocopherol (6.60–12.48 mg/100 g); β-sitosterol (56.32–72.61 mg/100 g) | [40] |
Compressed LPG [a mixture of propane (50.3%), n-butane (28.4%), isobutane (13.7%), ethane (4.8%), and other minor constituents (methane, pentane, and isopentane)] | 42.29% | 17 fatty acids, the major fatty acid was linolenic acid (57.03–57.55%), linoleic acid (14.77–15.19%), and oleic acid (15.04–14.70%); squalene (0.54–6.04 mg/100 g); α-tocopherol (4.65–7.23 mg/100 g); β-sitosterol (12.72–44.88 mg/100 g) | [40] |
3.2. Health Benefits of Perilla Seed Oil
3.2.1. Antioxidant
3.2.2. Anticancer
3.2.3. Anti-Inflammatory
3.2.4. Benefits for Cardiovascular and Cerebrovascular Health
3.2.5. Other Beneficial Effects
Health Benefits | In Vitro/In Vivo Model | Doses/Duration | Effects | References |
---|---|---|---|---|
Antioxidant | DPPH | 5–50 μL/mL | Scavenging rate over 80% (50 μL/mL) | [23] |
DPPH, ABTS, and reducing power | — | DPPH EC50 = 7.01 mg/mL; ABTS EC50 = 12.75 mg/mL; reducing power AC50 = 4.3 mg/mL | [35] | |
DPPH | 0–10 mg/mL | IC50 was 3.99 (ultrasound-assisted aqueous enzymatic extraction oil, 4.80 (solvent extraction oil), and 7.19 mg/mL (cold pressing extraction oil), respectively | [38] | |
Amyloid beta (25–35)-induced AD mice | ALA separated from PSO, 100 mg/kg/day, 14 days | Lipid peroxidation and nitric oxide overproduction in the brain, liver, and kidney of mice ↓ | [43] | |
Healthy older Japanese (64–84 years old) | 7 mL, 12 months | Serum biological antioxidant potential (BAP) level ↑ | [45] | |
Healthy elderly volunteers | 1.47 mL PO and 1.12 g Anredera cordifolia leaf powder, 12 months | Red blood cell plasma membrane ALA and EPA levels, and serum BAP levels ↑; serum TG, glucose, and N-(epsilon)-carboxymethyl-lysine levels ↓ | [10] | |
Healthy elderly individuals (60–85 years old) | 1.47 mL of PO and 1.12 g ponkan powder | Serum brain-derived neurotrophic factor and BAP, and red blood cell ω-3 PUFAs ↑ | [46] | |
Anticancer | Azoxymethane-induced colonic aberrant crypt foci F344 rat | 10% and 20%, 12 weeks | The number of foci with ≥4 crypts/focus, development of small intestinal and colon tumors, and cyclooxygenase (COX)-1 and COX-2 activities ↓ | [53] |
Colon carcinogenesis rat | 12%, 0–35 weeks | Ornithine decarboxylase activity and colon tumor development ↓ | [50] | |
F344 rat | 12%, 35 weeks | Incidence of colon cancer reduced from 67% to 32% | [54] | |
Anti-inflammatory | HFD-induced colon inflammation mice | 8% | TNF-α, IL-1β, and IL-6 levels ↓, and tight junction protein (Claudin-1 and Zo-1) expression levels ↑; the initiation of NF-κB signaling pathway | [57] |
Dextran sulfate sodium-induced ulcerative colitis rat | — | The tissue level of EPA ↑; arachidonic acid ↓ | [58] | |
HFD-fed rats | 50, 100, and 500 mg/kg/day, 12 weeks | TNF-α, IL-1β, MDA, and lipopolysaccharide (LPS) levels ↓; reducing intestinal barrier dysfunction, systemic inflammation, and hyperlipidemia in HFD-fed rats | [59] | |
Female C57BL/6J mice | HFD plus PSO, 8 weeks | Abdominal adipose and uterine adipose tissue weights, JAK2, STAT3, and SOCS3 mRNA expression, and p-NF-κB and IL-6 levels ↓ | [60] | |
Ovalbumin (OVA)-sensitized and -challenged allergic asthmatic inflammation mice | 50% PSO and 50% corn oil, 35 days | The levels of TNF-α, IL-1β, and IL-10 decreased by 47.3%, 62.9%, and 62.7%, respectively | [61] | |
Benefits for cardiovascular and cerebrovascular health | Asthma rats | 1.0, 2.0, and 4.0 g/kg | The inhibition rates of LTB4 release by PMNs were 11.1%, 24.4% and 57.9%, respectively | [62] |
High cholesterol diet-fed Apolipoprotein (Apo) E knock-out (KO) mice | 1.25% cholesterol and 10% PSO, 10 weeks | Inducible nitric oxide synthase activity decreased by 20.8%; plasma cholesterol ↓; fibrinolysis and endothelial nitric oxide synthase activity ↑ | [74] | |
Young adults (20–35 years old) | RPEPO, 333 kcal/meal, 30 days | Plasma triglyceride ↓ | [66] | |
Adults [18–75 years old, TC) ≥ 6.22 mmol/L or TG ≥ 2.26 mmol/L or low-density lipoprotein-cholesterol (LDL-C) ≥ 4.14 mmol/L] | PSO capsules, 4 grain/time, twice/day, 56 days | Serum TG, TC, and LDL-C; TNF-α; plasminogen activator inhibitor-1; and highly sensitive C-creative protein levels ↓ | [67] | |
Cerebral ischaemic rats | 10% | Blood TG, TC, and LDL levels, and cerebral infarction ↓ | [63] | |
liver protection | HFD-induced obesity C57BL/6N mice | 10 mL/kg, 16 weeks | Liver weight, liver fat accumulation, and hepatic steatosis ↓ | [68] |
HFD-induced nonalcoholic fatty liver disease rats | 5.5%, 16 weeks | Minor reversal of severe hepatic steatosis and significant reduction in the relative abundance of Gram-positive bacteria in the intestine; TNF-α, IL-1β, and IL-6 levels ↓; serum alanine aminotransferase ↑ | [69] | |
Anti-diabetic | Diabetic KKAy mice | 0.67, 1.33, and 2.00g/kg, 12 weeks | Improvement of hepatocellular macrovesicular steatosis and adipocyte hypertrophy; serum TG and intestine Blautia ↓ | [75] |
T2DM mice | 1.84 g/kg | The levels of fasting blood glucose, TG, TC, glucose, and glucose-6-phosphate dehydrogenase, lipid droplets accumulation, and weight loss ↓; the levels of insulin, ALT, and AST ↑; the regulation of PI3K/AKT signaling pathway | [70] | |
Improve bone health | Adults (mean age 54.2 ± 6.4 years) | 7.0 mL/day, 12 months | Tartrate-resistant acid phosphatase 5b ↓; serum biological antioxidant potential/diacron reactive oxygen metabolite ratio and ALA level ↑; suppressing bone resorption | [71] |
Laxative | Swiss albino rats | 5 and 10 mL/kg | Stimulating intestinal emptying; the weight and water content of feces ↑ | [72] |
Anti-skin aging | UV-induced photoaging of normal human dermal fibroblast (NHDF) cells and SKH-1 hairless mice | 0.625%, 1.25%, and 2.5% for NHDF cells; 50 and 100 μL for mice | Significantly ameliorated the UV-induced reduction in cell viability and SOD activity, production of ROS, and arrest of arrest; the inhibition of wrinkle formation in dorsal skin, transepidermal water loss, and the increment of melanin index in mice | [73] |
3.3. Application of Perilla Seed Oil
4. Perilla Seed Protein
4.1. Composition and Structure of Perilla Seed Protein
4.2. Functional Properties of Perilla Seed Protein
4.2.1. Solubility
4.2.2. Emulsifying Ability
4.2.3. Water/Oil Holding Capacity
4.2.4. Foaming Properties
Source | Content | Amino Acid Composition | Molecular Weight (kDa) | Solubility | EA | ES | WHC (g/g) | OHC (g/g) | Foaming | References |
---|---|---|---|---|---|---|---|---|---|---|
Perilla seed | — | — | ~ 10; 20; 35; 55 | 48.19% | 8.07 m2/g | 50 min | — | — | FC: 41%; FS: 50–60% | [15] |
White perilla: 24.18%; brown perilla: 25.38% | — | — | — | — | — | — | — | — | [116] | |
— | — | Ranging from 10 to 60 | 65.09% (750 W ultrasonic-treated) | 666.33 m2/g | 42.64 min (750 W ultrasonic-treated) | 0.99 | 2.03 | FC: 50%; FS: 30.5% (750 W ultrasonic-treated) | [89] | |
25.69% | — | — | 55.70% | 60.11 | — | 3.54 | 1.74 | FC: 62.87% | [91] | |
138.6 mg/g | Asp; Thr; Ser; Glu; Gly; Ala; Val; Ile; Leu; Tyr; Phe; Lys; Arg | 10–100; 10–20 | — | — | — | — | — | — | [117] | |
23.7% | Asp; Thr; Ser; Glu; Gly; Ala; Val; Cystine (Cys); Met; Ile; Leu; Tyr; Phe; His; Lys; Arg; Pro; | 11.23; 6.58; 3.83; 2.44; 1.40; 0.42; 0.07 | — | — | — | — | — | — | [90] | |
— | — | Ranging from 10 to 55 | 22.54% | 1266.65 | 2.35 | FC: 5.63 g/g | [114] | |||
Perilla seed meal | 39.5% (w/w); albumin ratio: 11%; globulin ratio: 84% | Asx; Thr; Ser; Glx; Pro; Gly; Ala; Cys; Val; Met; Ile; Leu; Tyr; Phe; Lys; His; Arg; Trp | 340; 59; 57; 54 | — | — | — | — | — | — | [88] |
85.18% | Asp; Glu; Pro; Gly; Ala; Val; Met; Ile; Leu; Tyr; Phe; His; Lys; Arg | 1–27 | 91.69% (alcalase hydrolyzed, pH 7.0); 63.332% (neutrase hydrolyzed, pH 9.0); 94.47% (trypsin hydrolyzed, pH 7.0); 94.57% (papain hydrolyzed, pH 9.0); 93.15 (pepsin hydrolyzed, pH 9.0) | — | — | 0.53 (alcalase hydrolyzed); 0.27 (neutrase hydrolyzed); 2.27 (trypsin hydrolyzed); 0.60 (papain hydrolyzed); 0.93 (pepsin hydrolyzed) | 3.20 (alcalase hydrolyzed); 2.93 (neutrase hydrolyzed); 5.60 (trypsin hydrolyzed); 5.60 (papain hydrolyzed); 4.13 (pepsin hydrolyzed) | — | [17] | |
— | Asp; Glu; Ser; His; Gly; Tyr; Arg; Ala; Cys; Val; Met; Phe; Ile; Leu; Lys; Pro | — | — | 3393.0 m2/g (pH 11.0) | 172.23 min (pH 11.0) | 2.17 | — | — | [87] | |
23.12 mg/mL | — | — | — | — | — | — | — | — | [86] | |
65.17% | — | 52; 32; less than 6.5 | — | — | — | — | — | — | [118] | |
— | Amino acid sequence was identified as Ile-Ser-Pro-Arg-Ile-Leu-Ser-Tyr-Asn-Leu-Arg | >10; 5–10; 3–5; <3 kDa | — | — | — | — | — | — | [119] | |
10.77% | — | — | — | — | — | — | — | — | [120] | |
— | Asp; Thr; Ser; Glu; Gly; Ala; Val; Met; Ile; Leu; Tyr; Phe; His; Lys; Arg | — | 39.21% (pH 10.0) | 52.46% (pH 2.0) | 44.04% (pH 2.0) | 1.23 | 1.36 | FC: 4.80 mL (pH 10.0 | [93] |
4.3. Modification of Perilla Protein
4.3.1. Enzymatic Modification
4.3.2. Chemical Modification
4.3.3. Physical Modification
4.4. Biological Activity
4.5. Application of Perilla Seed Protein
Embedded Substance | Delivery Vehicles | Processes | Key Findings | References |
---|---|---|---|---|
β-carotene | LZPI-CSPA | β-carotene (0.1 wt%) was dispersed in PSO to form an oil phase, oil phase (80 wt%) mixed with LPZI (2.0 wt%)-CSPA (0.2–2.3 wt%) at high speed, 11,600 rpm for 2 min | Ultraviolet (UV) irradiation (32 h), natural light irradiation (30 d), and heat treatment (45 °C): retention rate increased from 0.33, 0.17, and 0.43 to 0.54, 0.47, and 0.54, respectively | [19] |
Conjugates of perilla seed meal protein (PSMP) with gallic acid (GA), protocatechuic acid (PCA), caffeic acid (CA), apigenin (API), and luteolin (LU), respectively | Oil phase (5 wt%, medium-chain triglyceride containing 0.1% (w/v) of β-carotene), aqueous phase (95 wt%, PSMP- polyphenol), 13,600 rmp for 5 min, ultrasonic homogenizer for secondary homogenization (600 W, 20 min) | Stability of UV irradiation and heat treatment ↑ | [98] | |
LZPI-CS CNPs | β-carotene (0.1 wt%) was dispersed in rapeseed oil to form an oil phase, oil phase (80 wt%) mixed with LPZI (4.0 wt%)-CS (0.1–0.6 wt%) at high speed, 12,000 rpm for 2 min | Natural light irradiation (30 d): retention rate increased from 0.18 to 0.53; stability of UV irradiation and heat treatment ↑ | [130] | |
Curcumin (Cur) | PSPI-PEC nano-complexes | The PSPI/Cur mass ratios were set as 80:1, 40:1, 20:1, 10:1, and 5:1, respectively, PSPI/PEC mass ratio was 2:1), pH 4.0, 8000× g for 20 min | Encapsulation efficiency of Cur was 87.77%; heat treatment and (85 °C, 120 min) UV irradiation (2 h): retention rate increased from 17.76% and 9.30% to 70.46% and 64.47%, respectively; in vitro antioxidant activity ↑ | [9] |
Rose essential oil (REO) | PPI–sodium alginate (NaAlg) complex coacervates | PPI/NaAlg ratio of 6:1, pH 3.8, REO/PPI-NaAlg = 1: 1.5; 10,000 rpm, 5 min | Encapsulation efficiency: 89.80%; payload: 53.17%; encapsulation yield: 88.26%; thermal stability and sustained-release profile ↑ | [135] |
5. Patents of Perilla Seed Processing
6. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Dong, S.; Chen, H.; Guo, M.; Sun, Z.; Luo, H. Perilla Frutescens: A Traditional Medicine and Food Homologous Plant. Chin. Herb. Med. 2023, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Seem, K.; Ali, A.; Jaiswal, S.; Gumachanamardi, P.; Kaur, G.; Singh, N.; Touthang, L.; Singh, S.K.; Bhardwaj, R.; et al. A Comprehensive Review on Nutritional, Nutraceutical, and Industrial Perspectives of Perilla (Perilla frutscens L.) Seeds—An Orphan Oilseed Crop. Heliyon 2024, 10, e33281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Guan, L.; Wang, K.; Ren, C.; Gao, Y.; Li, J.; Yan, S.; Zhang, X.; Yao, X.; Zhou, Y.; et al. Recent Trends in Extraction, Purification, Structural Characterization, and Biological Activities Evaluation of Perilla frutescens (L.) Britton Polysaccharide. Front. Nutr. 2024, 11, 1359813. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Kim, M.-J.; Oh, W.Y.; Lee, J.H. Generation of Volatiles from Heated Enzymatic Hydrolysates of Perilla Meal with Coconut Oil in Maillard Reaction System. Food Chem. 2024, 440, 138153. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Z.; Wu, Z.; Wang, F.; Li, J.; Raghavan, V.; Li, B.; Song, C. Characterization of Volatile Components of Microwave Dried Perilla Leaves Using GC–MS and E-Nose. Food Biosci. 2023, 56, 103083. [Google Scholar] [CrossRef]
- Nakui, S.; Mikami, T. Production, Uses, and Ancestry of an Oilseed Crop, Perilla frutescens (L.) Britton Var. Frutescens in Japan: An Overview. Agric. Conspec. Sci. 2023, 88, 93–97. [Google Scholar]
- Lee, J.E.; Hwang, J.; Choi, E.; Shin, M.-J.; Chun, H.S.; Ahn, S.; Kim, B.H. Rubidium Analysis as a Possible Approach for Discriminating Between Korean and Chinese Perilla Seeds Distributed in Korea. Food Chem. 2020, 312, 126067. [Google Scholar] [CrossRef]
- Dhyani, A.; Chopra, R.; Garg, M. A Review on Nutritional Value, Functional Properties and Pharmacological Application of Perilla (Perilla frutescens L.). Biomed. Pharmacol. J. 2019, 12, 649–660. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Li, J.; Zhang, W.; Gong, D.; Li, F. Assembly of Perilla Seed Protein Isolate-Pectin Nanocomplex to Deliver Curcumin: Properties, Characterization, Molecular Interactions and Antioxidant Activity. Food Biosci. 2023, 53, 102816. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Maruyama, K.; Sumiyoshi, E.; Hossain, S.; Wakatsuki, H.; Kato, S.; Ohno, M.; Tanabe, Y.; Kuroda, Y.; et al. Perilla frutescens Seed Oil Combined with Anredera cordifolia Leaf Powder Attenuates Age-Related Cognitive Decline by Reducing Serum Triglyceride and Glucose Levels in Healthy Elderly Japanese Individuals: A Possible Supplement for Brain Health. Food Funct. 2022, 13, 7226–7239. [Google Scholar] [CrossRef]
- Deng, R.; Gao, J.; Yi, J.; Liu, P. Could Peony Seeds Oil Become a High-Quality Edible Vegetable Oil? The Nutritional and Phytochemistry Profiles, Extraction, Health Benefits, Safety and Value-Added-Products. Food Res. Int. 2022, 156, 111200. [Google Scholar] [CrossRef]
- Singh, P.K.; Chopra, R.; Dhiman, A.; Chuahan, K.; Garg, M. Development of Omega-3-Rich Structured Lipids Using Perilla Seed Oil and Palm Olein: Optimization and Characterization. Biomass Convers. Biorefinery 2023, 14, 23857–23871. [Google Scholar] [CrossRef]
- Zhong, W.; Wang, Y.; Liu, B.; Zhang, S.; Sun, L.; Yu, D. Comprehensive Characterisation of Perilla Seed Oil for Potential Applications as a Bioactive Food Ingredient—Review. Food Rev. Int. 2024, 1–13. [Google Scholar] [CrossRef]
- Shi, T.; Cao, J.; Cao, J.; Zhu, F.; Cao, F.; Su, E. Almond (Amygdalus communis L.) Kernel Protein: A Review on the Extraction, Functional Properties and Nutritional Value. Food Res. Int. 2023, 167, 112721. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Duan, Y.; Geng, F.; Cheng, C.; Wang, L.; Ye, J.; Zhang, H.; Peng, D.; Deng, Q. Ultrasonic-Assisted pH Shift-Induced Interfacial Remodeling for Enhancing the Emulsifying and Foaming Properties of Perilla Protein Isolate. Ultrason. Sonochemistry 2022, 89, 106108. [Google Scholar] [CrossRef]
- Wang, L.; Qu, L.; He, B. Preparation, Identification and Molecular Docking of Two Novel Anti-Aging Peptides from Perilla Seed. Heliyon 2024, 10, e33604. [Google Scholar] [CrossRef]
- Kim, J.M.; Yoon, K.Y. Functional Properties and Biological Activities of Perilla Seed Meal Protein Hydrolysates Obtained by Using Different Proteolytic Enzymes. Food Sci. Biotechnol. 2020, 29, 1553–1562. [Google Scholar] [CrossRef]
- Song, N.-B.; Lee, J.-H.; Bin Song, K. Preparation of Perilla Seed Meal Protein Composite Films Containing Various Essential Oils and Their Application in Sausage Packaging. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 83–90. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, L.; Li, J. High Internal Phase Emulsion Gels Stabilized by Phosphorylated Perilla Protein Isolate for Protecting Hydrophobic Nutrients: Adjusting Emulsion Performance by Incorporating Chitosan-Protocatechuic Acid Conjugate. Int. J. Biol. Macromol. 2023, 239, 124101. [Google Scholar] [CrossRef]
- Feng, C.; Zhao, R.; Yang, X.; Ruan, M.; Yang, L.; Liu, T. A Novel Stepwise Microwave Hydrodistillation and Extraction Process for Separating Seed Oil and Essential Oil Simultaneously from Perilla Seeds. LWT 2024, 198, 116048. [Google Scholar] [CrossRef]
- Kim, N.; Choe, E. Contribution of Minor Compounds to the Singlet Oxygen-Related Photooxidation of Olive and Perilla Oil Blend. Food Sci. Biotechnol. 2013, 22, 315–321. [Google Scholar] [CrossRef]
- Xue, L.; Yang, R.; Wang, X.; Ma, F.; Yu, L.; Zhang, L.; Li, P. Comparative Advantages of Chemical Compositions of Specific Edible Vegetable Oils. Oil Crop Sci. 2023, 8, 1–6. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Liang, Y.; Wang, H.; Yang, F. Study of the Optimization and Kinetics of the Surfactant-Induced Ultrasonic-Assisted Extraction of Perilla seed Oil: Free Radical Scavenging Capacity and Physicochemical and Functional Characteristics. Sustain. Chem. Pharm. 2023, 32, 100977. [Google Scholar] [CrossRef]
- Ruan, M.; Zhang, Z.; Yuan, X.; Zhou, R.; Zhang, S.; Tian, Y.; Li, X.; Li, N.; Liu, Z.; Zhu, R.; et al. Effects of Deep Frying Vegetable Oils Rich in PUFAs on Gut Microbiota in Rats. Int. J. Food Sci. Technol. 2022, 58, 37–44. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, L.; Li, M.; Lyu, F.; Liu, J.; Ding, Y. Omega-3 Polyunsaturated Fatty Acid Encapsulation System: Physical and Oxidative Stability, and Medical Applications. Food Front. 2022, 3, 239–255. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Pan, F.; Wen, B.; Luo, X.; Wang, C.; Wang, X.; Guan, X.; Xu, Y.; Dang, W.; Zhang, M. Influence of Refining Processes on the Bioactive Composition, in Vitro Antioxidant Capacity, and Their Correlation of Perilla Seed Oil. J. Food Sci. 2020, 85, 1160–1166. [Google Scholar] [CrossRef]
- Li, H.-Z.; Zhang, Z.-J.; Hou, T.-Y.; Li, X.-J.; Chen, T. Optimization of Ultrasound-Assisted Hexane Extraction of Perilla Oil Using Response Surface Methodology. Ind. Crop Prod. 2015, 76, 18–24. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, C.; Li, Y.; Jiang, Q.; Li, Q.; Fang, C. Pumpkin Seed Oil: A Comprehensive Review of Extraction Methods, Nutritional Constituents, and Health Benefits. J. Sci. Food Agric. 2024, 104, 572–582. [Google Scholar] [CrossRef]
- Pan, F.; Wen, B.; Wang, X.; Ma, X.; Zhao, J.; Liu, C.; Xu, Y.; Dang, W. Effect of the Chemical Refining Process on Perilla Seed Oil Composition and Oxidative Stability. J. Food Process. Preserv. 2019, 43, e14094. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, W.; Wei, X.; Zhang, F.; Shen, C.; Wu, B.; Zhao, Z.; Liu, H.; Deng, X. Simultaneous Determination of Tocopherols and Tocotrienols in Vegetable oils by GC-MS. Anal. Methods 2016, 8, 7341–7346. [Google Scholar] [CrossRef]
- Kwon, T.Y.; Park, J.S.; Jung, M.Y. Headspace–Solid Phase Microextraction–Gas Chromatography–Tandem Mass Spectrometry (HS-SPME-GC-MS2) Method for the Determination of Pyrazines in Perilla Seed Oils: Impact of Roasting on the Pyrazines in Perilla Seed Oils. J. Agric. Food Chem. 2013, 61, 8514–8523. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.M.; Li, B. Polyphenol Extraction from Eight Perilla frutescens Cultivars. Comptes Rendus Chim. 2009, 12, 602–611. [Google Scholar] [CrossRef]
- Lee, K.; Kim, A.; Kim, H.; Kerr, W.L.; Choi, S. Effect of Oil Pressing and Packaging under Oxygen-Free Conditions on Yield, Oxidative Stability, Antioxidant Activity, and Physicochemical Characteristics of Perilla Oil. LWT 2023, 179, 114647. [Google Scholar] [CrossRef]
- Hao, L.; Lv, C.; Cui, X.; Yi, F.; Su, C. Study on Biological Activity of Perilla Seed Oil Extracted by Supercritical Carbon Dioxide. LWT 2021, 146, 111457. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Wang, L. Process Optimization in the Extract of Perilla Seed Oil with Plant Protein Hydrolysate Complex Enzyme. Food Sci. Technol. 2022, 42, e54722. [Google Scholar] [CrossRef]
- Li, Y.; Sui, X.; Zhang, Y.; Feng, H.; Jiang, L. Ultrasound-assisted aqueous enzymatic extraction of oil from perilla (Perilla frutescens L.) seeds. CyTA J. Food 2013, 12, 16–21. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; He, D.; Xia, Y.; Liu, Q.; Li, X. Ultrasound-Assisted Aqueous Enzymatic Extraction of Oil from Perilla Seeds and Determination of Its Physicochemical Properties, Fatty Acid Composition and Antioxidant Activity. Food Sci. Technol. 2017, 37, 71–77. [Google Scholar] [CrossRef]
- Jiao, Z.; Ruan, N.; Wang, W.; Guo, M.; Han, S.; Cheng, J. Supercritical Carbon Dioxide Co-Extraction of Perilla Seeds and Perilla Leaves: Experiments and Optimization. Sep. Sci. Technol. 2020, 56, 617–630. [Google Scholar] [CrossRef]
- Scapin, G.; Abaide, E.R.; Martins, R.F.; Vendruscolo, R.G.; Mazutti, M.A.; Wagner, R.; da Rosa, C.S. Quality of Perilla Oil (Perilla frutescens) Extracted with Compressed Co2 and Lpg. J. Supercrit. Fluids 2017, 130, 176–182. [Google Scholar] [CrossRef]
- Akbaraly, N.T.; Faure, H.; Gourlet, V.; Favier, A.; Berr, C. Plasma Carotenoid Levels and Cognitive Performance in an Elderly Population: Results of the Eva Study. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kamalashiran, C.; Sriyakul, K.; Pattaraarchachai, J.; Muengtaweepongsa, S. Outcomes of Perilla Seed Oil as an Additional Neuroprotective Therapy in Patients with Mild to Moderate Dementia: A Randomized Control Trial. Curr. Alzheimer Res. 2019, 16, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Lee, M.H.; Lee, S.; Cho, E.J. Alpha-Linolenic Acid from Perilla frutescens Var. Japonica Oil Protects Aβ-Induced Cognitive Impairment through Regulation of App Processing and Aβ Degradation. J. Agric. Food Chem. 2017, 65, 10719–10729. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Choi, J.M.; Lee, J.; Lee, M.H.; Lee, S.; Cho, E.J. Effects of Vegetable Oils with Different Fatty Acid Compositions on Cognition and Memory Ability in Aβ25-35-Induced Alzheimer’s Disease Mouse Model. J. Med. Food 2016, 19, 912–921. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Hossain, S.; Ito, T.; Wakatsuki, H.; Tanabe, Y.; Ohno, M.; Kato, S.; Yamashita, K.; Shido, O. Perilla Seed Oil Enhances Cognitive Function and Mental Health in Healthy Elderly Japanese Individuals by Enhancing the Biological Antioxidant Potential. Foods 2021, 10, 1130. [Google Scholar] [CrossRef]
- Hashimoto, M.; Matsuzaki, K.; Maruyama, K.; Hossain, S.; Sumiyoshi, E.; Wakatsuki, H.; Kato, S.; Ohno, M.; Tanabe, Y.; Kuroda, Y.; et al. Perilla Seed Oil in Combination with Nobiletin-Rich Ponkan Powder Enhances Cognitive Function in Healthy Elderly Japanese Individuals: A Possible Supplement for Brain Health in the Elderly. Food Funct. 2022, 13, 2768–2781. [Google Scholar] [CrossRef]
- Kamalashiran, C.; Pattaraarchachai, J.; Muengtaweepongsa, S. Feasibility and Safety of Perilla Seed Oil as an Additional Antioxidative Therapy in Patients with Mild to Moderate Dementia. J. Aging Res. 2018, 2018, 5302105. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Kumar, R.; Gautam, C.; Singh, P.; Kaur, H.; Kaur, A.; Bhatia, S.; Jha, N.K.; Gupta, P.K.; et al. Repurposing Chia Seed Oil: A Versatile Novel Functional Food. J. Food Sci. 2022, 87, 2798–27819. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, J.; Lin, X.; Hong, Y.; Feng, Y.; Shen, L. Potential of Fatty Oils from Traditional Chinese Medicine in Cancer Therapy: A Review for Phytochemical, Pharmacological and Clinical Studies. Am. J. Chin. Med. 2019, 47, 727–750. [Google Scholar]
- Narisawa, T.; Takahashi, M.; Kotanagi, H.; Kusaka, H.; Yamazaki, Y.; Koyama, H.; Fukaura, Y.; Nishizawa, Y.; Kotsugai, M.; Isoda, Y.; et al. Inhibitory Effect of Dietary Perilla Oil Rich in the N-3 Polyunsaturated Fatty Acid Alpha-Linolenic Acid on Colon Carcinogenesis in Rats. Jpn. J. Cancer Res. 1991, 82, 1089–1096. [Google Scholar] [CrossRef]
- Narisawa, T.; Fukaura, Y.; Yazawa, K.; Ishikawa, C.; Isoda, Y.; Nishizawa, Y. Colon Cancer Prevention with a Small Amount of Dietary Perilla Oil High in Alpha-Linolenic Acid in an Animal Model. Cancer 1994, 73, 2069–2075. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Masuda, A.; Ito, N.; Kamano, K.; Okuyama, H. Effects of Dietary Perilla Oil, Soybean Oil and Safflower Oil on 7, 12-Dimethylbenz [a] Anthracene (Dmba) and 1, 2-Dimethylhydrazine (Dmh)-Induced Mammary Gland and Colon Carcinogenesis in Female Sd Rats. Carcinogenesis 1990, 11, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.V.; Patlolla, J.M.; Cooma, I.; Kawamori, T.; Steele, V.E. Prevention of Familial Adenomatous Polyp Development in Apcmin Mice and Azoxymethane-Induced Colon Carcinogenesis in F344 Rats by Ω-3 Fatty Acid Rich Perilla Oil. Nutr. Cancer 2013, 65 (Suppl. 1), 54–60. [Google Scholar] [CrossRef] [PubMed]
- Bilotto, S.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Omega-3 Polyunsaturated Fatty Acids and Cancer: Lessons Learned from Clinical Trials. Cancer Metastasis Rev. 2015, 34, 359–380. [Google Scholar]
- Langyan, S.; Yadava, P.; Sharma, S.; Gupta, N.C.; Bansal, R.; Yadav, R.; Kalia, S.; Kumar, A. Food and Nutraceutical Functions of Sesame Oil: An Underutilized Crop for Nutritional and Health Benefits. Food Chem. 2022, 389, 132990. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Thomas, S.S.; Cha, Y.-S.; Kim, K.-A. Protective Effect of Diet-Supplemented and Endogenously Produced Omega-3 Fatty Acids against Hfd-Induced Colon Inflammation in Mice. Foods 2022, 11, 2124. [Google Scholar] [CrossRef]
- Shimizu, T.; Kitamura, T.; Suzuki, M.; Fujii, T.; Shoji, H.; Tanaka, K.; Igarashi, J. Effects of Alpha-Linolenic Acid on Colonic Secretion in Rats with Experimental Colitis. J. Gastroenterol. 2007, 42, 129–134. [Google Scholar] [CrossRef]
- Kangwan, N.; Pratchayasakul, W.; Kongkaew, A.; Pintha, K.; Chattipakorn, N.; Chattipakorn, S.C. Chattipakorn. Perilla Seed Oil Alleviates Gut Dysbiosis, Intestinal Inflammation and Metabolic Disturbance in Obese-Insulin-Resistant Rats. Nutrients 2021, 13, 3141. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Chen, Y.-L.; Fan, T.-Y.; Fong, T.-H.; Chiu, W.-C. Effects of Dietary Adjustment of N-3:N-6 Fatty-Acid Ratio to 1:2 on Anti-Inflammatory and Insulin-Signaling Pathways in Ovariectomized Mice with High Fat Diet-Induced Obesity. Heliyon 2023, 9, e20451. [Google Scholar] [CrossRef]
- Chang, H.; Chen, C.; Lin, J. Protective Effect of Dietary Perilla Oil on Allergic Inflammation in Asthmatic Mice. Eur. J. Lipid Sci. Technol. 2012, 114, 1007–1015. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Guan, J.; Xie, Q.; Zhao, Y. The Anti-Tussive, Anti-Inflammatory Effects and Sub-Chronic Toxicological Evaluation of Perilla Seed Oil. J. Sci. Food Agric. 2020, 101, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ban, Y.H.; Cha, Y.; Kim, T.S.; Lee, S.P.; Suk An, E.; Choi, J.; Woom Seo, D.; Yon, J.M.; Choi, E.K.; et al. Comparative Effects of Plant Oils and Trans-Fat on Blood Lipid Profiles and Ischemic Stroke in Rats. J. Biomed. Res. 2017, 31, 122–129. [Google Scholar] [PubMed]
- Chen, T.; Yuan, F.; Wang, H.; Tian, Y.; He, L.; Shao, Y.; Li, N.; Liu, Z. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats Via Enhanced Fecal Cholesterol and Bile Acid Excretion. BioMed Res. Int. 2016, 2016, 2384561. [Google Scholar] [CrossRef]
- Cai, J.; Jang, J.-Y.; Kim, J.; Shin, K.; Kim, K.S.; Park, D.; Kim, T.-S.; Lee, S.-P.; Ahn, B.; Choi, E.-K.; et al. Comparative Effects of Plant Oils on the Cerebral Hemorrhage in Stroke-Prone Spontaneously Hypertensive Rats. Nutr. Neurosci. 2016, 19, 318–326. [Google Scholar] [CrossRef]
- Jo, H.; Kim, M.; Lee, J.; Kim, H.; Song, Y.O. Anti-Atherogenic Properties of Emulsified Perilla Oil (Epo) in Apo E Ko Mice and Plasma Lipid Lowering Effects of Rice Porridge Containing Epo in Healthy Young Adults. Food Sci. Biotechnol. 2013, 22, 79–85. [Google Scholar] [CrossRef]
- Wei, M.; Xiong, P.; Zhang, L.; Fei, M.; Chen, A.; Li, F. Perilla Oil and Exercise Decrease Expressions of Tumor Necrosis Factor-A, Plasminogen Activator Inhibitor-1 and Highly Sensitive C-Reactive Protein in Patients with Hyperlipidemia. J. Tradit. Chin. Med. 2013, 33, 170–175. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, J.E.; Choi, H.J.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Seo, S.; Yang, S.Y.; An, B.-S.; Lee, H.S.; et al. A-Linolenic Acid-Enriched Cold-Pressed Perilla Oil Suppress High-Fat Diet-Induced Hepatic Steatosis through Amelioration of the Er Stress-Mediated Autophagy. Molecules 2020, 25, 2662. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.; Yuan, F.; Li, N.; Huang, Q.; He, L.; Wang, L.; Liu, Z. Perilla Oil Has Similar Protective Effects of Fish Oil on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease and Gut Dysbiosis. BioMed Res. Int. 2016, 2016, 9462571. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Yu, D.; Jin, L.; Gong, X.; Zhang, B. Perilla Oil Regulates Intestinal Microbiota and Alleviates Insulin Resistance through the Pi3k/Akt Signaling Pathway in Type-2 Diabetic Kkay Mice. Food Chem. Toxicol. 2020, 135, 110965. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Hossain, S.; Wakatsuki, H.; Tanabe, Y.; Ohno, M.; Kato, S.; Shido, O.; Hashimoto, M. Perilla Seed Oil Improves Bone Health by Inhibiting Bone Resorption in Healthy Japanese Adults: A 12-Month, Randomized, Double-Blind, Placebo-Controlled Trial. Phytother. Res. 2023, 37, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
- Almehmadi, M.; Halawi, M.; Kamal, M.; Jawaid, T.; Asif, M. Laxative Effects and Phytochemical Analysis of Perilla Frutescens Seed Oil by Using Gas Chromatography: A Good Source of Omega Fatty Acids. Pharm. Chem. J. 2022, 56, 1243–1252. [Google Scholar] [CrossRef]
- Choi, H.J.; Song, B.R.; Kim, J.E.; Bae, S.J.; Choi, Y.J.; Lee, S.J.; Gong, J.E.; Lee, H.S.; Lee, C.Y.; Kim, B.-H.; et al. Therapeutic Effects of Cold-Pressed Perilla Oil Mainly Consisting of Linolenic Acid, Oleic Acid and Linoleic Acid on Uv-Induced Photoaging in Nhdf Cells and Skh-1 Hairless Mice. Molecules 2020, 25, 989. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.H.; Woo, M.J.; Kim, M.J.; Song, Y.O. Dietary Perilla Oil Rich in Alpha-Linolenic Acid Prevents Systematic Inflammation on the Endothelium of Aorta in Apoe Knock-out Mice. Proc. Nutr. Soc. 2011, 70, E243. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Hu, M.; Wang, J.; Xia, H.; Yang, X.; Yang, L.; Sun, G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic Kkay Mice. Mol. Nutr. Food Res. 2018, 62, 1800299. [Google Scholar] [CrossRef]
- Chen, X.; He, Z.; He, L.; Li, C.; Tao, H.; Wang, X.; Liu, L.; Zeng, X.; Ran, G. Effects of Perilla Seed Oil Addition on the Physicochemical Properties, Sensory, and Volatile Compounds of Potato Blueberry Flavored Yogurt and Its Shelf-Life Prediction. LWT 2023, 173, 114383. [Google Scholar] [CrossRef]
- Zheng, S.; He, Z.; He, L.; Li, C.; Tao, H.; Wang, X.; Zeng, X. Influence of Adding Perilla Seed Oil on Potato Blueberry Yogurt Quality During Storage at 4 °C. LWT 2022, 168, 113921. [Google Scholar] [CrossRef]
- Utama, D.T.; Jeong, H.; Kim, J.; Lee, S.K. Formula Optimization of a Perilla-Canola Oil (O/W) Emulsion and Its Potential Application as an Animal Fat Replacer in Meat Emulsion. Food Sci. Anim. Resour. 2018, 38, 580–592. [Google Scholar]
- Utama, D.T.; Jeong, H.S.; Kim, J.; Barido, F.H.; Lee, S.K. Fatty Acid Composition and Quality Properties of Chicken Sausage Formulated with Pre-Emulsified Perilla-Canola Oil as an Animal Fat Replacer. Poult. Sci. 2019, 98, 3059–3066. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Zheng, J.; Fan, W.; Ding, Y.; Zhou, X. Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree. Foods 2022, 11, 179. [Google Scholar] [CrossRef]
- Cui, X.; Gou, Z.; Fan, Q.; Li, L.; Lin, X.; Wang, Y.; Jiang, S.; Jiang, Z. Effects of Dietary Perilla Seed Oil Supplementation on Lipid Metabolism, Meat Quality, and Fatty Acid Profiles in Yellow-Feathered Chickens. Poult. Sci. 2019, 98, 5714–5723. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-H.; Ma, J.-K.; Xu, H.-Z.; Li, W.-L.; Liu, C.-J.; Lu, H.; Li, H.; Zhai, X.-L.; Xue, Y.; Luo, L. Effects of Different Dietary Lipid Sources (Perilla, Fish, and Soybean Oils) on Growth, Lipid Metabolism, Antioxidant, and Immune Status in Chinese Giant Salamander (Andrias davidianus). Front. Mar. Sci. 2023, 10, 1139651. [Google Scholar] [CrossRef]
- Khankhum, S.; Khamkaew, K.; Li, H.; Prakitchaiwattana, C.; Siriamornpun, S. Impact of Plant Oil Supplementation on Lipid Production and Fatty Acid Composition in Cunninghamella elegans Tistr 3370. Microorganisms 2024, 12, 992. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, S.; Li, Y. Pea Protein Composition, Functionality, Modification, and Food Applications: A Review. Emerg. Sources Appl. Altern. Proteins 2022, 101, 71–127. [Google Scholar]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of Drying Techniques on the Physicochemical, Functional, Thermal, Structural and Rheological Properties of Mung Bean (Vigna radiata) Protein Isolate Powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef]
- Kumar, R.; Kamboj, A.; Singh, R.; Chopra, R. Effect of Microwave Treatment on the Alkaline Extraction of Proteins and Phenolics from Perilla Seed Meal in Varying Ph Conditions: An Optimization Study Using Multicomponent Analysis. J. Microw. Power Electromagn. Energy 2023, 57, 306–329. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, L.; Hong, X.; Liu, Y.; Li, J. Structural and Functional Properties of Perilla Protein Isolate Extracted from Oilseed Residues and Its Utilization in Pickering Emulsions. Food Hydrocoll. 2021, 113, 106412. [Google Scholar] [CrossRef]
- Takenaka, Y.; Arii, Y.; Masui, H. Subunit Structure and Functional Properties of the Predominant Globulin of Perilla (Perilla frutescens Var. frutescens) Seeds. Biosci. Biotechnol. Biochem. 2010, 74, 2475–2479. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, T.; Hong, X.; Zhou, Y.; Fan, L.; Liu, Y.; Li, J. Modification of Functional Properties of Perilla Protein Isolate by High-Intensity Ultrasonic Treatment and the Stability of O/W Emulsion. Food Chem. 2022, 368, 130848. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Wei, Y.; Ma, Y.; Wang, Y.; Huang, L.; Wang, Y. Hydrolyzed Peptides from Purple Perilla (Perilla Frutescens L. Britt.) Seeds Improve Muscle Synthesis and Exercise Performance in Mice. J. Food Biochem. 2020, 44, e13461. [Google Scholar] [CrossRef]
- He, D.; Zhang, Z.; Li, H.; Xia, Y.; Li, X.; Chen, T. Optimizing Functional Properties of Perilla Protein Isolate Using the Response Surface Methodology. Food Sci. Technol. 2018, 38, 348–355. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, K.; Li, Y.; Hou, T.; Zhang, Z.; Li, H. Glycine Betaine Enhanced Foam Separation for Recovering and Enriching Protein from the Crude Extract of Perilla Seed Meal. Sep. Purif. Technol. 2021, 276, 118712. [Google Scholar] [CrossRef]
- Park, B.Y.; Yoon, K.Y. Functional Properties of Enzymatic Hydrolysate and Peptide Fractions from Perilla Seed Meal Protein. Pol. J. Food Nutr. Sci. 2019, 69, 119–127. [Google Scholar] [CrossRef]
- Ferreira, K.C.; Bento, J.A.C.; Caliari, M.; Bassinello, P.Z.; Berrios, J.D.J. Dry Bean Proteins: Extraction Methods, Functionality, and Application in Products for Human Consumption. Cereal Chem. 2021, 99, 67–77. [Google Scholar] [CrossRef]
- Tarahi, M.; Abdolalizadeh, L.; Hedayati, S. Mung Bean Protein Isolate: Extraction, Structure, Physicochemical Properties, Modifications, and Food Applications. Food Chem. 2024, 444, 138626. [Google Scholar] [CrossRef]
- Kaur, R.; Ghoshal, G. Sunflower Protein Isolates-Composition, Extraction and Functional Properties. Adv. Colloid Interface Sci. 2022, 306, 102725. [Google Scholar] [CrossRef]
- Liu, N.; Chen, Q.; Li, G.; Zhu, Z.; Yi, J.; Li, C.; Chen, X.; Wang, Y. Properties and Stability of Perilla Seed Protein-Stabilized Oil-in-Water Emulsions: Influence of Protein Concentration, Ph, NaCl Concentration and Thermal Treatment. Molecules 2018, 23, 1533. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Hou, T.-Y.; Zhang, Z.-J.; Li, H.-Z. Effects of Conjugated Interactions between Perilla Seed Meal Proteins and Different Polyphenols on the Structural and Functional Properties of Proteins. Food Chem. 2024, 433, 137345. [Google Scholar] [CrossRef]
- Ren, S.; Liu, L.; Li, Y.; Qian, H.; Tong, L.; Wang, L.; Zhou, X.; Zhou, S. Effects of Carboxymethylcellulose and Soybean Soluble Polysaccharides on the Stability of Mung Bean Protein Isolates in Aqueous Solution. LWT 2020, 132, 109927. [Google Scholar] [CrossRef]
- Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, Physicochemical Characteristics and Functional Properties of Mung Bean Protein. Food Hydrocoll. 2018, 76, 131–140. [Google Scholar] [CrossRef]
- Sahni, P.; Sharma, S.; Surasani, V.K.R. Influence of Processing and Ph on Amino Acid Profile, Morphology, Electrophoretic Pattern, Bioactive Potential and Functional Characteristics of Alfalfa Protein Isolates. Food Chem. 2020, 333, 127503. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, F.; Zendehboudi, S. A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2018, 97, 281–309. [Google Scholar] [CrossRef]
- Zhao, Q.; Gu, Q.; Hong, X.; Liu, Y.; Li, J. Novel Protein-Based Nanoparticles from Perilla Oilseed Residues as Sole Pickering Stabilizers for High Internal Phase Emulsions. LWT 2021, 145, 111340. [Google Scholar] [CrossRef]
- Kumar, M.; Selvasekaran, P.; Chidambaram, R.; Zhang, B.; Hasan, M.; Gupta, O.P.; Rais, N.; Sharma, K.; Sharma, A.; Lorenzo, J.M.; et al. Tea (Camellia sinensis (L.) Kuntze) as an Emerging Source of Protein and Bioactive Peptides: A Narrative Review. Food Chem. 2023, 428, 136783. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High Intensity Ultrasound Treatment of Protein Isolate Extracted from Dephenolized Sunflower Meal: Effect on Physicochemical and Functional Properties. Ultrason. Sonochem. 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Park, B.Y.; Yoon, K.Y. Biological Activity of Enzymatic Hydrolysates and the Membrane Ultrafiltration Fractions from Perilla Seed Meal Protein. Czech J. Food Sci. 2019, 37, 180–185. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Yao, L.; Qin, F.; Hou, G.; Chen, B.; Jin, L.; Deng, J.; Shen, Y. Characterisation, Physicochemical and Functional Properties of Protein Isolates from Amygdalus pedunculata Pall Seeds. Food Chem. 2020, 311, 125888. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, Z.; Zhang, Y.; Zhao, T.; Ye, X.; Gao, X.; Lin, X.; Li, B. Functional Properties and Structural Profiles of Water-Insoluble Proteins from Three Types of Tea Residues. LWT Food Sci. Technol. 2019, 110, 324–331. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, N.; Wadhwa, R.; Tushir, S.; Yadav, D.N. Techno-Functional Attributes of Oilseed Proteins: Influence of Extraction and Modification Techniques. Crit. Rev. Food Sci. Nutr. 2023, 1–20. [Google Scholar] [CrossRef]
- Arteaga, V.G.; Guardia, M.A.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Effect of Enzymatic Hydrolysis on Molecular Weight Distribution, Techno-Functional Properties and Sensory Perception of Pea Protein Isolates. Innov. Food Sci. Emerg. Technol. 2020, 65, 102449. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Wierenga, P.A.; Gruppen, H. New Views on Foams from Protein Solutions. Curr. Opin. Colloid Interface Sci. 2010, 15, 365–373. [Google Scholar] [CrossRef]
- Hu, C.; He, Y.; Zhang, W.; He, J. Potato Proteins for Technical Applications: Nutrition, Isolation, Modification and Functional Properties—A Review. Innov. Food Sci. Emerg. Technol. 2024, 91, 103533. [Google Scholar] [CrossRef]
- Zhao, Q.; Hong, X.; Fan, L.; Liu, Y.; Li, J. Solubility and Emulsifying Properties of Perilla Protein Isolate: Improvement by Phosphorylation in the Presence of Sodium Tripolyphosphate and Sodium Trimetaphosphate. Food Chem. 2022, 382, 132252. [Google Scholar] [CrossRef]
- Lo, B.; Kasapis, S.; Farahnaky, A. Lupin Protein: Isolation and Techno-Functional Properties, a Review. Food Hydrocoll. 2021, 112, 106318. [Google Scholar] [CrossRef]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos Júnior, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant Capacity and Chemical Composition in Seeds Rich in Omega-3: Chia, Flax, and Perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef]
- Shigeru, O.; Toshiyuki, K.; Yukinori, S.; Naoto, N.; Kon, T. Extraction and Digestibility of Perilla frutescens Seed Proteins. Jpn. Agric. Res. Q. 2008, 42, 211–214. [Google Scholar]
- Zhang, H.; Zhang, Z.; He, D.; Li, S.; Xu, Y. Optimization of Enzymatic Hydrolysis of Perilla Meal Protein for Hydrolysate with High Hydrolysis Degree and Antioxidant Activity. Molecules 2022, 27, 1079. [Google Scholar] [CrossRef]
- Kim, J.M.; Liceaga, A.M.; Yoon, K.Y. Purification and Identification of an Antioxidant Peptide from Perilla Seed (Perilla Frutescens) Meal Protein Hydrolysate. Food Sci. Nutr. 2019, 7, 1645–1655. [Google Scholar] [CrossRef]
- Zhu, J.; Fu, Q. Optimization of Ultrasound-Assisted Extraction Process of Perilla Seed Meal Proteins. Food Sci. Biotechnol. 2012, 21, 1701–1706. [Google Scholar] [CrossRef]
- Zheng, L.; San, Y.; Xing, Y.; Regenstein, J.M. Rice Proteins: A Review of Their Extraction, Modification Techniques and Applications. Int. J. Biol. Macromol. 2024, 268, 131705. [Google Scholar] [CrossRef] [PubMed]
- Phongthai, S.; Lim, S.-T.; Rawdkuen, S. Optimization of Microwave-Assisted Extraction of Rice Bran Protein and Its Hydrolysates Properties. J. Cereal Sci. 2016, 70, 146–154. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Fan, M.; Wang, L.; Qian, H. Effect of Lactylation on Functional and Structural Properties of Gluten. Front. Nutr. 2022, 9, 1018456. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ren, Y.; Zhang, K.; Xiong, Y.L.; Wang, Q.; Shang, K.; Zhang, D. Site-Specific Incorporation of Sodium Tripolyphosphate into Myofibrillar Protein from Mantis Shrimp (Oratosquilla Oratoria) Promotes Protein Crosslinking and Gel Network Formation. Food Chem. 2020, 312, 126113. [Google Scholar] [CrossRef]
- Yan, C.; Zhou, Z. Solubility and Emulsifying Properties of Phosphorylated Walnut Protein Isolate Extracted by Sodium Trimetaphosphate. LWT 2021, 143, 111117. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Yang, Q.; Fan, J.-L.; Zhang, B.; Chen, H.-Q. The Effects of Phosphorylation Modification on the Structure, Interactions and Rheological Properties of Rice Glutelin During Heat Treatment. Food Chem. 2019, 297, 124978. [Google Scholar] [CrossRef]
- Xiao, X.; Zou, P.R.; Hu, F.; Zhu, W.; Wei, Z.J. Updates on Plant-Based Protein Products as an Alternative to Animal Protein: Technology, Properties, and Their Health Benefits. Molecules 2023, 28, 28104016. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Liu, H.; Wang, Q. Recent Advances for the Developing of Instant Flavor Peanut Powder: Generation and Challenges. Foods 2022, 11, 1544. [Google Scholar] [CrossRef]
- Kentish, S.; Ashokkumar, M. The Physical and Chemical Effects of Ultrasound. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2010; pp. 1–12. [Google Scholar]
- Zhao, Q.; Fan, L.; Liu, Y.; Li, J. Mayonnaise-Like High Internal Phase Pickering Emulsions Stabilized by Co-Assembled Phosphorylated Perilla Protein Isolate and Chitosan for Extrusion 3d Printing Application. Food Hydrocoll. 2023, 135, 108133. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Álvarez-López, A.I.; Ponce-España, E.; Carrillo-Vico, A.; Bollati, C.; Bartolomei, M.; Lammi, C.; Cruz-Chamorro, I. Hempseed (Cannabis sativa) Protein Hydrolysates: A Valuable Source of Bioactive Peptides with Pleiotropic Health-Promoting Effects. Trends Food Sci. Technol. 2022, 127, 303–318. [Google Scholar] [CrossRef]
- Yang, J.; Hu, L.; Cai, T.; Chen, Q.; Ma, Q.; Yang, J.; Meng, C.; Hong, J. Purification and Identification of Two Novel Antioxidant Peptides from Perilla (Perilla frutescens L. Britton) Seed Protein Hydrolysates. PLoS ONE 2018, 13, e0200021. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, Y.; Cai, M.; Gu, R.; Pan, X.; Du, J. Perilla Peptides Delay the Progression of Kidney Disease by Improving Kidney Apoptotic Injury and Oxidative Stress and Maintaining Intestinal Barrier Function. Food Biosci. 2021, 43, 101333. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Gao, A.; Khawar, M.B.; Gao, F.; Li, W. Food-Derived High Arginine Peptides Promote Spermatogenesis Recovery in Busulfan Treated Mice. Front. Cell Dev. Biol. 2021, 9, 791471. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Zhang, M.; Adhikari, B.; Chang, L. Microencapsulation of Rose Essential Oil Using Perilla Protein Isolate-Sodium Alginate Complex Coacervates and Application of Microcapsules to Preserve Ground Beef. Food Bioprocess Technol. 2022, 16, 368–381. [Google Scholar] [CrossRef]
- Hu, N.; Chen, L.; Li, Y.; Li, H.; Zhang, Z.; Lei, N. Enhanced Flotation of Heavy Metal Ion by Perilla Seed Meal Protein as a Novel Collector: Preparation, Mechanism and Performance. J. Mol. Liq. 2022, 363, 119914. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, J.; Li, Z.; Wang, D.; Wang, Y.; Piao, C.; Yu, H.; Dai, W.; Wang, H.; Wang, L. Perilla Frutescens Dried Bean Curd and Preparation Method Thereof. CN103229849B, 7 August 2013. [Google Scholar]
- Minatelli, J.A.; Hill, W.S.; Moerck, R.E.; Nguyen, U.Y. Plant Derived Seed Extract Rich in Essential Fatty Acids Derived from Perilla Seed: Composition of Matter, Manufacturing Process and Use. US201414301461, 2 October 2014. [Google Scholar]
- Liu, D.; Liu, Y.; Li, J.; Huang, Y.; Zhang, X. Preparing Method of Perilla Oil Powder and Perilla Oil Powder. CN101224002B, 18 February 2008. [Google Scholar]
- Chun, O.K.; Cheon, U.S. Manufacturing Method for Sesame Oil or Perilla Seed Oil. KR101847736B1, 13 October 2018. [Google Scholar]
- Im, S.B. Perilla Oil and Method for Manufacturing the Same. KR20190090312A, 24 January 2019. [Google Scholar]
- Woo, I.C. A Apparatus for Oil Expression of Pure Perilla Oil and Manufacturing Method of Pure Perilla. KR101707332B1, 16 February 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Zhu, L.; Zhang, X.; Han, Y.; Wang, K.; Ji, N.; Yao, X.; Zhou, Y.; Li, B.; Chen, Q.; et al. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules 2024, 29, 5258. https://doi.org/10.3390/molecules29225258
Guan L, Zhu L, Zhang X, Han Y, Wang K, Ji N, Yao X, Zhou Y, Li B, Chen Q, et al. Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules. 2024; 29(22):5258. https://doi.org/10.3390/molecules29225258
Chicago/Turabian StyleGuan, Lijun, Ling Zhu, Xindi Zhang, Yaxi Han, Kunlun Wang, Nina Ji, Xinmiao Yao, Ye Zhou, Bo Li, Qing Chen, and et al. 2024. "Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods" Molecules 29, no. 22: 5258. https://doi.org/10.3390/molecules29225258
APA StyleGuan, L., Zhu, L., Zhang, X., Han, Y., Wang, K., Ji, N., Yao, X., Zhou, Y., Li, B., Chen, Q., Fan, J., Sha, D., & Lu, S. (2024). Perilla Seed Oil and Protein: Composition, Health Benefits, and Potential Applications in Functional Foods. Molecules, 29(22), 5258. https://doi.org/10.3390/molecules29225258