Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress
<p>Screening of UV-B radiation-tolerant and sensitive genotypes of <span class="html-italic">E. sibiricus</span>. (<b>A</b>) Hierarchical clustering diagram of the 18 <span class="html-italic">E. sibiricus</span> samples; (<b>B</b>) phenotypic changes of the SC genotype and XJ genotype at days 0, 5, 10, 15, and 20 of UV-B radiation, respectively. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 2
<p>Physiological indicators of SC and XJ genotypes. (<b>A</b>) Proanthocyanidin content; (<b>B</b>) flavonoid content. Different lower-case letters indicate the significant difference at different UV-B radiation stress time for the same <span class="html-italic">E. sibiricus</span> variety at 0.05 levels. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiatio-sensitive genotype.</p> "> Figure 3
<p>Metabolite profiles of the SC and XJ genotypes under different UV-B radiation stress times as determined by HCA and PCA. (<b>A</b>) Cluster analysis of the metabolites present in the SC and XJ genotypes. Red indicates high abundance, whereas blue indicates low abundance. Metabolites were clustered into four distinct clusters (group 1, group 2, group 3, group 4). (<b>B</b>) The PCA plot illustrating the metabolites in the different samples. Each point represents one metabolite profiling experiment, that is, the numbers 1 to 6 represent samples from day 0 of XJ radiation stress (XJ_0), 7 to 12 represent samples from 5 days of XJ radiation stress (XJ_5), 13 to 18 represent samples from 10 days of XJ radiation stress (XJ_10), 19 to 24 represent samples from 15 days of XJ radiation stress (XJ_15), 25 to 30 represent samples from 20 days of XJ radiation stress (XJ_20), similarly, numbers 31 to 60 represent samples of SC in different UV stress days (SC_0, SC_5, SC_10, SC_15, SC_20). Six biological replicates were set per UV-B radiation time point. (<b>C</b>) Pearson’s correlation heatmap of 60 samples. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 4
<p>Metabolite classes and quantities. (<b>A</b>) Primary metabolite classes; (<b>B</b>) red represents all metabolite classes and their quantities, blue represents the quantities and classes of DAMs; (<b>C</b>) differentially expressed metabolites across the 25 comparison groups, up-regulated metabolites are shown in red and down-regulated metabolites are indicated in blue. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 5
<p>(<b>A</b>) A Venn diagram of the differentially expressed metabolites in the SC and XJ genotypes under UV-B radiation exposure; (<b>B</b>) significantly enriched KEGG pathways associated with the common DAMs between the two genotypes. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 6
<p>Metabolic profiles of the SC and XJ genotypes. A Venn diagram showing the number of up-regulated metabolites for the SC genotype (<b>A</b>) and XJ genotype (<b>C</b>). The number of down-regulated metabolites for the SC genotype (<b>B</b>) and XJ genotype (<b>D</b>). (<b>E</b>,<b>F</b>) Trend analysis of DAMs in the SC and XJ genotypes; (<b>G</b>) significantly enriched KEGG pathways associated with the DAMs unique to the SC genotype. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 6 Cont.
<p>Metabolic profiles of the SC and XJ genotypes. A Venn diagram showing the number of up-regulated metabolites for the SC genotype (<b>A</b>) and XJ genotype (<b>C</b>). The number of down-regulated metabolites for the SC genotype (<b>B</b>) and XJ genotype (<b>D</b>). (<b>E</b>,<b>F</b>) Trend analysis of DAMs in the SC and XJ genotypes; (<b>G</b>) significantly enriched KEGG pathways associated with the DAMs unique to the SC genotype. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 7
<p>The metabolic network in <span class="html-italic">E. sibiricus</span> under UV-B radiation stress. The proposed metabolic pathways are based on a literature review and KEGG database analysis. Red indicates a significant up-regulation, blue indicates a significant down-regulation, and gray indicates no significant change in expression. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> "> Figure 8
<p>Metabolite profiles in the SC and XJ genotypes in response to UV-B radiation stress. The red font indicates increased expression, whereas the blue font indicates decreased expression. SC represents the UV-B radiation-tolerant genotype and XJ represents the UV-B radiation-sensitive genotype.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Screening of UV-B Radiation-Tolerant and Sensitive Genotypes of E. sibiricus
2.2. Physiological Index Analysis of the Two Genotypes After UV-B Radiation Exposure
2.3. Comprehensive Metabolite Profiling in E. sibiricus Grown Under Different UV-B Radiation Stress Times
2.4. Identification of Multiple Groups of DAMs and Their Response to UV-B Stress
2.5. Effect of UV-B Stress on the Metabolite Profiles of the Two Genotypes
2.6. Metabolic Profiles of the Two E. sibiricus Genotypes Under UV-B Radiation Exposure
2.7. UV-B Radiation-Tolerant and UV-B Radiation-Sensitive Genotypes Have Distinct Metabolic Pathways
3. Discussion
4. Materials and Methods
4.1. Plant Sample Collection and UV-B Radiation Treatment
4.2. Analysis of Phenotypic and Physiological Parameters
4.3. Metabolite Extraction and UPLC-MS Sample Preparation
4.4. Metabolite Detection by UHPLC-MS/MS
4.5. Data Processing and Metabolite Identification
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKenzie, R.L.; Aucamp, P.J.; Bais, A.F.; Björn, L.O.; Ilyas, M.; Madronich, S. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2011, 10, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, W.; Ma, Z.; Guo, C.; Chen, J.; Wu, Q.; Wang, X.; Chen, H. Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of Tartary buckwheat. Plant Commun. 2022, 3, 100414. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.K.; Datta, S. Light signaling and UV-B-mediated plant growth regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, H. How plants protect themselves from ultraviolet-B radiation stress. Plant Physiol. 2021, 187, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Ulm, R. How plants cope with UV-B: From perception to response. Curr. Opin. Plant Biol. 2017, 37, 42–48. [Google Scholar] [CrossRef]
- Vanhaelewyn, L.; Van Der Straeten, D.; De Coninck, B.; Vandenbussche, F. Ultraviolet radiation from a plant perspective: The plant-microorganism context. Front. Plant Sci. 2020, 11, 597642. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, Y.; Huang, X. Plant responses to UV-B radiation: Signaling, acclimation and stress tolerance. Stress Biol. 2022, 2, 51. [Google Scholar] [CrossRef]
- Seckmeyer, G.; Pissulla, D.; Glandorf, M.; Henriques, D.; Johnsen, B.; Webb, A.; Siani, A.M.; Bais, A.; Kjeldstad, B.; Brogniez, C.; et al. Variability of UV irradiance in Europe. Photochem. Photobiol. 2008, 84, 172–179. [Google Scholar] [CrossRef]
- Hideg, E.; Jansen, M.A.; Strid, A. UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends Plant Sci. 2013, 18, 107–115. [Google Scholar] [CrossRef]
- Jenkins, G.I. Signal transduction in responses to UV-B radiation. Annu. Rev. Plant Biol. 2009, 60, 407–431. [Google Scholar] [CrossRef]
- Schenke, D.; Utami, H.P.; Zhou, Z.; Gallegos, M.-T.; Cai, D. Suppression of UV-B stress induced flavonoids by biotic stress: Is there reciprocal crosstalk? Plant Physiol. Biochem. 2019, 134, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Shi, C.; Peng, Y.; Tan, H.; Xin, P.; Yang, Y.; Wang, F.; Li, X.; Chu, J.; Huang, J. Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell 2020, 32, 3224–3239. [Google Scholar] [CrossRef]
- Rizzini, L.; Favory, J.-J.; Cloix, C.; Faggionato, D.; O’hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef]
- Jenkins, G.I. Structure and function of the UV-B photoreceptor UVR8. Curr. Opin. Struct. Biol. 2014, 29, 52–57. [Google Scholar] [CrossRef]
- Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Mei, S.; Shi, C.; Yang, Y.; Peng, Y.; Ma, L.; Wang, F.; Li, X.; Huang, X.; Yin, Y. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell 2018, 44, 512–523.e5. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Chen, P.; Liang, T.; Li, X.; Liu, H. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 2020, 39, e101928. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, T.; Zhang, L.; Shao, K.; Gu, X.; Shang, R.; Shi, N.; Li, X.; Zhang, P.; Liu, H. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 2018, 4, 98–107. [Google Scholar] [CrossRef]
- Qian, C.; Chen, Z.; Liu, Q.; Mao, W.; Chen, Y.; Tian, W.; Liu, Y.; Han, J.; Ouyang, X.; Huang, X. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol. Plant 2020, 13, 777–792. [Google Scholar] [CrossRef]
- Tavridou, E.; Pireyre, M.; Ulm, R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. Plant J. 2020, 101, 507–517. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Zu, Y.; He, Y.; Li, Z.; Li, Y. Effects of UV-B Radiation Exposure on Transgenerational Plasticity in Grain Morphology and Proanthocyanidin Content in Yuanyang Red Rice. Int. J. Mol. Sci. 2024, 25, 4766. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Zhou, X.; Cao, K.; Xu, H.; Zhou, X. Analyses of the metabolism and assessment of antioxidant activity in Rhododendron chrysanthum Pall. after UV-B Irradiation. Plant Growth Regul. 2024, 103, 525–537. [Google Scholar] [CrossRef]
- Kaspar, S.; Matros, A.; Mock, H.P. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (Hordeum vulgare L.) seedlings. J. Proteome Res. 2010, 9, 2402–2411. [Google Scholar] [CrossRef] [PubMed]
- Kusano, M.; Tohge, T.; Fukushima, A.; Kobayashi, M.; Hayashi, N.; Otsuki, H.; Kondou, Y.; Goto, H.; Kawashima, M.; Matsuda, F.; et al. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 2011, 67, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Gong, F.; Zhou, X.; Xu, H.; Lyu, J.; Zhou, X. Comparative Metabolomics and Transcriptome Studies of Two Forms of Rhododendron chrysanthum Pall. under UV-B Stress. Biology 2024, 13, 211. [Google Scholar] [CrossRef]
- Xiang, Y.; Laurent, B.; Hsu, C.-H.; Nachtergaele, S.; Lu, Z.; Sheng, W.; Xu, C.; Chen, H.; Ouyang, J.; Wang, S. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 2017, 543, 573–576. [Google Scholar] [CrossRef]
- Neugart, S.; Bumke-Vogt, C. Flavonoid glycosides in Brassica species respond to UV-B depending on exposure time and adaptation time. Molecules 2021, 26, 494. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.; Freitas, H.; Santos, C.; Silva, A.M. The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. Phytochemistry 2020, 170, 112199. [Google Scholar] [CrossRef]
- Yao, J.W.; Ma, Z.; Ma, Y.Q.; Zhu, Y.; Lei, M.Q.; Hao, C.Y.; Chen, L.Y.; Xu, Z.Q.; Huang, X. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ. 2021, 44, 114–129. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Wang, H.-Z.; Wu, K.-X.; Guo, X.-R.; Mu, L.-Q.; Tang, Z.-H. Comparison of the global metabolic responses to UV-B radiation between two medicinal Astragalus species: An integrated metabolomics strategy. Environ. Exp. Bot. 2020, 176, 104094. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Q.; Lv, P.; Sun, C. Comparative metabolomic analyses of Dendrobium officinale Kimura et Migo responding to UV-B radiation reveal variations in the metabolisms associated with its bioactive ingredients. PeerJ 2020, 8, e9107. [Google Scholar] [CrossRef] [PubMed]
- Vives-Peris, V.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Proline accumulation and antioxidant response are crucial for citrus tolerance to UV-B light-induced stress. Plant Biol. 2024, 26, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, W.; Altaf, M.T.; Barutçular, C.; Nawaz, H.; Ullah, I.; Basit, A.; Mohamed, H.I. Ultraviolet-B radiation in relation to agriculture in the context of climate change: A review. Cereal Res. Commun. 2024, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Fernie, A.R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 2012, 69, 3225–3243. [Google Scholar] [CrossRef]
- Kasture, V.S.; Musmade, D.S.; Vakte, M.B.; Sonawane, S.B.; Patil, P.P. Metabolomics: Current technologies and future trends. Int. J. Res. Dev. Pharm Life Sci. 2012, 2, 206–217. [Google Scholar]
- Hollywood, K.; Brison, D.R.; Goodacre, R. Metabolomics: Current technologies and future trends. Proteomics 2006, 6, 4716–4723. [Google Scholar] [CrossRef]
- Yang, J.; Su, L.; Li, D.; Luo, L.; Sun, K.; Yang, M.; Gu, F.; Xia, A.; Liu, Y.; Wang, H. Dynamic transcriptome and metabolome analyses of two types of rice during the seed germination and young seedling growth stages. BMC Genom. 2020, 21, 1–18. [Google Scholar] [CrossRef]
- Tsugawa, H.; Bamba, T.; Shinohara, M.; Nishiumi, S.; Yoshida, M.; Fukusaki, E. Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J. Biosci. Bioeng. 2011, 112, 292–298. [Google Scholar] [CrossRef]
- Qiu, Y.S.; Zheng, Y.Y.; Xie, W.G. Advances in Genetics and Breeding of Elymus nutans in China. Chin. J. Grassl. 2022, 44, 98–106. [Google Scholar]
- Casati, P.; Campi, M.; Morrow, D.J.; Fernandes, J.F.; Walbot, V. Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genom. 2011, 12, 1–17. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, P.; Wang, R.; Sun, L.; Wang, W.; Zhou, H.; Xu, J. UV-B radiation induces root bending through the flavonoid-mediated auxin pathway in Arabidopsis. Front. Plant Sci. 2018, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.I.; Kim, H.Y.; Kim, J.; Oh, M.-M.; Son, J.E. Quantitative analysis of UV-B radiation interception in 3D plant structures and intraindividual distribution of phenolic contents. Int. J. Mol. Sci. 2021, 22, 2701. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Torres, N.; Hilbert, G.; Richard, T.; Sánchez-Díaz, M.; Delrot, S.; Aguirreolea, J.; Pascual, I.; Gomès, E. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry 2014, 102, 106–114. [Google Scholar] [CrossRef]
- Alvarez, M.E.; Savouré, A.; Szabados, L. Proline metabolism as regulatory hub. Trends Plant Sci. 2022, 27, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Gai, Z.; Liu, L.; Zhang, J.; Liu, J.; Cai, L. Effects of exogenous α-oxoglutarate on proline accumulation, ammonium assimilation and photosynthesis of soybean seedling (Glycine max (L.) Merr.) exposed to cold stress. Sci. Rep. 2020, 10, 17017. [Google Scholar] [CrossRef]
- Jing, Y.; Watanabe, M.; Aarabi, F.; Fernie, A.R.; Borghi, M.; Tohge, T. Cross-species metabolomic analyses in the Brassicaceae reveals common responses to ultraviolet-B exposure. Plant Cell Physiol. 2023, 64, 1523–1533. [Google Scholar] [CrossRef]
- Ishrat, Z.M.; Masudul, K.M.; Shahin, I.; Saiful, I.M.; Ashik, M.M.; Abdul, H.M.; Saidur, R.M.; Afzal, H.M.; Marian, B.; Milan, S. Citric acid-mediated abiotic stress tolerance in plants. Int. J. Mol. Sci. 2021, 22, 7235. [Google Scholar] [CrossRef]
- Kliebenstein, D.J.; Lim, J.E.; Landry, L.G.; Last, R.L. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 2002, 130, 234–243. [Google Scholar] [CrossRef]
- Liu, X.; Xie, Z.; Xin, J.; Yuan, S.; Liu, S.; Sun, Y.; Zhang, Y.; Jin, C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. Plants 2024, 13, 498. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Liu, X.; Bai, L.; Qin, Q. Effect of UV-B radiation on photosynthesis based flavonoid synthesis in daylily leaves. Phytochem. Lett. 2024, 62, 24–33. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Zhang, J.; Wang, Y.; Yang, Y.; Chen, X.; Wang, Y. How does Malus crabapple resist ozone? Transcriptomics and metabolomics analyses. Ecotoxicol. Environ. Saf. 2020, 201, 110832. [Google Scholar] [CrossRef]
- Tattini, M.; Remorini, D.; Pinelli, P.; Agati, G.; Saracini, E.; Traversi, M.L.; Massai, R. Morpho-anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. N. Phytol. 2006, 170, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Xu, Y.; Qin, H.; Sun, Q.; Ma, C.; Xu, Z.; Li, Q.; Zheng, Y. Transcriptome and metabolome analyses reveal the regulation effect of ultraviolet-B irradiation on secondary metabolites in pakchoi. Postharvest Biol. Technol. 2024, 209, 112702. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.; Xu, X.; Liu, D.; Zhu, G.; Yan, X.; Wang, Z.; Yan, Y. Comparative proteome analysis of wheat flag leaves and developing grains under water deficit. Front. Plant Sci. 2018, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Bheemanahalli, R.; Jumaa, S.H.; Kakar, N.; Reddy, V.R.; Gao, W.; Reddy, K.R. Impact of ultraviolet-B radiation on early-season morpho-physiological traits of indica and japonica rice genotypes. Front. Plant Sci. 2024, 15, 1369397. [Google Scholar] [CrossRef]
- Mmbando, G.S. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: A novel non-chemical strategy for managing biotic stresses. Plant Signal. Behav. 2023, 18, 2191463. [Google Scholar] [CrossRef]
- Lundsgaard, N.U.; Cramp, R.L.; Franklin, C.E. Ultraviolet-B irradiance and cumulative dose combine to determine performance and survival. J. Photochem. Photobiol. B Biol. 2021, 222, 112276. [Google Scholar] [CrossRef]
- Frohnmeyer, H.; Staiger, D. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol. 2003, 133, 1420–1428. [Google Scholar] [CrossRef]
- Dawood, M.F.; Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Abdel Latef, A.A.H.; Ragaey, M.M. Mechanistic insight of allantoin in protecting tomato plants against ultraviolet C stress. Plants 2020, 10, 11. [Google Scholar] [CrossRef]
- Soltabayeva, A.; Bekturova, A.; Kurmanbayeva, A.; Oshanova, D.; Nurbekova, Z.; Srivastava, S.; Standing, D.; Sagi, M. Ureides are accumulated similarly in response to UV-C irradiation and wounding in Arabidopsis leaves but are remobilized differently during recovery. J. Exp. Bot. 2022, 73, 1016–1032. [Google Scholar] [CrossRef]
- Kaur, R.; Chandra, J.; Varghese, B.; Keshavkant, S. Allantoin: A potential compound for the mitigation of adverse effects of abiotic stresses in plants. Plants 2023, 12, 3059. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Celi, G.E.A.; Gratão, P.L.; Lanza, M.G.D.B.; Dos Reis, A.R. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Plant Physiol. Biochem. 2023, 202, 107970. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, W.; Zhang, L.; Yang, L. Distribution of biologically effective solar ultraviolet radiation intensity on the ground in China. Geogr. Res. 2007, 76, 821–827+860. [Google Scholar]
- Qiu, W.; Chen, S.; Luo, X.; Li, Y.; Li, X.; Mao, D.; Yan, J.; You, M.; Li, D.; Bai, S.; et al. Comprehensive Evaluation on Resistance to UV-B Radiation of Wild Elymus nutans Germplasm Resources. Acta Agrestia Sin. 2022, 30, 1194–1202. [Google Scholar]
- Tevini, M. Plant responses to ultraviolet radiation stress. Chlorophyll A Fluoresc. A Signat. Photosynth. 2004, 2, 605–621. [Google Scholar]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Wang, S.; Tu, H.; Wan, J.; Chen, W.; Liu, X.; Luo, J.; Xu, J.; Zhang, H. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem. 2016, 199, 8–17. [Google Scholar] [CrossRef]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Sun, M.; Li, D.; You, M.; Yan, J.; Bai, S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024, 29, 5133. https://doi.org/10.3390/molecules29215133
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules. 2024; 29(21):5133. https://doi.org/10.3390/molecules29215133
Chicago/Turabian StyleZhang, Fei, Ming Sun, Daxu Li, Minghong You, Jiajun Yan, and Shiqie Bai. 2024. "Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress" Molecules 29, no. 21: 5133. https://doi.org/10.3390/molecules29215133
APA StyleZhang, F., Sun, M., Li, D., You, M., Yan, J., & Bai, S. (2024). Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules, 29(21), 5133. https://doi.org/10.3390/molecules29215133