Abrasive Wear Behavior of Al–4Cu–1.5Mg–WC Composites Synthesized through Powder Metallurgy
"> Figure 1
<p>The principle of linear configuration test (<b>a</b>) and pin-on-disc tests (<b>b</b>).</p> "> Figure 2
<p>SEM backscattered electron images corresponding to the initial powders and green and annealing conditions for Al–4Cu–1.5Mg alloy with 1 wt. % WC.</p> "> Figure 3
<p>XRD patterns of (<b>a</b>) Al–4.5Cu–1.5Mg + 3WC after extrusion and annealing, and (<b>b</b>) the Al–4Cu–1.5Mg alloy with 0, 1, 2, and 3 wt. % tungsten carbide (WC) particles after annealing.</p> "> Figure 4
<p>Evolution of the Vickers hardness with WC concentration up to 3 wt. %.</p> "> Figure 5
<p>Wear rate of the Al-4Cu-1.5Mg alloy and the composites with 0, 1, 2, and 3 wt. % tungsten carbide (WC) particles for the different sandpaper numbers during the pin-on-disc test at 3 and 5 N.</p> "> Figure 6
<p>Coefficient of friction (COF) of Al–4Cu–1.5Mg and Al–4Cu–1.5Mg + 3WC composite subjected to 5 N of load (<b>a</b>) and the average coefficient of friction (COF) of the composites with 1, 2, and 3 WC (wt. %) after the test at loads of 3 and 5 N (<b>b</b>).</p> "> Figure 7
<p>SEM secondary electron images from the worn surfaces in the Al–4.5Cu–1.5Mg alloy and the Al–4Cu –1.5Mg + 3WC composite. The samples correspond to the pin-on-disc test using 180 grit sizes of SiC abrasive sandpaper under 5 N of load and a sliding distance of 300 m.</p> "> Figure 8
<p>SEM backscattered electron images and EDX elemental mapping of the worn surface in the Al–4.5Cu–1.5Mg alloy (<b>a</b>) and the Al–4Cu–1.5Mg + 3WC composite (<b>b</b>). The mappings correspond to Al, Cu, Mg, and W elements, and the circle highlights delamination features.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of the Initial Materials
3.2. Mechanical and Wear Behavior
3.2.1. Vickers Hardness
3.2.2. Wear Rate (Pin-On-Disc Tests)
3.2.3. Coefficient of Friction (Linear Configuration Test)
3.2.4. Worn Surfaces (Pin-On-Disc Tests)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270–284. [Google Scholar] [CrossRef]
- Xiong, H.; Su, L.; Kong, C.; Yu, H. Development of High Performance of Al Alloys via Cryo-Forming: A Review. Adv. Eng. Mater. 2021, 23, 2001533. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Raghavan, R.; Tewari, A.; Narasimhan, K.; Mishra, S.K. Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater. Sci. Eng. A 2017, 679, 56–65. [Google Scholar] [CrossRef]
- Fernández-López, P.; Alves, S.A.; López-Ortega, A.; San José-Lombera, J.T.; Bayon, R. High performance tribological coatings on a secondary cast Al–Si alloy generated by Plasma Electrolytic Oxidation. Ceram. Int. 2021, 47, 31238–31250. [Google Scholar] [CrossRef]
- Kumar, H.P.; Xavior, M.A. Assessment of mechanical and tribological properties of Al 2024-SiC-graphene hybrid composites. Procedia Eng. 2017, 174, 992–999. [Google Scholar] [CrossRef]
- Lekatou, A.; Karantzalis, A.E.; Evangelou, A.; Gousia, V.; Kaptay, G.; Gácsi, Z.; Gácsi, Z.; Baumli, P.; Simon, A. Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. Mater. Des. 2015, 65, 1121–1135. [Google Scholar] [CrossRef]
- Sathish, T.; Karthick, S. Wear behaviour analysis on aluminium alloy 7050 with reinforced SiC through taguchi approach. J. Mater. Res. Technol. 2020, 9, 3481–3487. [Google Scholar] [CrossRef]
- Fernández, R.; Cabeza, S.; Mishurova, T.; Fernández-Castrillo, P.; González-Doncel, G.; Bruno, G. Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite. Mater. Sci. Eng. A 2018, 731, 344–350. [Google Scholar] [CrossRef]
- Mazahery, A.; Shabani, M.O. Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys. Compos. Part B: Eng. 2012, 43, 1302–1308. [Google Scholar] [CrossRef]
- Soltani, S.; Azari Khosroshahi, R.; Taherzadeh Mousavian, R.; Jiang, Z.Y.; Fadavi Boostani, A.; Brabazon, D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2017, 36, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Cabriales, G.; Lometo-Sánchez, A.M.; Guía-Tello, J.C.; Medrano-Prieto, H.M.; Gutiérrez-Castañeda, E.J.; Estrada-Guel, I.; Garay-Reyes, C.; Hernández-Rivera, J.; Cruz-Rivera, J.; Maldonado-Orozco, M.; et al. Synthesis and characterization of Al-Cu-Mg system reinforced with tungsten carbide through powder metallurgy. Mater. Today Commun. 2020, 22, 100758. [Google Scholar] [CrossRef]
- Simon, A.; Lipusz, D.; Baumli, P.; Balint, P.; Kaptay, G.; Gergely, G.; Sfikas, A.; Lekatou, A.; Karantzalis, A.; Gacsi, Z. Microstructure and mechanical properties of Al-WC composites. Arch. Metall. Mater. 2015, 60, 1517–1521. [Google Scholar] [CrossRef]
- Al-Mosawi, B.T.; Wexler, D.; Calka, A. Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing. Adv. Powder Technol. 2017, 28, 1054–1064. [Google Scholar] [CrossRef] [Green Version]
- Pandiyan, A.; Kumar, G.A.; Ranganthan, S.; Madhu, S. Optimization of wear performance on aluminium die cast A360-M1 master alloy using response surface method. Mater. Today Proc. 2020, 22, 551–557. [Google Scholar] [CrossRef]
- Krishna, U.B.; Vasudeva, B.; Auradi, V.; Nagaral, M. Effect of percentage variation on wear behaviour of tungsten carbide and cobalt reinforced Al7075 matrix composites synthesized by melt stirring method. J. Bio-Tribo-Corros. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- Pal, A.; Poria, S.; Sutradhar, G.; Sahoo, P. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method. Mater. Res. Express 2018, 5, 036521. [Google Scholar] [CrossRef]
- Gowda, K.P.; Prakash, J.N.; Gowda, S.; Babu, B.S. Effect of particulate reinforcement on the mechanical properties of Al2024-WC MMCs. J. Miner. Mater. Charact. Eng. 2015, 3, 469–476. [Google Scholar] [CrossRef]
- Mosbah, A.Y.; Wexler, D.; Calka, A. Abrasive wear of WC–FeAl composites. Wear 2005, 258, 1337–1341. [Google Scholar] [CrossRef]
- Majzoobi, G.H.; Rahmani, K.; Atrian, A. Temperature effect on mechanical and tribological characterization of Mg–SiC nanocomposite fabricated by high rate compaction. Mater. Res. Express 2018, 5, 015046. [Google Scholar] [CrossRef]
- Rahmani, K.; Majzoobi, G.H. The effect of particle size on microstructure, relative density and indentation load of Mg-B4C composites fabricated at different loading rates. J. Compos. Mater. 2020, 54, 2297–2311. [Google Scholar] [CrossRef]
- Pérez-Bustamante, R.; Bueno-Escobedo, J.L.; Jiménez-Lobato, J.; Estrada-Guel, I.; Miki-Yoshida, M.; Licea-Jiménez, L.; Martínez-Sánchez, R. Wear behavior in Al2024–CNTs composites synthesized by mechanical alloying. Wear 2012, 292, 169–175. [Google Scholar] [CrossRef]
- ASTM G99-17; Standard Test Method for Wear Testing with A Pin-On-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2017.
- Nemati, N.; Khosroshahi, R.; Emamy, M.; Zolriasatein, A. Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling. Mater. Des. 2011, 32, 3718–3729. [Google Scholar] [CrossRef]
- Prakash, N.A.; Gnanamoorthy, R.; Kamaraj, M. Friction and wear behavior of surface nanocrystallized aluminium alloy under dry sliding condition. Mater. Sci. Eng. B 2010, 168, 176–181. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, H.; Wang, D.; Sun, Y.; Liu, F.; Shen, J.; Sun, J.; Mi, J. The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass. Mater. Des. 2014, 58, 284–289. [Google Scholar] [CrossRef]
- Elhefnawey, M.; Shuai, G.L.; Li, Z.; Nemat-Alla, M.; Zhang, D.T.; Li, L. On dry sliding wear of ECAPed Al-Mg-Zn alloy: Wear rate and coefficient of friction relationship. Alex. Eng. J. 2021, 60, 927–939. [Google Scholar] [CrossRef]
- Moheimani, S.K.; Keshtgar, A.; Khademzadeh, S.; Tayebi, M.; Rajaee, A.; Saboori, A. Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. J. Magnes. Alloy. 2021, 10, 3267–3280. [Google Scholar] [CrossRef]
- Rahimian, M.; Parvin, N.; Ehsani, N. Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Mater. Sci. Eng. A 2010, 527, 1031–1038. [Google Scholar] [CrossRef]
- Abarghouie, S.M.; Reihani, S.S. Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures. J. Alloys Compd. 2010, 501, 326–332. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Liu, C.; Zhang, Y.; Deng, P.; Guo, Y.; Wang, J.; Wang, Y. Effect of WC addition on microstructure and tribological properties of bimodal aluminum composite coatings fabricated by laser surface alloying. Mater. Chem. Phys. 2019, 234, 9–15. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, A.; Wu, X.; Wang, Y.; Yang, Z. Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures. Surf. Coat. Technol. 2016, 304, 283–292. [Google Scholar] [CrossRef]
- Kaushik, N.; Sri Chaitanya, C.; Rao, R.N. Abrasive grit size effect on wear depth of stir cast hybrid Al–Mg–Si composites at high stress condition. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2018, 232, 672–684. [Google Scholar] [CrossRef]
- Kök, M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Compos. Part A Appl. Sci. Manuf. 2006, 37, 457–464. [Google Scholar] [CrossRef]
- Kök, M.; Özdin, K. Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles. J. Mater. Process. Technol. 2007, 183, 301–309. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Ergül, E.; Kurt, H.İ.; Oduncuoğlu, M.; Can, Ç.İ.V.İ. Wear Properties of Al-Cu-Mg Composites Reinforced with MGO and MWCNT under Different Loads. Int. J. Mater. Eng. Technol. 2020, 2, 70–75. [Google Scholar]
- Rao, R.N.; Devi, S.T. Wear regimes of Al-Cu-Mg matrix composites. Composites 2013, 5, 6. [Google Scholar] [CrossRef]
- Hidalgo-Hernandez, R.G.; Plaza, N.; Suárez, O.M. A study on tribological characterization of Al-Cu-Mg-B composites subjected to mechanical wear. Sci. Eng. Compos. Mater. 2014, 21, 333–339. [Google Scholar] [CrossRef]
Element Powder | Purity (%) | Particle Size (µm) |
---|---|---|
Al | 99.5 | <32 |
Cu | 99.5 | <32 |
Mg | 99.8 | <32 |
WC | 99.9 | <1 |
Sample Name (wt. %) | Theoretical Density (g/cm3) | Archimedes Density (g/cm3) | Relative Density | Porosity (%) |
---|---|---|---|---|
Al–4.5Cu–1.5Mg | 2.764 | 2.736 ± 0.010 | 0.99 | 1 |
Al–4.5Cu–1.5Mg + 1%WC | 2.787 | 2.703 ± 0.013 | 0.97 | 3 |
Al–4.5Cu–1.5Mg + 2%WC | 2.811 | 2.642 ± 0.008 | 0.94 | 6 |
Al–4.5Cu–1.5Mg + 3%WC | 2.836 | 2.581 ± 0.0115 | 0.91 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cabriales, G.; Garay-Reyes, C.G.; Guía-Tello, J.C.; Medrano-Prieto, H.M.; Estrada-Guel, I.; García-Hernández, L.J.; Ruiz-Esparza-Rodríguez, M.A.; Mendoza-Duarte, J.M.; García-Aguirre, K.A.; Gonzáles-Sánchez, S.; et al. Abrasive Wear Behavior of Al–4Cu–1.5Mg–WC Composites Synthesized through Powder Metallurgy. Lubricants 2023, 11, 103. https://doi.org/10.3390/lubricants11030103
Rodríguez-Cabriales G, Garay-Reyes CG, Guía-Tello JC, Medrano-Prieto HM, Estrada-Guel I, García-Hernández LJ, Ruiz-Esparza-Rodríguez MA, Mendoza-Duarte JM, García-Aguirre KA, Gonzáles-Sánchez S, et al. Abrasive Wear Behavior of Al–4Cu–1.5Mg–WC Composites Synthesized through Powder Metallurgy. Lubricants. 2023; 11(3):103. https://doi.org/10.3390/lubricants11030103
Chicago/Turabian StyleRodríguez-Cabriales, Gustavo, Carlos G. Garay-Reyes, Juan C. Guía-Tello, Hansel M. Medrano-Prieto, Ivanovich Estrada-Guel, Lilia J. García-Hernández, Marco A. Ruiz-Esparza-Rodríguez, José M. Mendoza-Duarte, Karen A. García-Aguirre, Sergio Gonzáles-Sánchez, and et al. 2023. "Abrasive Wear Behavior of Al–4Cu–1.5Mg–WC Composites Synthesized through Powder Metallurgy" Lubricants 11, no. 3: 103. https://doi.org/10.3390/lubricants11030103
APA StyleRodríguez-Cabriales, G., Garay-Reyes, C. G., Guía-Tello, J. C., Medrano-Prieto, H. M., Estrada-Guel, I., García-Hernández, L. J., Ruiz-Esparza-Rodríguez, M. A., Mendoza-Duarte, J. M., García-Aguirre, K. A., Gonzáles-Sánchez, S., & Martínez-Sánchez, R. (2023). Abrasive Wear Behavior of Al–4Cu–1.5Mg–WC Composites Synthesized through Powder Metallurgy. Lubricants, 11(3), 103. https://doi.org/10.3390/lubricants11030103